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S u m m a r y .  The use of various prostheses for voice re- 
habilitation after total laryngectomy has become widely 
accepted in recent years. Two different types of pros- 
theses can be distinguished: non-indwelling devices, which 
can be removed and replaced by the patient, and indwel- 
ling voice prostheses, which have to be removed and re- 
placed by a physician. In this report we describe the in 
vitro measurement of the airflow dynamics of the re- 
cently developed Provox low-resistance, indwelling voice 
prosthesis. Airflows used in these experiments varied 
from 0.05 to 0.4 ls -1. With increasing flows, the trans- 
device air pressure against airflow rates increased from 
0.28 kPa to 1.36 kPa, while the mean airflow resistance 
decreased from 5.6 to 3.4kPa 1-1 s -1. From these data 
and by comparison with data for other prostheses, the 
Provox voice prosthesis shows favorable airflow charac- 
teristics. 
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Introduct ion 

Results of voice rehabilitation after total laryngectomy 
have improved significantly in recent years due to the in- 
troduction of various voice prostheses. Since the intro- 
duction of the first Blom-Singer voice prosthesis [11], 
several other useful devices have been developed [5, 9, 
10]. Prosthetic voice rehabilitation is now widely used in 
clinical practise, and can be considered the most success- 
ful form of voice restoration currently available [4, 19]. 

The success of prosthetic voice rehabilitation depends 
not only on surgical and patient factors such as the tonic- 
ity of the pharyngoesophageal (PE) segment [12, 13], 
primary versus secondary placement of the prosthesis 
[1], and the patient's dexterity, but also on device fac- 
tors, most importantly the airflow resistance of the pros- 
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thesis itself [18]. The original prostheses were primarily 
designed as one-way valves, preventing leakage of fluids 
from the alimentary tract into the trachea [9-11]. There- 
after, it became clear that a low airflow resistance of the 
prosthesis could markedly improve the results of voice 
rehabilitation [17]. This led to the design of a new gener- 
ation of low-resistance prostheses [17, 20]. Unfortunate- 
ly, the adjective "low-resistance" is relative. 

The airflow resistance of the low-resistance Blom- 
Singer and Groningen prostheses is indeed approximate- 
ly half that of the standard versions [14, 20]. This is not 
true, however, for the Panje prostheses, in which no 
constant difference could be measured between the two 
versions now available [16]. Furthermore, there appear 
to be considerable differences in the reported resistance 
values; the comparable Blom-Singer devices show signif- 
icant lower airflow resistance values than do their Panje 
or Groningen counterparts [18, 20]. 

In general, two main types of prostheses can be dis- 
tinguished, i.e. non-indwelling and indwelling types. 
The former devices can be removed and replaced by the 
patient; the latter stay in place permanently and have to 
be removed and replaced by the physician at the end of 
the device's life, as determined by leakage of fluids or in- 
creased airflow resistance. 

Recently, we reported the results obtained in 79 pa- 
tients with a newly developed voice prosthesis, Provox, 
which was purposely designed as a low-resistance in- 
dwelling device [5]. The prosthesis is made of medical- 
grade silicon and is reinforced with a fluoroplastic insert. 
The in vitro opening pressure of this prosthesis is very 
low (0.03 kPa). The in vivo intratracheal pressure mea- 
surements showed values between 1.0 and 3.8 kPa (mean 
1.9 kPa), which compares favorably with those reported 
by other investigators [8, 17]. 

In this paper, we will present the results of the in vitro 
airflow measurements of the Provox voice prosthesis. 
Results are compared with the airflow characteristics of 
the Blom-Singer duckbill, Blom-Singer/Bivona low-re- 
sistance, Groningen standard and Groningen low-resis- 
tance prostheses under similar experimental conditions. 
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Materials  and methods  

The Provox voice prosthesis is shown schematically in Fig. 1 and is 
a bi-flanged medical-grade silicon device in which the hinged valve, 
in contrast to that of the Blom-Singer/Bivona low-resistance pros- 
thesis, is molded in one piece with the shaft. The valve closes 
against an internal valve seat which consists of a rigid fluoroplastic 
ring inserted and fixed within the shaft to reinforce the prosthesis, 
preventing distortion of the valve by compression in the tracheo- 
esophageal fistula and/or esophagus. During the manufacturing 
process of the prosthesis, the hinged valve is preloaded to improve 
its closure against the valve seat even further. 

