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In [9], [10] Kaplansky formulates the following conjectures concerning division 
a l g e b r a s  I)n, q n-dimensional over a finite field Fq: 

(K1) Any algebra D3,q is afield or a twisted field. 
(K2) l f  q is large enough, then an algebra D5,q is a f e l d  or a twisted field. 

(K1) is proved in [12], [13]. In Section 3 of this paper we prove the following 
proposition: 

(P) I f  n is prime and i f  q is large enough, then an algebra Dn,q is a field or a 
twisted field. 

Result (P) is obtained at the end of a general treatment, in Section 2 and 3, of 
algebras AmK n-dimensional over a field K with a cyclic extension of degree n. 

Section 1 is devoted to proving some properties of autocirculant matrices (cf. 
[14]) that are used in the following sections. 

In Section 2 we show that an algebra An,k defines a rational map ~ : A --4 P 
between determinantal hypersurfaces A, P of degree n of 79n_l(K). Hence we 
prove that the classification of algebras An,K up to isotopisms is equivalent to 
the classification of maps ~ • A --+ P where A and P are determined up to linear 
automorphisms of 3°n_l (K).  In the case K = Fq we also prove that if An,K 
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is without zero divisors and if q is large enough, then A and P are unions of 
hypersurfaces of the same degree d < n. 

In Section 3 we study a class of division algebras Dn,K that is the natural 
extension of the class of twisted fields introduced in Albert [2], to the case that K 
is infinite. Hence we prove that an n-dimensional division algebra A,~,K, such that 
S and P are unions of hyperplanes, is a field or an algebra Dn,K. 

Section 1 

We denote by K a field that has a cyclic extension field F, [F : K] = n > 2, and 
by a a fixed generator of  the Galois group, GaI(F/K),  of F over K. In particular 
when K = Fq we suppose that a coincides with the Frobenius automorphism 
X e-+ X q. 

For simplicity we indicate by a h, 0 < h < n - l, both an element of Gal (F/K)  
and the automorphism induced in the natural way by O/h in F[zo, Z l , . . . ,  zn-1], in 
the ring R(n,  F) o f n  × n matrices over F,  etc. 

From the Fundamental Theorem of Galois Theory (cf. [8, p. 232]) we deduce 
the following 

PROPOSITION 1. I f  F ~ is afield, K C_ F ~ C_ F, then there exists a divisor d of n 
so that 

[F ' '  K] = d, Gal (F ' /K)  is isomorphicto (a ) / (a  d) (1) 

and 

[F" F'] = n/d,  Gal(F/F')  = (ad). (2) 

Conversely, if din, then there exists afield F I, K C FIC F, so that (1) and (2) are 
satisfied. 

Let k E F I, K C F I C F ,  [F ~ " K] = d. We shall say that the elements k ~ ,  u = 
0, 1~. . . ,  d - 1, are conjugate in F ~ over K.  Analogously we define polynomials 
and matrices conjugate in F t over K. 

Put I = n/d,  

0 h-l) 
Jt := E GL(I ,K),  

1 0 
(3) 

where Iz-1 is the (1 - 1) × (l - 1) identity matrix, and 

o~ d Dr(k) := diag(k,k , . . . ,ka(~-i)d),  k E F. (4) 
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DEFINITION 2. An autocirculant matrix in F over F t is a matrix 

I-1 
A1 = At(ko,  k l , . . . ,  k l-1)  = E D t ( k h ) J h '  

h=O 
kh 6 F. (5) 

A u c ( F / U )  denotes the set of these matrices. 
If F ~ = F ,  then for simplicity we shall leave out the index I = n in (3), (4) and 

(5). 

Obviously A u c ( F / F  ~) is a subring of R(n,  F)  and contains the ring o f /×  I circulant 
matrices over F t . 

LEMMA 3. The n-tuple (uo, u l ,  . . . , Un-1)  E F n is a base o f F  over K if  and 
only if 

U = 

nO Ul "'" Un-la / 

• . .  Un_ 1 

Otn-- 1 
• " " ~ n - I  

(6) 

is not singular (cf. also [8, p. 281]). 
Proof. If det(U) ¢ 0, then the linear system 

n-1 
U i X i = O~ 

i=0 
j = 0, 1 , . . . , n -  1, (*) 

has only the trivial solution. 
Conversely, suppose that (u0, Ul , . .  •, u,~-l) is a basis of F over K and, by way 

of contradiction, that det(U) = 0. 
The system (*) has some non-trivial solutions (x0, X l , . . . ,  xn-1) E Fn: e.g. let 

x0 ¢ 0. F possesses a normal basis over K (cf. [8, p. 283]), so there exists some 
elements a E F so that 

n-1 
tr(axo) = ~ ( a x o )  '~ ~ 0  

i=0 

Acting on the (*) subsequently by the automorphisms c~ k, k = 0, 1 , . . . ,  n - 1, 
we obtain 

n-1  
E u~Jx~k = O~ 
i=0 

k , j  = O, 1 , . . . , n -  1. 



72 GIAMPAOLO MENICHETTI 

From this we deduce 

n - 1  

E uitr(axi) = O, 
i=0  

in contradiction with the hypothesis. 

PROPOSITION 4. The following three conditions on a matrix M E R(n ,  F)  are 
equivalent: 

(a) M C A u c ( F / K ) ;  
(b) M s = J M J - I ;  
(c) U - 1 M U  E R(n,  K) .  

Proof. (a) =:~ (b): This follows from (5) and from J D ( k ) J  -1 = D(ka),  
V k E F .  

(b) ~ (a): For every M E R ( n , F )  the diagonal matrices Ci = 
diag(cio, c i l , . . .  , cin-1),i  = O, 1,..  ., n - l, such that M = ~i=on-1 c i j i ,  are 
uniquely determined. Hence from (b) we deduce C~ = JCi J-1  and so CiD (cio), i = 
0 , 1 , . . . , n -  1. 

(b) ~ (c): We observe that 

U s = J U .  (*) 

From this and from (b) it follows that (U-1MU)  a = U - 1 M U .  
(c) ~ (b): From (*) and from (c) we deduce (U a ) -  1 M s U a = (U a ) -  1 J M J -  1 U a 
The equivalence of (a) with (b) implies det(A) E K, VA E A u c ( F / K ) .  Hence, 

in general, 

det(At) E F',  VAt E Auc(F/F ' ) .  (7) 

PROPOSITION 5. Let 

s - 1  

A = ~ D(k i~ )J  i~ e A u c ( F / K ) ,  
w : 0  

with 0 < io < il < . . .  < is-1 <__ 
d = G.C.D.(n, io, i l , . . . ,  i s - l ) ,  then 

n - 1, ki~ 0, w = 0 , 1 , . . . , s  - 1. I f  

d - 1  

det(A) = I I  (det(At)) a~, 
u=0  

s-1 
Al = ~ Dl(ki~)J[  w e Auc(F /F ' ) ,  

w=O 

where K C F ' C F ,  [F' " K] = d, l = n /dandrw = iw/d. Furthermore (det(At)) a~, 
u = O, 1, • . ,  d - 1, are conjugate elements in F ~ over K. 
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The proof  of  this proposition needs some remarks on the symmetric group, Sn, of 
n___oo -- {0, 1 , . . .  , n  - 1}. 

