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R E G U L I  A N D  P S E U D O - R E G U L I  IN PG(3, s 2) 

O. I N T R O D U C T I O N  

The purpose of this paper is to examine certain partial spreads of PO(3, s 2) 
called pseudo-reguli. These arise from regular spreads of a 3-dimensional Baer 
subspace of PG(3, s2). It is well known that a translation plane given by a 
spread of lines of PG(3, q) may be derivable with the derivation set being 
represented by a partial spread which is not a regulus [6]. Foulser [12] has 
given an explicit relationship between derivable nets of translation planes and 
partial spreads. This paper gives further information about derivation sets of 
translation planes which are not reguli by giving an explicit relationship (Theo- 
rem 3.1 and its Corollary) between a regulus over GF(s 2) and a regular spread 
of PO(3, s) via the regular switching sets of Bruck and Bose [4, p. 166]. 

In addition to Theorem 3.1 and its Corollary further results are the 
following. Theorems 2.1 and 2.2 show how/-dim. Baer subspaces of PG(t, s 2) 
= E*~, 1 ~< i ~< t, are represented by certain i-reguli when a linear repre- 
sentation of Z*t is given in PG(2t + 1, s). This extends the work of Bose 
[2, 13]. 

In Section 4 using pseudo-reguli a construction for translation planes 
described by Bruen and Thas [7] is discussed. This point of view is used to 
examine the following question of Cofman [9]: 'Do there exist translation 
planes of order pa containing more subplanes of order pb for a divisor b of a 
than the Desarguesian affine plane of order p~?' Theorem 4.1 gives an 
affirmative answer in the case a = 4c, b = 2c, for each c >/ 1, p an even or 
odd prime. Using the Klein quadric and a projection technique of Segre 
[15, p. 55] we show, Theorem 4.2, that a pseudo-regulus is contained in a 
spread. Its corollary provides a new class of complete partial spreads ~ of 
PG(3, q) with 

15ol = q 2 _ q +  2, q =  2 2t. 

The author wishes to thank Professor Barlotti for many helpful discussions 
and the Consiglio Nationale delle Ricerche for the support while the author 
was at the University of Bologna during the time of preparation of this paper. 

1. PRELIMINARY RESULTS AND DEFINITIONS 

The theorems of this paper are based on the following results which are 
theorems 4.2, 4.7 and 5.3 of Bruck [3]. 

RESULT 1 : Let Q be a doubly-ruled quadric of Za with reguli R, R'. Let 
K = K ( Q )  be the subgroup of the projective linear group PL(Z3) of Za 
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which maps Q to Q and let Ko = Ko(Q) be the subgroup of K which maps 
each of R, R'  upon itself. Then K0 is a subgroup of index 2 in K, and K = 
/(1 ®/£2 where KI(K2) is the subgroup of K which maps R(R') upon itself 
and fixes every line of R'(R). In particular, each of/(1, K~ is isomorphic to the 
projective linear group of the line PG(1, q). 

A partial t-spread of Za = PG(d, q) is a set S of t-dimensional subspaces 
of Y'a such that a point of 2a is incident with at most one element of S. The 
set S is a t-spread if each point of Za is incident with exactly one element of S. 
Following Dembowski [11, p. 220] a t-regulus in Y'2t+ 1 is a partial t-spread R 
having q + 1 elements with the property that if a line meets three distinct 
members of R in a point then the line meets each member of R. Each element 
of a t-regulus is called an axis-space. A line meeting three axis-spaces of a 
t-regulus in a point and hence all axis-spaces is called a transversal. For t = 1, 
a 1-regulus is one ruling of a nondegenerate hyperbolicoquadric in 23. 
Throughout this paper by a regulus we shall understand a 1-regulus. A t- 
spread S of 22~+ 1 is called regular if for any three distinct elements of S the 
t-regulus determined by the three is contained in S. 

RESULT 2: Let S be a regular 1-spread of Za and A, B be two distinct lines 
of S. Then the q2 _ 1 lines of S distinct from A, B may be partitioned into 
q - 1 disjoint reguli R~ uniquely defined, apart from order, by the require- 
ments that for each i, A, B are conjugate nonsecants of the quadric Q~ = 
Q~(R~) ruled by R~. The line-set, S', obtained from S by replacing each of the 
q - 1 reguli, R~ by its opposite regulus R~, 'is a regular spread of Z. 

Call a subspace of order s in a projective space of order s 2 a Baer subspace. 

RESULT 3 : Let 23 be embedded as a 3-dim. Baer subspace of Z*. Let ~- be 
the unique involution of Z* which fixes every point of 23. Let L be any line 
of Z* which contains no point of 23. For each such line, L, let J ( L )  denote 
the set of all lines of Z which meet L. Then 

(i) 5P(L) = 5~(U) is a regular spread of 2a. Every regular spread of t]a 
can be represented in this manner for a unique pair of lines L, L ~. 

(ii) If P, Q, R are three distinct points of L, and if A, B, C are the unique 
lines of Z a through P, Q, R, respectively, then the q + 1 lines of regulus 
N(A, B, C) of Z 3 meet L in the points of the unique subline of order q of L 
which contains P, Q, R. 