The Provox prosthesis has an esophageal flange, which is more 
rigid than the tracheal flange, to prevent inadvertent spontaneous 
dislodgment into the trachea. This also means that the prosthesis is 
an indwelling device, which has to be removed and replaced by a 
physician using a special guide wire that is included in the package 
[5]. The prosthesis is available in three shaft lengths, i.e. 6, 8 and 
10 mm (Fig. 2). 

Airflow measurements were carried out on five Provox voice 
prostheses that were obtained directly from the manufacturers. 
For comparison, the airflow resistances of the Blom-Singer duck- 
bill, Blom-Singer/Bivona low-resistance, Groningen standard, and 
Groningen low-resistance prostheses were also tested. 

The dimensions of the Provox prosthesis are shown in Fig. 1. 
The Blom-Singer duckbill prosthesis had an inner diameter of ap- 
proximately 3.5 mm (outer diameter 16F) and a shaft length of 
33 mm. The Blom-Singer/Bivona low-resistance prosthesis had an 
inner diameter of 4.8mm (outer diameter 20F) and a shaft length 
of 33 ram. Both Groningen buttons had an inner diameter of 5 mm 
and a 7 mm (standard version) or 9 mm (low-resistance version) 
shaft length. 

Airflow was assessed against pressure differential in all pros- 
theses. The measurements of the Provox device were carried out 
five times, using the 6-mm and 8-mm versions twice each and the 
10-mm version once (Fig. 2). 

The airflow transducer used was a RT-200 calibration analyzer 
(Allied Healthcare Products, St. Louis, Mo., USA) and the pres- 
sure transducer was a DP-200 digital manometer (Mecotec, Meer- 
busch, Germany). The airflow transducer has an automatic com- 
pensation for temperature and is calibrated for normal air. The ex- 
perimental setup is shown schematically in Fig. 3. Thus, compres- 
sed air at room temperature passes through a pressure reducer that 
acts as an airflow control as well. The air enters a cylinder made of 
Perspex, which consists of two threaded halves. Between the two 
halves a disc is placed and sealed with a rubber ring. A hole in the 

Fig. 2. The three different Provox voice prostheses available, with 
shaft lengths of 6, 8 and 10 mm 
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Fig. 3. Schematic setup of airflow resistance measurements: A, Air- 
flow control; B, airflow transducer; +P,  positive inlet of pressure 
transducer; - P ,  negative inlet of pressure transducer; C, rubber 
ring 
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Fig. 1. Schematic illustration of the Provox voice prosthesis. Di- 
mensions are given in millimeters and in degrees (°) 

disc mounts the prosthesis for testing. To achieve an airtight fit 
without distortion of the prosthesis, a different disc was manufac- 
tured for each prosthesis. The pressure transducer measured the 
pressure difference across the prosthesis. The outlet of the cylinder 
is connected through a hose with the airflow transducer. After set- 
ting the airflow to a given value, the corresponding pressure differ- 
ential can be read. 

Airflow resistance is calculated as the ratio of the transdevice 
pressure loss and the airflow rate in kilopascals per liter per sec- 
ond. The airflow resistance is calculated for eight known flows, 
ranging from 0.05 to 0.4 ls 1 with intervals of 0.05 ls -1. 