Let  

= ( o  1 . . .  - 1) c sn (8) 

be the cycle that maps 0 to 1, 1 to 2 , . . . ,  n - 1 to 0, and let i E no. If  d divides the 
G.C.D.(n,  i) and if i = rd, then 

T i ---- (ToT1 . - .  Td--1) r, Tv = (l] I/ q- d . . .  ~ + d(l - 1)) e S n ,  

u = 0 , 1 , . . . , d -  1. 

If  

and if 

X = XoX1 . . -  Xd-1, Xt~ = (vl vl + 1 . . .  

v = O, 1 , . . . , d -  1, 

~ l + ( l - 1 ) ) E S n ,  
(9) 

P(X r) = d i ag ( J / ,  J [ , . . . ,  J[) (cf.(3)).  (14) 

Moreover,  for every diag(ko, k l , . . . ,  kn-1) E GL(n,  F )  and for every o- C Sn, 

P(cr)diag(ko,  k l , . . . ,  k n - l ) P ( a  -1) = diag(ka(o), k o 0 ) , . . . ,  k~(n-U). (15) 

and 

0 1 . . .  l - l  . . .  ( d - l ) /  . . .  d l - l ' ~  

3 ' =  0 d . . .  ( / - 1 ) d  . . .  d - 1  . . .  d l - 1 ) '  
( l O )  

t h e n  " ro t  1 . . .  T d _  1 = ' ) ' - I x '  Y. H e n c e  

~_i = 7-1Xr% i = rd. (11) 

Let P : Sn "-+ GL(n ,  F )  be the linear representation in which 

1 , j  = a(i), 
P(a)  = (c/j), cij = 0 , j  # a(i). (12) 

If  "r and X denote the permutations (8) and (9) respectively, then 

P( ' r )  = J (13) 
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PROOF OF PROPOSITION 5. If 7 denotes the permutation (10), then (cf. (11) 
and (13)) 

( d e t / ~  D(ki~")Ji~ = det P(7)D(ki~)P-I(7)P(x ~) . 
\ w = 0  / 

From (10) and (15) we deduce 

= ~ • . . D ad-1 P(7 )D(k iw)p - l (7 )  diag(Dt(kiw) D~(kiw), , 1 (kiw)). 

The first statement follows from this, from (14) and from Proposition 1. The 
second is an obvious consequence of (7). 

We denote by F the field F with the natural structure of n-dimensional K-  
algebra and by V its K-vector space. 

PROPOSITION 6. The endomorphisms of V are all and only the maps ~ : V -+ V, 

n--I  

~(x) = ~ kix ~', ki e F. (16) 
i = 0  

U-1A ( ko, kl, • • •, kn-1)U is the matrix of ¢ relative to the base (uo, u l , . . . ,  Un-1) 
(cf. also [15] and [17])• 

Proof. Obviously E E End(V). If B = (bij) E R(n,  K)  is the matrix of 
# C End(V) relative tothe base (u0, u l , . . . ,  Un-1), then 

n - 1  n - I  

x ~ x j u j ~ z '  ~_, ' • = = XiUi ,  X j ,  x i E K, (*) 
j =o i=o 

~-1 ( , ) ,  
x~= ~-~bijxj, j = 0 , 1 , . . . , n - 1 .  

j=o 

Acting in succession by the automorphisms a k, k = 0, 1 , . . . ,  n - 1, on the expres- 
sions of x and x ~ that are in (*), we obtain 

n--1  n - 1  

X j  = E YJ k x a k '  X~ = E t~ikX'ak'  
k = 0  k = 0  

where (~'ij) = U-1. 
Substituting in (*)~ we have 

t (X!  X lot . . .  X IOtn-1 ) ~ U l ~ U - l t ( x  x OL . . .  xO~n--1)• C~) H 

From Proposition 4 we deduce 

UBU -1 = A(k0, k l , . . . ,  kn-1) E Auc(F/K) .  

Hence (*)" is equivalent to (16). 
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DEFINITION 7. We say that A (k0, k l ,  • • • ,  kn-1 ) is the autocirculant matrix of the 
automorphism (16). 

COROLLARY 8. The automorphisms of  V are all and only the maps (16) whose 
autocirculant matrices are non-singular (cf. also [5] and [14]). 

Section 2 

Up to isomorphisms an n-dimensional K-algebra is a structure A = (17, f )  whose 
multiplication f : V 2 -+ V is a bilinear map, i.e. (cf. Proposition 6) 

n--1 
a xC~ i c~J 

: i j  v , • F 

i,j=O 

We shall say that A is a division algebra if it possesses the unity element and 
has no zero divisors. 

The autocirculant matrices of left and right multiplication Ax : y ~ f ( x ,  y) and 
Pv : x ~ f (x, y) are 

A( lo (x ) ,  /1 ( x ) , . . . ,  l n - l  (X) ), 

and 

A(ro(y),  rl ( y ) , . . . ,  rn-1 (y)), 

respectively. 

n-1 
l j (X)  = a i j x  

i=0 

n-1 
ri(y) = y ~  aijY •j , 

j=o 

We shall say that A' = (17, f ' )  is (/31,/32, ~33)-isotopic to A = (V, f )  (or simply 
that A ~ is isotopic to A and we shall write A ~ ~ A) if there exists an isotopism 
(/3i,/32,/33) E (aut(V))  3 so that 

f ' ( x , y )  = (f(xZl,ya2))  za, Vx, y e V. 

In particular, if/31 =/32 =/331,  then A' is isomorphic to A (A ~ ~ A). 
The group (Aut(V))3 determines a partition into isotopism classes of the set of 

algebras. The same occurs in the set of algebras without zero divisors, and in this 
case every isotopism class contains some division algebras. In fact we prove the 
following 

PROPOSITION 9. Let A = (V, f )  be an algebra without zero divisors. Up to 
isomorphism the division algebras isotopic to A are those A ~ = (V, fr) in which 

f '  (x, y) = f (x p21 , y)'b-'), Vx, y e 17, 

with a, b • A - O. The element f (b, a) is the unit of  A ~. 
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Proof. Up to isomorphism A ~ is isotopic to A if and only if f ( x , y )  
f t ( x f l l  , yfl2), ill ,  f12 E Aut(V). 