(iii) If two distinct lines A, B of .Y(L) meet L in points P, Q respectively, 
and if M is the line of Z* containing P and Q~, then M contains no points 
of Z 3. The regular spreads .Y~(L), J ( M )  of 23 have the following properties: 
(a) A, B are the only common lines of Y(L),  .Y(M). (b) To each point X of  
Za which is not on A or B there corresponds a unique doubly-ruled quadric 
Q of 23 containing X such that one regulus of Q is in Y(L),  the other 
regulus is in 5~(M), and A, B are conjugate nonsecants (in 23) of Q. 
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Given a regular spread of Z3 let ~" be the partial spread of Z* obtained 
by extending the lines of the regular spread. Call ~-  a pseudo-regulus. From 
above Y has exactly two transversal lines. This partial spread is of interest 
because, for s odd, there is a collineation of Z* mapping J to D where D 
is the partial spread which represents the derivation set of the semi-field plane 
whose multiplication is constructed using the automorphism ~ : x - +  x ~ of 
K = GF(q 2) = GF(s ~) as discussed by Bruen [6, p. 528]. 

2. A LINEAR REPRESENTATION OF PG (3, s 2) IN N7 

The purpose of this section is to prove Theorem 2.1 which uses the idea of a 
linear representation of a projective plane as presented by Bruck and Bose [4] 
to obtain a linear representation in Z7 of PG(3, s2). Building on the work of 
Bruck [3] and Bruen [6] we first discuss the embedding of Z7 in E*. 

Let F = GF(s)  c GF(s 2) = K. Let W1 = V (K) be an eight-dimensional 
vector space over K and I472 = Vs(F) be a subset of vectors of W1 forming an 
eight-dimensional vector space over F. A given basis {e~}, 0 ~< i ~< 7, for W2 
over F also forms a basis of W1 over K. The elements of Zv and Z* are the 
non-zero subspaces of W2 and I471, respectively. A point X of Z~ is real or 
imaginary if X is a point of 27 or not. A subspace of Z* is called imaginary 
if it has no real points. Let t be a primitive element of K. A point X of Z* 
will have homogeneous coordinates whose ith coordinate will be the form 
(w.r.t. the above basis) 

tx~ + Yi, 0 <~ i <~ 7, x~, y~ ~ F. 

It is immediate that a point X is real iff for some 0 ¢ A e K all eight co- 
ordinates of AX belong to F. Further if X is imaginary the unique line Px of 
Z7 passing through X is spanned by the two points (x,) and (Yi), 0 ~< i ~< 7. 

Let V4(K) be the vector subspace over K spanned by vo, vl, v2, v3 where 

(1) Vo = eo + tel, v~ = e2 + tea, v2 = e~ + te~, 
Va = e6 + teT. 

Let E* be the associated three-dimensional projective space. It  follows that 
Z* is imaginary. 

Let ~ be the following collection of lines of 27. 

= {Px I Px is the line of Z7 through a point of Z*} 

Since Z* is imaginary, for a point X of Z* the correspondence X--->p~ is 
one-to-one and the collection ~ forms a 1-spread of Z 7. 

The multiplicative group of K determines a group of linear transformations 
of V4(K) given by scalar multiplication. This group induces a group of G(~)  
of collineations of Zv which leaves ~@ elementwise invariant. Further, using 
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the s + 1 collineations, r(i), of Z7, 0 ~< i ~< s, induced by the linear trans- 
formations 

v-+t*v for v~V~(K), 

t a primitive element of K, it follows that G(~) is transitive on the points of 
any line belonging to ~ .  The collineations r(i) are the analogues of the rho- 
transformations of Bose [2], [13]. 

THEOREM 2.1. Let Z* be the imaginary 3-space of Z* associated with 
V4(K) given in (1). Then Y.* has a linear representation in Z* where (i) the 

points of Z* are given by the collection g of lines which forms a 1-spread of 
Zv ; (ii) the lines of Z* are given by a collection 50 of 3-spaces of Z7 such that 
for any two elements, Px, Py of ~ ,  the 3-space spanned by them belongs to 50; 
(iii) any two distinct elements" L(u*), L(v*) of 50 either intersect in an element of 

or are disjoint if, respectively, the lines u*, v* of Z* meet in a point or not," 
(iv) for each i, 1 <<, i <<, 3, there is a one-to-one correspondence from the set of 
i-reguli whose transversals belong to ~ onto the set of the i-dimensional Baer 
subspaces of Y.*. 

Proof Part (i) has been established above. Consider a line u* of Z* and 
two distinct points X, Y of u*. The two lines px, py span a unique 3-space, 
L(u*), in Z7 whose extension to a 3-space over GF(s 2) contains u*. The 
s 2 + 1 linesp~ for X belonging to u* therefore lie in L(u*) and form a regular 
spread (Result 3) of L(u*). Let 5e be the collection of three-dimensional 
projective spaces of Z7 where 

= { L ( u * ) [ u *  i s a l i n e o f  Z*}. 