Results  

T h e  c o m p a r i s o n  of  t r a n s d e v i c e  air  p r e s s u r e  aga ins t  air-  
f low ra tes  for  the  d i f f e ren t  p ro s the se s  is s h o w n  in  Fig.  4. 
F o r  the  P r o v o x  vo ice  p ros thes i s ,  t he  m e a n  of  the  five 
m e a s u r e m e n t s  is g iven  (wi th  the  s t a n d a r d  d e v i a t i o n  vary-  
ing  b e t w e e n  0.06 a n d  0.13 kPa ) .  T h e  va lues  for  t he  P ro -  
vox a n d  the  low-res is tance  B l o m - S i n g e r / B i v o n a  pros theses  
w e r e  c o m p a r a b l e  a n d  c o n s i d e r a b l y  l o w e r  t h a n  t h o s e  
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Fig. 4. Transdevice air pressure against airflow rates. The abscissa 
shows the airflow plotted in liters per second and the ordinate 
shows the pressure differentials across the prostheses in kilopascals 
(lkPa = 10rob = approx. 10cmH20). 0, Provox low-resistance 
prosthesis; +, Gronir~gen low-resistance button; *, Groningen 
standard button; Fq, Blom-Singer/Bivona low-resistance prosthesis; 
×, Blom-Singer duckbill prosthesis 
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Fig. 5. Airflow resistance. The abscissa shows the airflow plotted 
in liters per second, and the ordinate shows airflow resistance in 
kilopascals per liter per second. Symbols as in Fig. 4 

found for the other three devices. The Provox prosthesis 
showed the least increase in air pressure, from 0.28 to 
1.36 kPa, vs 0.14 to 2.12 kPa (Blom-Singer/Bivona low- 
resistance), 0.29 to 4.51kPa (Blom-Singer duckbill), 
0.72 to 3.78 kPa (Groningen low-resistance) and 1.51 to 
5.31 kPa (Groningen standard). At the supposedly phys- 
iological airflow of 0.151s -1 [6], values were: 0.67kPa 
(Provox), 0.54 kPa (Blom-Singer/Bivona low-resistance), 
1.40kPa (Biota-Singer duckbill), 1.68kPa (Groningen 
low-resistance) and 3.15 kPa (Groningen standard). 

The relation between airflow resistance and airflow 
is depicted in Fig. 5. The Provox and Groningen pros- 
theses showed a decrease in airflow resistance with in- 
creasing flows, whereas both the Blom-Singer duckbill 
and the Blom-Singer/Bivona low-resistance prostheses 
showed a clear increase in airflow resistance with in- 
creasing flows. For airflows increasing from 0.05 to 0.4 
ls -1, the Provox prosthesis showed airflow resistance val- 

ues decreasing from 5.6 to 3.4kPa 1-% -1. The Blom- 
Singer/Bivona low-resistance and Blom-Singer duckbill 
prostheses showed an increase from 2.4 to 5.3 kPa l-is -1 
and from 5.8 to 11.3kPa 1-% -1, respectively. The Gro- 
ningen low-resistance and the Groningen standard but- 
tons showed decreases from 14.4 to 9.5 kPa 1-% -1 and 
from 30.2 to 15.5 kPa 1-% -1, respectively. At  the "phys- 
iological" airflow of 0.151s -1, the airflow resistances 
were 4 .5kPa l-is -1 (Provox), 3 .6kPa 1-% -1 (Blom- 
Singer/Bivona low-resistance), 9 .3kPa 1-1s -1 (Blom- 
Singer duckbill), 11.2kPa 1-1s -1 (Groningen low-resis- 
tance) and 21.0 kPa 1-1s -1 (Groningen standard). 

Discussion 

Prosthetic voice rehabilitation after total laryngectomy 
has become widely used in recent years. To improve fur- 
ther on the early promising results with the Blom-Singer 
duckbill prosthesis, research has focused on surgical, pa- 
tient and device factors. 