Let e E V - 0 ,  b = e Z l  1, a = e ~ 2  ~ . e is the unit o f A  ~ if and only if 

y/~2 = i f (e ,  V ~:) = f (b ,  V), Vy C V, 

and 

x & = f ' ( x  ~', e) : f ( x ,  a), 

Hence 

f ( x ,  y) = f ' ( x  p'~, y'%), 

Moreover, we observe that 

f ' ( f ( b ,  a), y) = f (b ,  y~;i)  = Y, 
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V x E V .  

Vx, y E V. 

i f (x ,  f (b,  a)) = f ( x  p;I, a) = x. 

The isotopism relation comes from the theory of projective planes. In fact we 
can prove that every division algebra D - or more exactly its ring (semifield) - is the 
coordinate ring for a non-Desarguesian plane 7r (D) of type V. 1 in the Lenz-Barlotti 
classification. Moreover, if D ~ ~ D, then 7r(D I) is isomorphic to 7r(D) (cf. [4]). 

In this note we mainly study algebras without zero divisors and, in particular, 
division algebras. So afterwards we shall refer to the classification of algebras in 
isotopism classes. 

The left zero divisors (respectively fight zero divisors) of the algebra A = (V, f )  
are the non-null solutions in F of the equation 

L(x)  = det(A(lo(x),  ll ( x ) , . . . ,  In-1 (x) ) = 0 (17) 

(respectively of the equation 

R(y)  = det(A(ro(y),  rl ( y ) , . . . ,  rn-1 (y) ) = 0). (18) 

The implicit functions 

fak  (x, y) = O, k = O ,  1 , . . . , n - 1 ,  (19) 

yields a correspondence from the set of solutions of (17) to the set of solutions of 
(18). 

We shall suppose always that (17) and (18) are not identities. 
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In order to study the above-mentioned equations - particularly when A has no 
zero divisors - it is expedient to include F in K or rather A in A ® K.  We shall do 
this using a geometric language. 

Let 79(V) = 79n_l (K)  the (n - 1)-dimensional projective space over K. 
We denote by P~ the projective coordinate system corresponding to the base 
( u 0 , u l , . . .  , u s - i )  o fV.  So i f  

n - 1  

X ~ ~_£ XiUi 
i=0 

(20) 

is a point, then (xo, X l , . . . ,  Xn-1 )  is the n-tuple of its coordinate in E. 
In 7~n_1 (K)D79u_1 (K) we fix the coordinate system P'0 defined from P~ by the 

following coordinate transformation: 

n - 1  

Xi~ i 
i=0 

j = 0,1, . .. ,n  - 1. (21) 

By the comparison of these equations with those obtained from (20) acting 
subsequently by the automorphisms o~a, j = 0, 1 , . . . ,  n -  1 (cf. also Proposition 4), 
we deduce the following 

Remark  lO. In the coordinate system ~0 the points lying in 7 ) n _ l ( K )  have 

coordinates (kx ,  kx~ ,  . . . , k x ' ~ - l  ), x E F* = F - O, k 7~ O. The linear automor- 
t n - 1  • phisms of 79n_1 (K) have equations z i = Zj= o ai jz j ,  ~ = O, 1 , . . . ,  n - 1, (aij) E 

a u c ( F / K ) , d e t ( a i j )  7 ~ O. 

The homogeneous equation 

= o  
\ i=0 

(22) 

of degree n has coefficients in K (cf. (7)). Hence in ~ it is the equation of 
a hypersurface A that we shall call the hypersurface o f  left zero divisors o f  A.  
Analogously we define 

(23) 

as the hypersurface o f  right zero divisors o f  A. 
The functions 

n - 1  n - 1  ) 
=o, (24) 
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give a rational map # • A -~ P. 
We deduce the equation of A and P in E0 substituting (21) respectively in (22) 

and (23). Hence (cf. Remark 10): 

R e m a r k  11. (17) and (18) are the equations in E0 of the zero-divisor hypersur- 
faces A, P of A. The functions (19) give a rational map # • A --+ P. 

Let A and ]~ be the set of K-rational points of A and P respectively (i.e. the 
zero-divisor hypersurfaces of the algebra A ® K). 

R e m a r k l 2 .  IfL(z0,  zl, . ,Zn-1  ) andR(z6, z~,..  ' • " •, z n -  1) are the polynomials 
deduced from (17) and (18) respectively by the substitutions 

x ak = Zk, y ak = z I k, k = 0 , 1 , . . . , n -  1, (25) 

then in Eo 

A " L ( z o ,  z l , . .  ,Zn-1) O, P"  t , • = L(Zo, Zl, . . .  , Z n _ l )  = 0. 

The functions 

! ! t 7k(ZO, Zl , . . .  ,Zn-I,ZO, Zl, . . .  ,Zn_l) = 0,  k = 0, 1 , . . .  , n  - 1, (26) 

analogously deduced from (19), give a rational map ~ : A -+ P. 

We remark also that in the coordinate system E0 the equations of A, A, P, P are 
independent of the choice of a base in V. 

Let 

A ' "  L ' ( x )  = det(A(ffo(X),  l~ ( x ) , . . . ,  I tn_l  (X))  : 0 (27) 

and 

P' " R '  (y) = det(  A(r~o(y), r~ (y),  . . . ' , rn - i (Y))  = 0 (28) 

be the zero-divisor hypersurfaces of the algebra A r = (V, f ' ) .  Moreover, let 

f ' a k ( x , y ) = O ,  k = 0 , 1 , . . . , n - 1 ,  (29) 

be the functions that define a rational map #r • A ~ ~ Pq 

PROPOSITION 13. A'  = (V, f ' ) )  is (1, 1, f l3)-isotopic to A = (liT, f )  i f  and  only  

if-A' = -A, pl = p and  func t ions  (26) and  

- - r  I I I 
f k ( z o ,  z l , . . .  , z n _ l , Z o ,  Z i , . . .  ,Zn_l) = 0~ k = 0, 1 , . . .  , n  - 1, (30) 

give the same map  -fi : A ~ P. 
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Proof. If A' is (1, 1, fla)-isotopic to A, then (cf. Corollary 8) 

n-- i  
o~ i 

f ' ( x , y )  = ~ k i f  (x,y),  det(A(ko, k1 , . . . , kn-1) )  5 0. (*) 
i=0 

Hence 

A(l~o(X), l~ (x), . . . , IIn_l (x) ) 

= A(ko, k l , . . . , ku -1 )A ( lo ( x ) , l l ( x ) , . . . , / u - l (X ) ) ,  

A(/o(X), r i ( x ) , . . . ,  rtn_l (~g)) 

= A(ko, k l , . . - ,  k n - 1 ) A ( r o ( x ) ,  r l  ( x ) , . . . ,  rn_  1 (x) ) .  