Using Result 3 and the fact that Z* is imaginary statements (ii) and (iii) 
follow. The correspondence u*-+L(u*) for lines u* of Z* and 3-spaces 
belonging to 5 ° is one-to-one. For a given line u* of Z* we say that the 
associated 3-space L(u*) represents u*. Each plane of Z* will be represented 
in a similar manner by a 5-space of Z7 having the expected intersection 
properties with ~ and 50. 

Let v be a line of Z7 not in ~@, andpx, p~ be two of the s + 1 elements of ~@ 
that meet v in a point. The 3-space L(XY)  spanned by Px and p~ contains v 
and represents the line X Y  of Z*. This 3-space contains a subset of ~ which 
forms a regular spread of L(XY)  (Result 3). Therefore the s + 1 elements of 
~@ meeting v determine a unique regulus R(v). The lines belonging to R(v) 
represent points of a unique subline of L(XY)  (Result 3, part (ii)). Each line 
of the opposite regulus R'(v) is a transversal of the 1-regulus R(v). All axis 
lines of R'(v) thus determine the same subline of L(XY).  Using part (ii) of 
Result 3 it follows that there is one-to-one correspondence between Baer 
sublines u in Z* and nondegenerate hyperbolic quadrics Q(u) each of which 
has as one ruling a regulus R(u) whose elements belong to @. 

Let 7r be a plane of Z7 not containing an element of ~ .  Using G(P), the 
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s 2 + s + 1 elements of ~ meeting ~r in a point are the transversals of a 2- 
regulus with axis-planes {~rr(~}, 0 ~< i. ~< s. This 2-regulus represents a pro- 
jective plane in the following manner: the transversals of  the 2-regulus being 
elements of  ~ are the ' points ' .  The ' l ines '  are the 3-spaces belonging to ~o 
which meet ~r in a line. In particular as in the paragraph above each line of  rr 
determines s + 1 elements of  ~ which form a 1-regulus contained in a 
unique element of  ~ .  Therefore the lines of ~r determine s 2 + s + 1 elements 
of 2~ ° each of which intersects the 2-regulus in a 1-regulus. By checking the 
axioms it follows that these 'po in ts '  and ' l ines '  of Z* form a projectiv~e 
plane of order s which is a Baer subplane of Z*. 

Let Z be a 3-space of Z7 not containing an element of ~ .  Using G(~)  the 
elements of ~ meeting Z in a point are the transversals of  a 3-regulus with 
axis-spaces {Zm~}, 0 ~< i ~< s. This 3-regulus represents a Baer 3-space of E~ 
in the following way. The transversals of the 3-regulus, being elements of 
~ ,  represent points of Z*. Further, each line (resp. plane) of  Z determines a 
1-regulus (resp. 2-regulus) which represents a subline (subplane) of Z* as 
above. Therefore, there is a 1-to-1 correspondence between the points, lines, 
and planes of an axis-space which is itself a projective 3-space of order s and 
a subset of ~ and subsets of 5¢ which form points, lines, and planes of a 3- 
dimensional Baer subspace of 2" .  

Conversely let 0 be a 3-dimensional Baer subspace of Z*. A unique 3- 
regulus in E7 which represents 0 wilt be determined. First note that if u, v 
are lines of order s of  Z* such that their extensions u*, v* are skew then there 
are exactly s + 1 Baer subspaces of dimension 3 that contain both u and v. 

Let u, v be two skew lines of 0. Hence the lines u*, v* of E* are skew. In 
Z7 the two 3-spaces L(u*), L(v*) are disjoint and each contains a quadric 
Q(u), Q(v) which represents the subline u, v respectively. Let R(u), R(v) be the 
reguli whose elements represent the points of u, v and R'(u), R'(v) be the 
opposite reguli. Let 2 be the space spanned by a line m ~ R'(u) and a line 
n ~ R'(v). Since Q(u) and Q(v) have no points in common 2] is a 3-space. By 
part (iii) of Theorem 2.1 already established 2] is not an element of 5C Hence 
Z is not invariant under G(~).  Further Y contains no element of ~ .  For if so, 
since the reguli R(u), R(v) are invariant under G(~) the two 3-spaces, Z, 
E ~(1~, would span at most a 5-space which would contain both L(u*) and 
L(v*). The two 3-spaces L(u*), L(v*) would then meet in at least a line, which is 
a contradiction. Therefore for a fixed line m of R'(u) each of the s + 1 3- 
spaces Z = Z(rn, n) as n varies over the lines of R(v) is an axis space of a dis- 
tinct 3-regulus which represents a Baer subspace of Z* containing the lines u, v. 
One of these 3-reguli therefore represents 0. Since each Baer subplane of 2]* is in 
some Baer 3-space it follows that each such plane is represented by a unique 2- 
regulus in the above described manner. The theorem is now established. 