Moreover, systems (26) and (30) are equivalent. 
On the other hand, if A~ = A, Pt = P, #r = ~, then there exists a matrix 

M C GL(n, F)  such that 

 (7'oi'1. - '  : . .  • fn-1) Mt(-fo fl" fn-1)" 

In particular, assuming Zh = x a~ , Z~h = y a~ , we have 

t ( f '  f ' ~ . . ,  f '~-1)  --_ M t ( f  f ~ . . .  f~"-l) .  

From 

t ( f  f a . . .  fa '~-l)a _-- j t ( f  i s . . .  fad-l) ,  t ( f ,  f l a . . ,  f,an-1)a 

= j t ( f ,  ftc~.., fta "-1) 

we deduce that M = j - 1 M a j  and hence (cf. Proposition 4) M = 
A(ko, k l , . . . ,  k n - m ) .  

We can formulate the last proposition referring to the hypersurfaces A, P, A ~, pt 
- - !  --! 

instead of A, P, A ,  P ,  but it would have no real content if the algebras have no zero 
divisors• 

PROPOSITION 14.1. IrA'  = (V, if) is (ill, 1, 1)-isotopic to A = (V, f),  then A' 
is projectively equivalent to A and pt = p. 

I f  A ~ is a hypersurface projectively equivalent to A, then there exists an algebra 
A ~ isotopic to A, whose left and the right zero-divisor hypersurfaces are A ~ and P 
respectively. 
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Proof. I f A  ~ is (ill, 1, 1)-isotopic to A, then (cf. Corollary 8) 

) f l ( x , y )  f \~=0 ' d e t ( A ( k ° ' k l ' "  "" ' k n - ' ) )  ~ O. (*) 

Hence the hypersurface 

( n-1  ) 
A I" L I~_, kix ~ = 0 

(*)' 

\ i = 0  / 

is projectively equivalent to A : L(x)  = 0 (cf. Remark 12). Moreover, Rl(y) = 
R(y)A(ko,  kl,  . . .  ,kn-1).  

If A I is projectively equivalent to A, then there exists a non-singular matrix 
A(ko, k l , . . . ,  kn-1) such that (,)1 is the equation of A I. Then we observe that the 
algebra A r = (V, f l ) ,  with f '  given by (,),  satisfies the required conditions. 

Likewise we prove the following 

PROPOSITION 14.2. I f  A = (V, f ' )  is (1,/32, 1)-isotropic to A = (V,f) ,  then 
A I = A and PP is projectively equivalent to P. 

I fP  ~ is a hypersurface projectively equivalent to P, then there exists an algebra 
A I isotopic to A, whose left and right zero-divisor hypersurfaces are A and pi 
respectively. 

From Propositions 13, 14.1 and 14.2 we see that the classification of algebras into 
isotopism classes requires the determination of the possible couples (A, P) two-by- 
two projectively non-equivalent, and for every couple (A, P) the admissible rational 
maps ~"  A --~ P. 

In any case, A and P are determinantal hypersurfaces that can be either absolutely 
irreducible or reducible in a suitable extension of K.  

E X A M P L E .  A = ( V , f ) , f ( x , y )  = x y  + (x  a2 - x ) y a , d i m K  A = 3 .  

L ( x )  = R ( x )  = d e t ( D ( x )  + D ( x  a2 - x ) J )  = XXaX a2 

+(X  -- X") (X  '~2 -- X)(X ° -- ~ 2 ) ,  

A, P" zozlz3 + (zo - Zl)(Z2 - zo)(zl  - z2) = 0. 

These cubic curves are invariant under the action of the group generated by the linear 
automorphism (zo, Zl, z2) --+ (Zl, z2, z0). Hence their possible singular points have 
coordinates (1, k, k2), k 2 + 3k - 3 = 0, k 2 + k + 1 = 0. 

We deduce that A = / 5  
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(a) is the union of the conic ZOZl + Zl z2 q- z2zo --- 0 and the line z0 + Zl -~- Z2 ~-~ 0 
when Char(K) = 2; 

(b) has a double point in (1,2,4) if Char(K) = 7; 
(c) is elliptic in the other cases. 

From Proposition 5 we deduce the following 

Remark 15. Let be A = (V, f )  

T - 1 S - 1  

f ( x , y )  = ~ ~ ChkX"thy "~k, Chk ~ F, 
h = 0  k=0 

0 <_ to < tl < "" < tT-1 <_ n -- 1,0 <_ so < sl < " "  < s8-1 <_ n -- 1. Suppose 
that for every h E { 0 , 1 , . . . , T  - l} and for every k E { 0 , 1 , . . . , S  - 1} some 
constants are non-zero. 

If d = G.C.D. (n, so, S l , . . . ,  ss-1) ,  d' = G.C.D.(n, to, t l , . . . ,  tT-1), then 

(a) A is the union of the d ~ hypersurfaces 

r k = S k / d ,  u = O ,  1 , . . . , d -  1, 

that are conjugate in an extension of degree d of K;  
(b) P is the union of d / hypersurfaces 

OZ tJ  

Pu, :det\~_=oDl'\,~_~=oChkYaSk = 0 ,  ll = n /d  I, 

r~ = th /d ' ,  J =O, 1 , . . . , d  I - 1 ,  

that are conjugate in an extension of degree d I of K.  

The hypersurfaces Au or Pv, may be reducible. Moreover, we can choose th, sk 
and Chk in such a way that Au and Pu' have no K-rational points. Some examples 
are in the next section. 

If K = Fq and if A has no zero divisors, then the possible components of A and 
P satisfy the conditions imposed by Propositions 16 and 17. 

Let • • 9(zo, z l , . . .  , z n - 1 )  = 0 b e  a hypersurface of degree n > 2 lying in 
T)n-l(Fq). 

PROPOSITION 16. I f  • is reducible and has no Fq-rationaI points, then it has 
m = n / d  components, each of degree d < n and conjugate in Fq,~ over Fq. 



82 G I A M P A O L O  M E N I C H E T T I  

Proof Let Fqr~, [z0, Z I , .  • • , Zn--1], m r ~ l,  the ring in which 

l 

9 = ~ I g r  
r=l 

(*) 

where the 9r are absolutely irreducible homogeneous polynomials. We divide the 
proof into two parts. 

l' i r (a) A polynomial g = I I j = l g r j ,  product of  < l polynomials among the 9r 
does not lie in Fq[zo, Zl, . . . , Zn-1]. 

Suppose 9 ~ C Fq[zo, z l , . . .  ,Zn-1]. If  9 r depended on n r < n variables (for 
instance zo, Z l , . . . ,  Zn,), then (0, 0 , . . . ,  1) would be a non-trivial zero of  9. If  
9 r depended on all variables, then, since deg(9 r) <_ n, 9 r would have at least a 
non-trivial zero in F~  according to the Cheval ley-Waming theorem (cf. [16, p. 
13]). 

(b) l f  gl E Fqm[ZO, Z l , . . .  ,Zn--1],2 ~ m < m', then l = m andthefactors gr 
of (*) are conjugate in Fqm over Fq. 

qJ 
We observe that every polynomial 91 , J = 0, 1 , . . . ,  m - 1, is a factor of  g 

because t . . . ,  Zn_l] is IIr=,gr = II =lgg ,j = O, 1 , . . . , m  - 1, and Fqm,[zo, zl, 
factorial. 

r i  m -  1 _qJ qJ . From (a) and from j=0 Yl C Fq[Zo, z l , . . .  ,zn-1] we deduce that 91 ,3 = 
O, l ~ . . . ,  m - 1, are the only factors of  ( ,) .  

PROPOSITION 17. I f  q is large enough, i.e. greater than an integer B (n) depend- 
ing only on n, then a hypersurface q~ E 7)n_ l ( Fq ), deg(~)  > 2, without Fq-rational 
points, is reducible in a suitable extension of Fq. 

Proof Putting N = 0, r = n - 2 and d = n in the Lang-Weil  inequality proved 
in [11], we deduce 

qn-2 < (n -- 1)(n -- 2)q n-2-1/2 + Ar(n)q n-3, 

where At(n) is a constant depending only on n. Hence 

q < (n - 1)(n - 2)x/~ + A'(n) 

or q < B ( n ) .  

PROPOSITION 18. B(3)  = 1. 
Proof The Hasse-Weil  inequality 

IN  - (q + 1)l _< 2gx/-q (cf. [7] and [18]) 

assures that an irreducible cubic has N > 0 rational points over Fq for every q. 

From Proposition 17 we deduce the following 
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COROLLARY 19. Let A be an algebra without zero divisors n-dimensional over 
Fq. There exists an integer v(n) <_ t3 (n) depending only on n, so that the following 
condition holds: If  q > v (n) then the zero-divisor hypersurfaces of A are reducible. 

An estimate of the constant A(n, d, r) in the Lang-Weil inequality would give an 
upper bound for v(n). We know neither general results nor examples that suggest 
a significant lower bound for v(n),  n >__ 4. 

Section 3 

Let A(F, s, t, c) be the algebra whose multiplication is given by the bilinear map 

f ( x , y ) = x y - c x a t y  as, c c F - O ,  O < _ s , t < _ n - 1 .  (31) 

LEMMA 20. The zero-divisor hypersurfaces of A( F, s, t, c) are 

A" L ( x ) =  

n - 1  
H (X -- CXat) O~i = 0 ,  

i = 0  

8 ~ 0 ~  

l - 1  av  
1--1 X ~hd  C Othd ~ O~ __ x Ot hdq-t 

v=O h=O h=O .1 

s ¢ O ,  

(32) 

d = G.C.D.(n,s) ,  n = ld; 

I 
n -  1 a* a i 

iH_o(Y-cy ) = 0 ,  t = 0 ,  

P • R(y) = 
d l - 1  E l l -1  i 11-1 I t - 1  • ] 

v'=0 Lh=0 h=0 h=0 ] 
=o, t#o,  

(33) 

d I = G.C.D.(n, t) ,  n = lid I. 
Proof. If s = 0, then A(lo(x), ll ( x ) , . . . ,  In-1 (x)) = D(x - cx at) (cf. (4)). 
If s ~ 0, then putting s = rd and using Remark 15, we have 

d - 1  
O~ t 7" Ot t~ L(x) = l-I det[Dl(x) + Dl ( -cx  )J~] , 

v=O 

l - - I  l - - I  l--1 
othdq-t det[Dl(x) + Dz(-cx~t)J[] = IX xaha + (-1)  r(l-r)+l g cahd 1-I x . 

h = 0  h----0 h - -0  

Moreover, G.C.D.(r, l) --- 1 implies that r(l - r) + l is odd. 
The second statement is proved similarly. 
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Using Remark 12, from (32) and from (33) we deduce the equations of the 
hypersurfaces A and P of A(F, s, t, c): 

A "  i ( z o ,  z l , . . . , Z n _ l )  

I 
n - 1  a i 

I I ( z i  - c  zi+t) = o, 8 = o, 
i = o  

d-1 yl-1 1-1 l-1 

z e+. - 1 1  c I I  Zhd+u+t : O, 8 ¢ O, 
u = 0  I-h=O h=O h=O 

d = G.C.D.(n,s),  n = Id; 

P" R(zo, z l , . . . ,  z n - 1 )  

n--1 
I I  ( z~ C °~i ! 

- -  Zi+s) = O, t = O~ 
i=0  

]jr,,-, ,,-, ] 
r I  c : o, o, 

u = 0  -- h = 0  h - 0  

(34) 

(35) 

PROPOSITION 2 2 . / f  

N ( c )  = ccC' . . .c  a~-I ¢ 1, (36) 

then A(F, s, t, c) has no zero divisors. 
P r o o f  The conclusion is trivial if t = s = 0. Suppose s ~ 0. 

A(F, s, t, c) has zero divisors if and only if there exists x0 E F - 0 so that 
L ( x o )  = 0. In this case (cf. Lemma 20) 

1--1 l--1 I - 1  

I X x ~  ha+~ = I I c a h a + ~  1 - I x ~  ha+~+', u = o ,  1 , . . . , d - 1 .  
h = 0  h = 0  h : 0  

LEMMA21. Let  O <_ i, j _< n -  1,d = G.C.D.(n,i) and  n = ld. 

(a) The e lements  ha  + k , h  = O, 1, . . . , l  - 1, k = O, 1, .  . . , d  - 1, wi th  a = d or  

a = i , f o r m  a complete  system mod n 
(b) xd = j + hd(mod n) ,0  _< h < l -  1 has exactly one solut ion x C 

{0, 1 , . . .  ,l - 1} i f a n d o n l y  i f d d i v i d e s j .  

P r o o f  Cf. [6, ch.V]. 

d I = G.C.D.(n, t), n = l id I. 

The indices o f  the variables  z a n d  z ~ in (34) and  (35) must  be evaluated  mod n. 
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Hence multiplying over all u, we deduce (cf. Lemma 21(b)) 

n - 1  n - 1  n - 1  
ot i • oti 

II  x0 : I I  1-I 
i : 0  i = 0  i : 0  

x0 ¢ 0, 

in contradiction with the hypothesis. 
If  t # 0, an analogous argument with R(y)  = 0 instead of  L(x)  = 0 concludes 

the proof. 

PROPOSITION 23. I f  lK  I > 2, then there exists some element c E F - 0 satisfying 
condition (36). 