As this investigation has shown, viewing PG(1, s2), PG(2, s 2) and PG(3, s 2) 



272 J .w .  FREEMAN 

as imaginary lines, planes and 3-spaces of PG(3, s2), PG(5, s2), PG(7, s 2) 
respectively, one may give a representation where the/-dim. Baer subspaces 
are given as certain i-reguli, 1 ~< i ~< 3. The above proof may be extended to 
establish 

THEOREM 2.2. Embed Z2t+l in Z*2t+l as a Baer subspace. Let  Z* be an 
Z2~+~. Then has a repre- imaginary t-dimensional projective space o f  * ~* 

sentation in Z2~+~ such that (i) the points o f  Z* are given by a collection 
o f  lines which fo rms  a 1-spread o f  Y.2, + ~ ; (ii) f o r  each i, 1 <~ i <~ t, each Baer 
subspace o f  dimension i o f  Z* is represented by an i-regulus whose transversals 
belong to ~ .  

3. R E G U L I  IN P G ( 3 ,  s2), R E G U L A R  S P R E A D S  OF 

P G ( 3 ,  s) A N D  R E G U L A R  S W I T C H I N G  SETS 

The purpose of this section is to give an explicit connection between a regulus 
of PG(3, s 2) and a regular spread of PG(3, s) via regular switching sets in 
PG(7, s). A switching set Y is a proper partial t-spread of Y'2t+l for which 
there is at least one conjugate partial t-spread, J,C', such that 

(i) J{" and ~f" have no common members, 
(ii) apoint  of 132t+l is in a member of J f  iffthe point is in a member of 

A pair (JY', Yd") of conjugate switching sets is called a regular pair if dim 
(Y n Y') = d - 1 for a fixed integer d for Y ~ K, J '  ~ jYC'. 

As in Section 2 let 137 be a Baer subspace of 13" with 13" a 3-space of 
order s 2 imaginary w.r.t. ZT. 

Let Rz be a regulus in 13" and R2 its opposite regulus. It is immediate that 
a regular pair (¢fl, ,~2) of switching sets of 3-spaces with d = 2, t = 3, is 
determined in I37 when the lines of the reguli are viewed as 3-spaces in Zv 
via the representation of Z* in Z7 described in Section 2. 

The rest of this section is devoted to showing exactly how the regular pair 
( -~ ,  N2) may be obtained from a partial spread o~ in an imaginary 3-space 
f2* # 13' such that Y is not a regulus in f~*. The reason allowing this fact 
is that having chosen two lines u, v of R2 one will see that a line Px in 137 
that represents a point of the regulus not on u or v will not represent a point of 
f~* but will determine a subline of f~*. Note that in this section u, v denote 
lines of order s ~ in the imaginary space 13" rather than lines in 137 as in 
Section 2. 

LEMMA 3.1. Let  R1 be a regulus o f  E* with R2 its opposite regulus and 
u, v ~ R2. Then the lines o f  R~\{u, v} may be partitioned into s - 1 subsets, 
S~(i), each o f  size s + 1, 1 <~ j <~ s - 1, 0 <~ i <~ s, such that f o r  each line d 
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of R1 and fixedj, the s + 1 points of intersection of d with elements of Sj(i) form 
a subline dj of d. 

Proof. C h o o s e a l i n e d o f R 1 .  Thes  2 -  l points of d not on u or v may be 
uniquely partitioned into s - 1 sublines (Results 2, 3). Each such subline of 
d determines a subset of R2\{u, v} by saying a line of R2 belong to a subset 
Sj(i) if the line meets d in a point of the given subline. The statement now 
follows using Result 1. 

LEMMA 3.2. Let Sj(i) be one of the sets of the partition of Lemma 3.1. For 
each line d of R1 let dj be the subline determined by Sj(i). Then (i) the set of 
3-spaces {0j(i)} in Z7 determined by Sj(i) forms a 3-regulus Fj(i), (ii) each 
transversal of Pj(i) belongs to the unique regulus opposite to the regulus in E7 
representing the points of the subline dj. 

Proof." The subline dj is represented by a quadric, one regulus, Rj(i), of 
which represents the points of the subline (Theorem 2.1). Each 3-space 
Oj(i) ( j  fixed) meets the 3-space representing the line d of 13" in a line belonging 
to Rj(i). Therefore a line of the opposite regulus R'j(i) meets each 3-space 
Oj(i) in exactly a point and is therefore a transversal to the set {0j(i)}, 0 ~< i ~< s, 
which finishes the proof. 

Let ~: be the unique involution of Y,* leaving Z7 pointwise fixed. Let ~ ,  
£~0, respectively, be the collection of lines and 3-spaces of Z7 determined by the 
representation (Theorem 2.1) of Z* in !37. If  X is an imaginary point then 
X # X ~ and the line X X  ~ meets E7 in a line belonging to ~ .  Hence Px = P~ 
where Y = X ¢. Any 3-space L(u) of £¢ extends to a 3-space L*(u) which is 
invariant under ~. The restriction of  ~: to L*(u) is therefore the unique in- 
volution of L*(u) leaving L(u) pointwise fixed. This allows the use of Result 3 
(iii). 

LEMMA 3.3. Let u, v be two lines of the regulus R2 in E*. Then the space 
spanned by u, v ~ is an imaginary 3-space. 