Proof. When the cardinality of  K is infinite it is sufficient to observe that the 
equation x n - 1 = 0 has at most n roots in K .  

If  IKI = q > 2, then the equation X l + q + ' ' ' + q n - 1  = 1 has at most 1 + q + . . .  + 
qn-1 < q~ _ 1 roots in Fq~ - O. 

When one of  the integers s or t is prime to n, condition (36) is also neces- 
sary in order for A(F,  s, t, c) to have no zero divisors. In fact, if, for example, 
G.C.D.(n,  s) = 1, then I = n and 

n t ( n  / n - - 1  

h ' L ( x )  = 1-[ xah l -  x ah = O. 
h = 0  h = 0  / 

If  A ( F , s , t , c )  = ( V , f )  has no zero divisors, then D a ( F , s , t , c )  = ( V , f ' ) ,  

i f ( x ,  y) = f ( x  p21 , y ;~2~) is a division algebra isotopic to A(F,  s, t, c) for every 
a E V - 0 (cf. Proposition 9). Moreover, different values of  a give algebras isotopic 
to one another. Hence is not restrictive to suppose a = 1. 

For simplicity we pose D1 (F, s, t, c) = D(F,  s, t, c) and we call these division 
algebras twised fields. 

We can determine f (xP~ ~ , y;~7 t ) explicitly, observing that if  0 < i < n - 1 and 

N(c)  # 1, then the inverse of e : V -+ V, x ~ x - cx a~ is the automorphism 

e - 1  " X ~ CI (X  -~ CX OLi ~-  CCf~ixo~21 ~- " • " -~ c a  C~i . , . Cc~(l -2) ixa(1-1) i )~ 

with d = G.C.D . (n , i ) , I d  = n and d = (1 - cc a~...cc~(~-l)~) -1 (cf. also 
Lemma 21 (a)). 

The algebras A(Fq~, s , t , c )  without zero divisors and the twisted fields 
D(Fq~, s , t ,  c) have been introduced and studied by Albert in [1], [2] and [3]. 
In those papers, Results 24 and 25 are proved. 

RESULT 24. I f  

c 7 £ k  q- l ,  k E Fq~ - 0 ,  (37) 
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then A(Fq,~, s, t, c) has no zero divisors. 

We remark that condition (37) is equivalent to (36) with c # 0. In fact there are 
(qn _ 1)(q - 1) - I  elements x = kq-l:  k E Fq. - O. Moreover, every one of  them 

is a root of  the equation X l+q+'''+qn-1 = 1. 

RESULT 25. Let I) ~ be a division algebra isotopic to a twisted field D( Fq, , s, t, c). 
Then D' is isomorphic to a twisted field D(Fq,~, s, t, c'). 

Remark 26. Result  25 is valid for twisted fields over any field K because the 
proof  given in [3] does not require that K be a finite field. 

L E M M A  27. I f  c r ~ 0 then the polynomial 

g(Zio:Zi l~.  ,Zi2l_l) l -1  C ! l -1  • . = 1-Ih=o zih + 1-Ih=O Zil+h C F[zo, Z i , . . . ,  Zn_l]  : 

2<_21<_n,  

is absolutely irreducible. 
l - I  c~IIlh--lziz+h,theng goZio+gl C F~[zio], F ~ Proof  Putgo = I-[k=oZik, gl = = = 

F[Zi l ,  Z i 2 , . . .  , Zi2l_ 1]" F !  is factorial and 9o, g l are relatively prime. 

PROPOSITION 28. I f  d does not divide t, the hypersurface (34) is the union o f  d 
hypersurfaces o f  degree l, absolutely irreducible and conjugate in an extension F ~ 
over K,  [F' " K] = d. I f  dlt then (34) is the union of the hyperplanes 

Zi = O :  i = 0, 1 , . . . ,  n - 1, (38) 

conjugate in F over K ,  or coincides with the entire space according to whether 

1--1 

Nd(c) = 1-[ cahd ¢ 1 (39) 
h=0 

or Nd(C) = 1. The analagous result holds for  the hypersurface (35). 
Proof. When s = 0, the hypersurface A is the union of  the linear components  

- -  a i  o~ i 
= = - c  )zi 0 Ai : Z i - -C  Zi+t O,i 0 , 1 : . . . , n - l ,  whoseequa t ionbecomes (1  = 

if d divide t. 

If  s # 0, then A is the union of  the components 

l--1 l - 1  l--1 

I I  zhd+  - I I  I I  zhd+ +  = O, = O, 1 , . . . ,  d -  1, 
h=O h=O h=O 
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that are absolutely irreducible if and only if d does not divide t (cf. Lemmas 21(b) 
and 27). 

When d divides t we have (cf. Lemma 21) 

d - 1  n - 1  

A" 1-I (1 - Nd(c)) a~ ~ I  zi = O. 
u=0 i=0 

COROLLARY 29. Both the hypersurfaces -A and P of  the algebra A(F, s, t, c) are 
the union of  the hyperplanes (38) if and only if 

d I = d (40) 

and (39) is satisfied. 

We remark that (39) is a necessary and sufficient condition for A(F, s, t, c), d ~ = d 
to have no zero divisors. 

We verify easily that the hypersurfaces A and P of the algebra (field) F are also 
the union of the hyperplanes (38). 

Finally we remark that if n is a prime, both hypersurfaces A and P of an 
algebra A(F, s, t, c) without zero divisors, are the unions of linearly independent 
hyperplanes conjugate in F over K. In fact, in this case t = 0 or s = 0, unless 
d I = d =  1. 

PROPOSITION 30. I f  the hypersurfaces A and P of  an algebra A(V, f )  are the 
unions of  the hyperplanes (38), then A ,.~ F or A ,~ A(F, s, t, c), where s, t, c 
satisfy (39) and (40). 

Proof. If n = 2 the conclusion follows from a simple calculation. Hence, 
suppose n >_ 3. 

We divide the proof into three parts. 