Proof Since Z* is imaginary its image under ~ is also imaginary and the 
two spaces have no point in common. Whence (u, v ~) is a 3-space, t)*. Let X 
be a point of ~* neither on u nor v ~. It is sufficient to show that Xis imaginary. 
Let t be the line of g~* through X and meeting u, v ~ in points, P, Q~, for P 
on u, Q on v. The points P, Q are in Z* and the 3-space L(PQ) in E7 repre- 
senting the line PQ extends to a unique 3-space L*(PQ) which is invariant 
under ~. Therefore L*(PQ) contains Q~ as well as P, Q and contains the 
imaginary line PQ. The line PQ~ = t containing X is therefore imaginary 
(Result 3, iii) which completes the proof. 

Given a partial spread ~' of Z*, a subspace £ having the property that each 
point of  £ is a point of an element of ~' and the intersection of each element 
of ~ with F is at least a point is called a transversal spaee of ~.  
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THEOREM 3.1. In Z* let Z* be an imaginary 3-space w.r.t. Z7. For a 
regulus R1 in Z* let u, v be two lines of  the opposite regulus R2. Let ~ be the 
involution of  E* leaving E 7 pointwise invariant. Let ~ be the collection of  
lines: 

~" = {X(X')  ~ [ X ~ u, X '  is the unique point of  v such that the line 
X X '  belongs to R1}. 

Then (i) ~ is a partial spread of  f2* = (u, v ~) having two transversal lines, 
u, re: (ii) Each 3-regulus Fj(i) in Zv ( j  fixed) determined by the set of  lines 
Sy(i) in E* as constructed in Lemma 3.1 represents a 3-dimensional Baer 
subspace of f2*. (iii) The intersection of ~ with the Baer subspace determined 
by Fj(i) forms a regular spread of the Baer subspace: hence ~" is a pseudo- 
regulus. (iv) The regular switching set (~1, ~2) in Y'7 obtained from the reguli 
RI , R2 in Z* is exactly the same switching set obtained from the pseudo-regulus 

and its transversal spaces where the transversal spaces of  o~- are the lines 
u, v ~, and the s - 1 Baer subspaces Fs(i ), 1 ~< j ~< s - 1. 

Proof. Let the lines u, v and hence u ¢, v ~ be represented in Z7 by the 3-spaces 
A, M respectively. A line X X '  = d ( k ) ,  0<~ k<~ s 2, of the regulus R1 
determines a 3-space Ak in E 7 which contains a regular spread 50 k. Each 
element of 5P~ represents a point of Z*, where 

5'~ = {Px, Px,} U Ry(i), 1 <~ j <~ s - 1, i fixed 
t 

with 
Px = Ak n A, px, = Ak N M. 

A line X(X ' )  ¢ = d'(k) belongs to f2* and contains two points X, (X')  ¢ 
which by Result 3 are also represented in Z7 by the lines p~, px,. Therefore 
in the representation of D* in E7 the line d'(k) is represented by the same 
3-space, Ak, as d(k). The 3-spaces Ak, 0 ~< k ~< s 2, are therefore pairwise 
disjoint and represent the lines belonging to ~-. The collection ~- is then a 
partial spread of ~* having u, v ~ as transversals. However (Result 3, iii) the 
regular spread in A k representing the points of the line d'(k) is 

Sf~ = {p, ,  Px,} ~J R~.(i), 1 <~ j <~ s - 1, 
] 

where R~-(i) is the regulus opposite to Ry(i). Therefore (Lemma 3.2) each 
transversal of the 3-regulus determined by Sj(i) represents a point of f2*. 
The 3-regulus Fj(i), j fixed, represents therefore a 3-dimensional Baer sub- 
space of f2* (Theorem 2.1). Statements (i) and (ii) are now established. The 
Baer subspace Fj(i) intersects each of the s 2 + 1 lines of ~- in a subline 
whose points are represented by the reguli R~.(i). Hence a 1-spread of the Baer 
subspace is determined by ~ which will now be shown to be regular. Consider 
an axis space Os(i ) of the 3-regulus F~(i). Since O~(i) represents a line of Z* 
belonging to S~(i) the points of the represented line are given by a regular 
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1-spread 3-- of Oj(i). Even though each element of 3-" represents a point of 
Z*, by Lemma 2 and Result 3, (iii), each element is an axis-line of a subline of 
f2* in the representation of f~* in ZT. Since ~-" is regular it follows that the 
1-spread of Pj(i) determined by ~" is also regular. Finally, if there were a 
third transversal line to ~ in ~2" then f f  would be a regulus. This is impossible 
by Result 3 (i). This establishes statement (iii). 

Each point of the Baer subspace ]?j(i) is a point of a line belonging to 
and each line belonging to Y meets the Baer subspace in at least a point. 
Statement (iv) is now immediate and the proof is complete. 

Conversely, consider a pseudo-regulus Y in Z* with transversal lines u, 
v and Baer subspace 0. A collection of s - 1 transversal Baer 3-spaces of ~" 
including 0 will now be obtained which, together with u, v will determine a set 
of points that will be the same point set as that determined by the elements of 
~ .  First, Theorem 2.1 implies that 0 is represented in Z7 by a 3-regulus ]7. 
From the proof of Theorem 3.1 using @, a partial spread R is obtained in 
<u, v¢) = f2*. Further, each of the s + 1 axis spaces of I? represents a unique 
line of ~2" meeting each line of R in a point. Hence R is a regulus. Partitioning 
the regulus opposite to R using u, v ~ as in Lemma 3.1 and reinterpreting the 
partition in Z* the sought after collection of Baer subspaces is obtained. This 
establishes 

COROLLARY. I f  Y is a pseudo-regulus in Z* with transversal lines u, v and 
s - 1 transversal Baer subspaces O(j), 1 <~ j <~ s - 1, then in ~* = <u, v¢), 
the collection o f  lines 

{X(X')~ 1 X~ u, X' E v, & XX' ~} 

forms  a regulus and the s + 1 axb-spaces in Z7 o f  each o f  the s - 1 3-reguli 
representing O(j) determine s 2 - 1 lines o f  f~* which together with u, v~ fo rm 
the opposite regulus. 

We exploit this point of view in Section 4. 

4. A P P L I C A T I O N S  OF PSEUDO-REGULI 

Let 5¢ = ~ U 5P' (where U means disjoint union) be a 1-spread ofPG(3, s 2) 

= Z* which contains a pseudo-regulus o~- with transversal lines u, v. As in [4] 
let d T ( 5 ¢ )  be the associated affine translation plane. Let ~b = 5 p' [,_) {u, v} ~.) 
{0(j)}, where {0(j)} is the set of s - 1 Baer 3-spaces which together with 
u, v are transversal spaces of 5 .  Embed Z* as a hyperplane in Z~ and form 
an incidence structure dT(~b) as follows: Points of dT(~b) are the points of Z* 
not belonging to Z*. Blocks are of two types. Type I blocks are the planes of 
Z* that meet Z* in an clement of 5 p' [,_) {u, v}. Type II blocks are the 4- 
dimensional Baer subspaces of E* that meet Z* in an element of {0(j)}. With 
incidence given by inclusion, it follows that dT(~b) is an affine translation 
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plane of order s 4. Further, it is easy to see that dT(~b) is obtained from 
t i T ( 5  ~) by a derivation using ~- as a derivation set, see [11, p. 223]. 

The above partition ~b is an example of a general construction for transla- 
tion planes mentioned by Bruen and Thas [7]. As in [7] let ~b be a partition of 
the points of PG(2n - l, q2), n i> 1 where ~b consists of c~1 spaces Z(i), 
1 ~< i ~< c~1, each isomorphic to PG(n - 1, q2) and ~2 spaces P(j) ,  1 ~< j ~< 
a2, each isomorphic to PG(2n - 1, q). Embed PG(2n - 1, q2) in PG(2n, q2) 
and define an incidence structure ,r by generalizing the example above. It 
follows that ~r is an affine translation plane of order q2~ with GF(q) contained 
in the kernel. As mentioned in [7] the case n = 1 gives an example of the now 
classical derivation procedure of Ostrom [11, p. 223]. The case of ~2 = 0 
yields the Andr6 construction emphasized by Bruck-Bose in their linear 
representation theory. For an extensive bibliography in the linear representa- 
tion of projective planes see Barlotti [1]. 

By allowing the projective spaces used in the Bruck-Bose linear representa- 
tion theory to include Baer subspaces like O(j) it is easy to see how an anne  
triangle of t i T ( 5  P) may be contained in more than one affine subplane. An 
affine triangle of sO'T(5 P) is represented by points A, B, C of Z* not in Z* that 
are not on a plane of Y,* containing an element of 5 ~. Hence they are not 
collinear in Y,*. Let P, Q, R be the intersection points of E* with the lines 
AB, AC, BC. Let ;~ be the Baer subplane of Z* spanned by A, B, C and the 
line t = PQR. Any affine triangle ABC of . J T ( 5  p) with the line t contained 
in one of the transversal Baer subspaces O(j) of Y has the property that ABC 
is in at least two distinct Baer subplanes of s~'T(5'~). One will be represented 
by the plane over GF(s 2) determined by A, B, C. The second will be repre- 
sented by the 4-dimensional Baer subspace Y'4 spanned by O(j) and A. It is 
straightforward to check that the points of Z4 not in Z* together with the 
planes of Z* representing lines of . J T ( 5  p) that meet Z4 in at least two affine 
points of Z* form an affine Baer subplane of ~ /T (~ ) .  It is immediate that 
both are Desarguesian. Since each affine triangle in the Desarguesian an n e  
plane is contained in exactly one affine Baer subplane [8] the following is 
established. 

THEOREM 4. I. Each affine translation plane of order p4C given by a 1-spread 
containing a pseudo-regulus contains more subplanes of order p2C, c >1 l, than 
the Desarguesian afJine plane of order p4C. 

This answers in the affirmative one part of Cofman's question stated in the 
introduction. Also, the uniqueness condition U(q) assumed by Bruck [3, 
p. 433] is therefore not true for q = s 2. However, as he mentions in [3], U(q) 
not being true is not serious. 