First part 
In this part we prove that there is a matrix M C A u c ( F / K )  such that 

Mt(fo f l ' "  . f n - 1 )  ~--- t(p0 P l ' "  "Pn-1),  (41) 

where 

! ! 
7 ~ r ( Z O , .  . . , Z n - - 1 ,  Z O , .  . .  , Zn--1) 

= a ar z t .q- Ztr c~r . , j j+r zi+r b k Zk+ r ,r  = O, 1,.. n - -  1, (42) 
\ j = l  

i C {0, 1 , . . . ,  n - 1} and at least one coefficient aj is different from zero. 
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into 

By hypothesis, functions (26) give a rational map of the hypersurface 

n - I  
t ~  0 zr 

r~0  

(43) 

n-1 
E Z r  = 0 .  
r=O 

(44) 

Hence if we fix a non-trivial n-tuple (z6, z~ , . . . ,  z~n_l) in which z6 = 0, then from 
(26) we obtain a linear system of equations in the unknowns z0, zl, • • •, zn-1 with a 
non-trivial solution in which at least one component zi is equal to zero. Therefore, 
there exists a matrix M I C GL(n, F)  so that 

where 

M t t ( - f t  0 f l l . . . f t n _ l )  = t ( g t  0 9~ " "  g tn -1 ) ,  

and 

f r  f r ( z o , . .  Z n - l , O , z ~ , . .  ' 

(45) 

gk = z i  

In particular 

n--1 

\ j = l  

(47) 

• ,Zn_l )  , r = 0 , 1 ,  . , n - l ,  gr  ----- gr  ( ZO, " " Z n -  l ' . . . .  

are linear functions in zo, z l , . . . . . .  , zn-1 and in z~ , z~, , Zn_ Moreover, there is 
at least one index k E {0, 1 , . . . ,  n - 1} such that 

g~k = zi a j z j  
\ j = o  

where some coefficient aj E F is different from zero. 
If we set 

M I t ( f o  f l - " f n - 1 )  -- t(g0 g l . . . g n - 1 ) ,  (46) 

then obviously 

! . . .  1. 9 r = y r ( Z O ,  Z l , . . . , Z n _ l , O , z ~ , . . . , Z t n _ l ) ,  t--=O, 1, , n - -  
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! ! ! 
If X is the automorphism of F[zo, z l , . . . ,  Zn-1, z O, Zl, • • •, Zn_l] defined by 

, ,  , )) 
x ( q ( z o ,  z l ,  . . . , Z n - I , Z  O, z l ,  . . . , z - 1  

= q ~ ( z l ,  z 2 , . .  • ,  z ,~ - l ,  zo,  z~, z ~ , . .  . ,  Zn-I; Z'O), 

then X n = 1 and (cf. (26))  

X(-fi)  = f i+ l ,  i = 0, 1 , . . . , n -  1, ( fn  = 70). (48) 

Acting on the polynomials f r  and 9~r by the automorphism X, from (45) we get 
analogous relations fixing (z~, z~ , . . . ,  zn_l)~ ¢ 0 and z~ = 0: 

m"~Jt(-fo 7'[ . . . .  7"-1) t(~(g'o) X(9~)... x ( g n - 1 ) ) , '  
(49) 

--11 l 
f r  = fr(zO, Z l , . . .  , Z n - l , z l o , O , . . .  ,zn_ 1) 

(cf. also (48) and (3)). 
I I I Now if (z0, Zl, " ' "  ' Z n - 1 )  ~ 0 and z~ = z~ = 0, then (45) and (49) coincide. 

Conseqently, there is a permutation matrix (12) such that P ( c r ) M ~ a J  = M ~. 
From this, from (46) and from 

M ' ~ j t ( f o  f l . . .  f n - - 1 )  ---- t ( X ( g o )  ~ ( g l ) . - .  X ( g n - 1 ) )  

we deduce 

S -~" { g o ,  g l , . . . , g n - 1 }  = { X ( g O ) , X ( g l ) , . . . , x . ( g n - 1 ) } .  

By a simple calculation we prove that 9k = X s (9k) if and only if 

, , s  , n / 2 .  (50) g k  = a s Z i Z s  q- a s  z i -+sZo,  8 -~ 

In this case the condition 

n--1  

ci7i  = gk, ci C F (cf. (46)), 
i = 0  

implies 

s - - I  s--1 
- ao~a z I E cJT; = or E cjs, = 

j=o j=o 

Hence we deduce (41) and (42) with 

M A(co,  e l , . .  C s - - 1 , 0 ,  0 , . .  , 0) or M A(0, 0, a~ a~ a~ ----- . ,  • = . . . , 0 ,  C 0 , C  1 , . . . , C , s _ l )  
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and 

= a °~v Z z I Pr s iq-r s-t-r, r = O, 1 , . . . , n - -  1, 

i e {0, 1 , . . . , n -  1 } , s = n / 2 ,  as ¢ 0 .  
If condition (50) is not satisfied, then S = {xr(gk)lr = 

Therefore, there is a permutation matrix (12) such that 

P ( t T l ) t ( g o  g l  . , . g n - 1 ) - ~  t ( g k  X ( g k ) ' . ' x n - l ( g k ) )  • 

O, 1 , . . . , n -  1}. 

From this and from (46) we deduce equations (41) and (42) with M = P(a ' )M'  
andPr = xr(gk), where gk is given by (47). 

Acting on the polynomials f r  and Pr by the automorphism X, from (41) we 
deduce 

M a J t ( f o  f l ' "  fn-1) = j t (po P l ' " P n - 1 )  

and hence (cf. Proposition 4) 

(51) M = A(ko, k l , . . .  ,an-l) • Auc(F/K).  

Second part 
In this part we prove that 

= ! PO ahZiZh + buzuZlO, 

Moreover, if bu 7 ~ O, then 

and 

ah#O, iCu, h#O. (52) 

d = G.C.D.(n, h) = d ' =  G.C.D.(n, u - i )  (53) 

1--1 l--1 

l-I + IIb  # o (Id = 
k = 0  k=O 

(54) 

Let W = W(zo, zl, Zn-1) and W' W'(z~,z~,.. ' . . . ,  = . ,  Z n _ l )  be the coeffi- 
and Zr respectively, of the system cient matrices of the variables z r 

! I I 
~r(ZO, Z l , . . .  ,Zn_l,Zo, Z l , . . .  ,Zn_l)  = 0, 7" = 0, 1 , . . .  , n  -- 1. (55) 

From the hypothesis and from (41) it follows that 

n--1 

det(W(zo, z l , . . . ,Zn-1))  = w IX zr, w C F - O ,  (56) 
r = 0  
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and 

n - 1  
i I W I I wt  de t (W ' ( z ° ' z l " " "  'Zn-1))---- I I  Zr' E F - -O .  (57) 

r=O 

If  we fix (0, z~, . .  ' 
• ,Zn_l) 7 ~ O, then the corresponding linear system of 

equations (55) has some solution (zo, z l , . . . , Z n _ l )  ¢ 0. Hence  
rank W' (0 ,  z~, . .  ' • , Z n _ l )  ~ n - -  1. 