For a partition ~b of PG(2n - 1, q2) as described by Bruen and Thas let 
dT(~b) be the associated affine plane. If the partition has ~ =~ 0 it might be 
expected that s~'T(~b) would not be Desarguesian. This is not true. For, as in 
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Section 3, let u, v be two lines of a regular spread of the imaginary space Z*. 
The remaining s ~ - 1 lines may be uniquely partitioned into s 2 + 1 reguli F'(i), 
0 ~< i ~< s 2, each containing u, v with {F(i)} the opposite reguli. Theorem 3.1 
implies that each regulus F(i) determines a pseudo-regulus o~(i) in f~* = 
(u, v~), and in each regulus F'(i), the s 2 - 1 lines not u, v determine s - i 
Baer 3-spaces in f2*. These ( s -  1)(s 2 + 1) = ~2 Baer subspaces together 
with u, v ~ form a partition ~b of the points of f~*. However it is immediate 
that the associated translation plane using ~b and f2* as the distinguished 
hyperplane is Desarguesian. 

R E M A R K  4.1. Note that in f~* of the above paragraph each line meeting 
both u, v ~ belongs to exactly one of the pseudo-reguli Y(i) ,  0 ~ i ~< s 2. 

We now reinterpret this collection of pseudo-reguli on the Klein quadric to 
obtain a partition of the points of a ruled quadric in PG(3, s 2) by s 2 + 1 
elliptic quadrics in Baer 3-spaces. 

Let ~ be the Plucker correspondence ([10, [15]) from the lines of the 3-space 
[2* above to the points of the Klein quadric Q*. The tangent 4-spaces at the 
points ~(u), ~(v ¢) intersect in a 3-space A* which sections Q* in a non- 
degenerate ruled quadric H*. Each point of H* corresponds under ~- 1 to a 
line meeting both u, v ~. For each of the pseudo-reguli Y( i )  in f~*, 0 ~< i ~< s 2, 
let F(i) be one of its transversal Baer 3-spaces intersecting o~-(i) in a regular 
spread. Since the Plucker correspondence is independent of the defining 
points of any given line each F(i) may be viewed, in turn, as a ' real '  3-space 
of f~*. Hence each pseudo-regulus ~-(i) corresponds under c~ to the points of 
an elliptic quadric in a Baer 3-space to yield 

R E M A R K  4.2. The points of a ruled quadric of PG(3, s 2) are partitioned not 
only by two distinct reguli but also by a collection of s 2 + 1 elliptic quadrics 
of order s. 

As indicated in [7] one motivation for obtaining the general partition ~b 
came from the examination of the partial spreads (maximal) given by Mesner 
[14]. A partial spread 5 P is called complete if it is not a spread and not 
properly contained in a partial spread. Complete partial spreads are the 
maximal strictly partial spreads of Bruen [5]. For q = 4, q odd, or q = 2 2t+1, 
examples of complete partial spreads of PG(3, q) have been constructed with 
5p I = q2 _ q + 2, [14], [5], [7]. 

LEMMA 4.1. Let 5 ~ = ~-  U 5p' be a spread of  PG(3, q), q = s 2 containing 

a pseudo-regulus o~ with transversal lines u, v Then the partial spread .5 °' ~ )  
{u, v} is complete with 

[6e[ = q 2 _ q  + 2. 
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Proof Immediate. 
For q = s 2 = p2t, p an odd prime, the spreads arising from the indicator 

set of Theorem 3.2 of [6, p. 525], where e e Aut(GF(q2)) is given by x -+ x ~, 
contain a pseudo-regulus. Even though odd characteristic of GF(q) is critical 
in both [5], [6], note that it has played no significant role in this paper. The 
goal now is to show explicitly how a pseudo-regulus ~- may be contained in 
a full spread of PG(3, s2), for any characteristic. 

LEMMA 4.2. Let P be a Baer subspace of  PG(3, s 2) containing a regular 
spread and let ~ be the associated pseudo-regulus with transversal lines u, v. 
I f  a line ofPG(3,  s 2) is not in o~ and meets both u, v, then the line is imaginary 
w.r.t. U. 

Proof Since u, v are disjoint each point X of PG(3, s ~) not on u or v is on a 
unique line meeting both u and v. I f  X is in P the unique line is in ~ .  The 
statement follows. 

LEMMA 4.3. Given a Baer 3-space I" ofPG(3, s 2) there is a hyperbolic quadric 
ofPG(3,  s ~) imaginary w.r.t. F, and conversely. 

Proof We may identify PG(3, s 2) with f2* of Remark 4.1 and for a fixed 
i, 0 ~< i ~< s 2, F may be taken as one of the transversal Baer subspaces F(i) 
intersecting the pseudo-regulus ~ ( i )  with transversals u, v ~ in a regular 
spread. Label this spread Y.  In P let R be a regulus contained in ~ ,  and R* 
the regulus in f~* determined by R. The elements of R* correspond under 

to the points of a conic ~(R*) of Q* on a plane rr*. The plane 7r* contains a 
Baer subplane 7r containing the conic a(R), and 7r* is contained in the 3-space 
A*. Call a point P of the Klein quadric real if  ~- l(p) is a line of F. In rr* 
choose a passing line m* of the conic a(R*). Necessarily m* meets the sub- 
plane ~r in exactly one point. Of the s 2 + 1 planes of A* through m* one may 
choose, independent of the characteristic of GF(s2), a plane intersecting the 
ruled quadric H* in a conic C* having no real points. Each line of the regulus 
in f2* corresponding to ~-1(C*) meets u, v ~ in a point each and is not an 
element of o~. The quadric determined by the regulus ~-1(C*) therefore 
misses each point of I ~ by Lemma 4.2. Since two ruled quadrics of PG(3, s 2) 
are equivalent under the collineation group of PG(3, s ~) [11, p. 46] the 
converse follows to finish the proof. 

LEMMA 4.4. Let f) be a Baer 3-space ofPO(3,  s 2) containing a regulus W, 
W* be the regulus in PG(3, s 2) determined by IV, and p be a passing line of  W. 
Then there is a Baer 3-space F containing p and having no point in eommon 
with the quadric determined by W*. 

Proof Let Q3(Q*) be the ruled quadric in fl(f)*) determined by W(W*).  The 
unique regular spread of f~ containing p and W determines a pseudo-regulus, 
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o~-(p, W), of  f2*. The extension of p in f~*, p*, is a secant to Q* meeting it 
in points X, Y. Let x*(y*) be the line of  the regulus opposite to W* containing 
X(Y) .  The sublinep is one of the s - 1 sublines that form a partition, H, of 
the points of  p*\{X, Y}. Thus f~ may be taken to be any one of the s - 1 
Baer 3-spaces that are transversal spaces of ~-(p, W) (corollary to Theorem 
3.1 above). From the proof  of Lemma 4.3 let P and R* be, respectively, the 
Baer 3-space and regulus imaginary w.r . t .F .  Further, the regular spread of 
F, 5P, determines a pseudo-regulus having u, v ~ as transversals with u, v ~ 
belonging to the regulus opposite to R*. Let I* be the quadric ruled by R*. 
For a line t e 5 P, its extension t* is a secant to I* meeting it in points A, B of 
u, v ~ and t belongs to the subline partition of the points of t*l{A , B}. Again, 
there is a collineation ~ of ~* with (R*) ~ = W*, u ~ = x*, (ve) ~ = y*. Using 
Result 1, the group of the quadric, K(Q*), is transitive on its secants. Hence 
there is a q~ e K(Q*) with (t*) °~ = p*. The image of the subline t, t °¢, is in H 
and I' ~ is one Baer 3-space having no point in common with Q* to finish the 
proof. 

A spread of PG(3, s 2) containing a given pseudo-regulus o~- is now des- 
cribed. Let P be one of the associated transversal Baer 3-spaces of  o~'. As 
above, a point P of Q* is real or imaginary if a -  l (p)  is a line of  P or not. The 
real points lie on a quadric Qa in a 5-dimensional Baer subspace. Let o, x e 
and 0 = ~(o), X = a(x) be the real points on Q*. The tangent 4-spaces 
T*(O), T*(X) intersect in a 3-space A* meeting Q* in a ruled quadric I* .  
When c~ is restricted to F let the distinguished Baer subspaces be, respectively, 
T4(O), T4(X), A3. 

Following Segre [15, p. 56] a spread set is a set of q2 + 1 = s  4 + 1 
mutually nonconjugate points of Q*. Under the projection of the points of  
Q* into T*(X) with center O, the points, a(Y/{o}), being on a real elliptic 
quadric, map 1-to-1 into the points of  a Baer subplane rr of T*(X) contained 
in T4(X). Also ~ intersects A 3 in a line p which is a passing line of the ruled 
quadric/3 of A3. By Lemma 4.4 let F be a Baer 3-space of A* containing p 
and having no point in common with the quadric I* .  Let E4 be the Baer 
4-space of T*(X) spanned by the plane ~r and F. The set of points ~ of  Z4 
not in I7 is disjoint with A*. Hence no point ofsJ4 is in T*(0). The line OP for 
each point P of ~'4 must therefore intersect Q* in a point distinct from 0. In 
this way there is a 1-to-1 correspondence between the elements of s~4 and a 
set F of points on Q*. Since the line joining any two points of s~¢4 meets A* 
in a point of  F the line misses the ruled quadric I*.  Hence the set F [,.9 {0} 
is a spread set containing the s 2 + 1 points of the real elliptic quadric c~(o~). 
We have therefore 

T H E O R E M  4.2. I f  ~.~ is a pseudo-regulus ofPG(3,  s 2) then J is contained in a 
spread of  PG(3, s~). 
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C O R O L L A R Y .  There ex is t  complete  par t ia l  spreads 5 p ofPG(3 ,  q), q = s 2 = 
22t , t  >>. 1 with [SP I = q2 - q + 2. 

R E M A R K  4.3. In  the above proof, by choosing a regular spread of 2x* 

conta in ing either regulus of the quadric  I* then T * ( X )  together with the 

spread is a linear representat ion of the indicator  plane of Bruen [6] and the 

point  set d~ is an indicator set. 
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