Impose on the n-tuple (0, z~, . . .  , Z ~ _ l )  the further condition z~j= l~-,n-lajz)t = O. 
The (cf. (42)) the equation ~0(z0, zl,  • zn- l ,0 ,  z~, • " , " - , z h - 1 )  = 0 turns into 
an identity and the rank of  W ~ decreases and becomes  _< n - 2. By  a well- 
known derivation rule of  the determinant, all the first-order partial derivatives of  
the function de t (W' )  evaluated at the point (0, z~ , . . .  ' 

, Zn_I) are equal to zero. 
Hence  (0, z ~ , . . . ,  ' Zn-1) is a singular point of  the hypersurface de t (W ~) = 0 lying 
on the component  z~ = 0. Since such points are the common points of  z~ = 0 with 
the other linear components  of  de t (W t) = 0, we have 

n - 1  

ajz  = ahzl, h # 0, ah # 0. 
j=O 

In order to prove that 

n - 1  

bkzk = buzu, u ¢ i, 
k=O 

we distinguish two cases: bk = 0, k = 0, 1 , . . . ,  i -- 1, i + 1 , . . . ,  n -- 1, and bu ¢ 0 
for at least one index u 7 ~ i. 

In the first caseP0 = zi(ahZ~h + bJo), W'  = D(ahZth + biz~)J i (cf. Section 1). 
Hence  

n - 1  

de t (W' )  = I l  taarz' m~ " k h h+r + °i Zr), h • O, ah # O, 
r=O 

coincides with (57) if and only if bi = O. 
Suppose bu 7 ~ O, u ¢ i. 
I f  we fix (zo, zl • ,Zn-1) 7 ~ O, zi = 0 so that ~n- lz .  ," • k_OC, kZk 7 ~ O, then the 

corresponding linear system (55) has some non-trivial solution (0, z ~ , . . . ,  Zn--1). 
Arguing as above with rank(W) instead of  rank(W1), we get 

n-1  

t?oo = y ~  bkzk = b i z i  -}- b u z u .  
k=O 
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Hence (cf. also Proposition 5) 

d - 1  1-1  1-1  

det(W) = H Wu, Wu = H Bku + a a~" H Zi+kd+u' (58) 
u = 0  k=0  k=0  

~}0~ kdq'~ ~Ot kd+l; 
where d = G.C.D.(n, h), n = Id, Bku -i Zi+kd+u "q- - u  Zu+kdWu and 

",-,'l-1 ot kd 
a = llk=oa h . 

For every m e { 0 , 1 , . . . , n  - 1} there are k0 G { 0 , 1 , . . . , / -  1} and u0 e 
{0, 1 , . . . ,  d - 1} such that zm = Zi+kod+,o (cf. Lemma 21(a)). 

If dl(u - i), then (cf. Lemma 21) only the factor Wuo of (58) depends on the 
varible Zm. So (56) and (58) imply 1-1 Zm ]IIk=oBku o and this condition is satisfied if 
and only if bi = 0. Consequently, also condition (54) is satisfied. 

Let d ~ = G.C.D(n, u - i). Using Proposition 5 and Lemma 21, from (57) we 
deduce d' l h. 

We complete the proof of the second part showing that (56) and (58) are 
incompatible if d does not divide u - i. 

In fact in this case there are two factors Wu depending on a fixed variable 
Zm : WuoandWu~,m = u + k l d + u l , k l  E {0, 1 , . . .  , / - 1 } , u l  E {0, 1 , . . .  , d - l } .  
Hence zm must divide one of them. But this is impossible because bu ¢ 0 and the 
polynomial 

l - 1  1-1 
bakld+Ul a CeUl 
i II B,.., + II 

k=0 k=0 
~¢~1 kCkl 

is not identically zero. 

Third part  
Let A t = (V, p) be the algebra defined by 

p(x ,  y) = ahxaly  an + buxa~y, 

where ah 7 ~ O, i 7~ u, h 7 ~ O. Moreover, if bu 7 ~ O, conditions (53) and (54) are 
• E '~-16 x ~r be the automorphism defined by the satisfied• Let f13 V ~ V, x ~ r=0'~r 

autocirculant matrix (51). 
From the results of the first and second parts it follows that A = (If, f )  is 

(1, 1, fl3)-isotopic to an algebra A I = (V,p).  Hence, to conclude, it is enough to 
verify that A r is (71, ")'2, 73)-isotopic either to F or to an algebra A(F, s, t, c) with 
s, t, c satisfying (39) and (40)• 

We easily prove that this condition is satisfied assuming 3'1 : x ~ x a'~-i, 3'2 : 
Y ~-~ Y a~-h, ~[3 : z v-+ ah l z ,  t = n + u -- i, s = n -- h, buah 1 = --c. 

COROLLARY 31. It the hypersurfaces X r and pl of  an algebra A '  = (V, f ' )  
without zero divisors are the unions o f  hyperplanes o f  Pn-1 ( F) ,  then either A ~ ~ F 
or A' ~ A(F, s, t, c) with s, t, c satisfying conditions (39) and (40). 
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Proof. The hypersurfaces A I and PP have no K-rational points. Hence each one 
of them is the union of n linearly independent hyperplanes conjugate in F over K.  
In other words, A I and pt are projectively equivalent to • • ~n- l x~r  = O. ,--an= 0 

From Propositions 14.1 and 14.2 we deduce that A ~ is isotopic to an algebra A 
whose zero-divisor hypersurfaces coincide with O. 

COROLLARY 32. Let D be a n-dimensional division K-algebra and let A, P be its 
zero-divisor hypersurfaces. I f  A and P are the unions o f  hyperplanes o f  Pn-1 (F), 
then either D = F or D = D(F,  s, t, c). 

Proof. Corollary 31 implies that either D ~ A(F, s, t, c) or D ~ F. In the first 
case, D ~ D(F,  s, t, c) (cf. Proposition 9) and so D - D(F,  s, t, c') (cf. Result 25 
and Remark 26). In the other case, D ~ D' = (V, f ' ) ,  f ' ( x , y )  = kxy,  k E 
F - 0 (cf. Proposition 9). Moreover, X " F -q D I, x ~ k - i x ,  is an algebra 
isomorphism. 

COROLLARY 33. I f  n is prime and i f  q is large enough, then an n-dimensional 
division Fq-algebra is either afield or a twisted field. 

Proof. If q > v(n),  then (cf. Corollary 19) the zero-divisor hypersurfaces A 
and P of an n-dimensional Fq-algebra without zero divisors, are reducible. As n 
is prime, Proposition 16 implies that A and P are the unions of hyperplanes of 
Pn-1 (Fqn). The conclusion follows from this and from previous corollaries. 

When n = 3 the statement of Corollary 33 is verified for every q (cf. Proposi- 
tion 18). Hence we find again the main result proved in [13]. 

For n = 5, Corollary 33 proves the conjecture of Kaplansky formulated in [10]. 

Some of the above results are also true when a less restrictive condition is imposed 
on the Galois group G a l ( F / K )  provided that we can express the multiplication of 
the algebras A in terms of the multiplication of F and of the automorphisms lying 
in G a l ( F / K ) .  This subject will probably be treated in a future note. 
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