Surgical research has led to a better understanding of 
the importance of the constrictor pharyngeus muscles in 
obtainaing a fluent voice [12]. Tonicity of the PE seg- 
ment can be "controlled" by neurectomy and/or myo- 
tomy [2, 12, 13]. Timing of the introduction of the voice 
prosthesis also appears to be of significance. Primary 
placement during laryngectomy leads to a higher success 
rate than does delayed secondary placement [1]. The de- 
velopment of indwelling voice prostheses seems to have 
reduced the importance of patients' dexterity and thus 
improves the long-term success of voice rehabilitation by 
avoiding inadvertent dislodgement or improper replace- 
ment of the prosthetic device [4, 5, 9]. This may also ex- 
plain the somewhat lower complication rates found with 
indwelling voice prostheses [6]. 

Research on device factors has focused mainly on 
airflow resistance and proper function of the valve in 
preventing leakage of fluids. Ideally, the airflow resis- 
tance of a voice prosthesis together with that of the PE 
segment should be comparable to or at least not signifi- 
cantly exceed that of the normal larynx and pharynx. 
Reported airflow resistance values during phonation for 
the normal larynx vary between 3.5 and 4.3 kPa 1-% -1 
[15]. The airflow resistance of the Provox voice pros- 
thesis, at the physiological airflow of 0.15 ls -1, of 4.5 kPa 
1-% -1 appears to be in the same range. 

Among the prostheses studied, only the 20-F Blom- 
Singer/Bivona low-resistance device met the same stan- 
dard in showing an airflow resistance of 3.6 kPa in our 
experiments under similar circumstances. However, in 
contrast to the latter, the Provox voice prosthesis showed 
a decrease i n  airflow resistance with increasing flows, 
down to 3.4 kPa 1-1s -1. This is easy to understand, as the 
valve of the Provox prosthesis opens further with in- 
creasing airflow, thus increasing the effective diameter 
of the device. The most likely explanation for the oppo- 
site phenomenon in the Blom-Singer devices seems to be 
the opening on the side and the longer shaft of the pros- 
theses, leading to higher air velocities at a given flow. 
This causes turbulence to start at a lower flow [3]. 
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The somewhat higher resistance of the Provox voice 
prosthesis in low flows when compared with the low- 
pressure Blom-Singer/Bivona device is probably due to 
the preloading of the valve in the former. This preload- 
ing ensures optimal closure of the valve against the valve 
seat, improving the leak-proof characteristics of the pros- 
thesis, but at the same time increases to a minor extent 
the opening pressure of the device. 

The airflow resistance values found in our experimen- 
tal setup appeared to be fully comparable with the values 
reported in the literature [14, 18, 20]. This indicates that, 
in contrast to other findings [8], the humidity and tem- 
perature of the air used have little influence. 

The airflow resistance of the Provox device at the 
physiological airflow of 0.15 ls -1 proved to be 60% lower 
than that of the low-resistance Groningen button and al- 
most 80% lower than that of the standard Groningen 
button, which are comparable indwelling devices. In 
contrast to recently expressed expectations [19], these 
differences indicate a considerable improvement,  reduc- 
ing the airflow resistance of the device to only a small 
percentage of the combined resistance of the prosthesis 
and the PE segment [20]. The PE segment is not neces- 
sarily the major contributor to the overall airflow resis- 
tance in prosthetic speech. 

The reported transdevice pressure losses for the Gro- 
ningen buttons are 1.5 and 3.5kPa at the supposedly 
physiological airflow rate of 0.15 ls -1 [20]. Values mea- 
sured in this study were 1.68 and 3.15 kPa. The in vitro 
pressure differentialoacross the Provox prosthesis at this 
airflow is 0.67 kPa. These values have to be added to the 
pressure losses in the PE segment. In vivo, we found that 
intratracheal pressures determined in 30 consecutive 
laryngectomized patients using a Provox device were be- 
tween 1.0 and 3.SkPa (mean 1.9kPa) when producing 
an "A" at a comfortable loudness level [4]. 

Assuming that findings with the Provox device corre- 
spond with the normal flow rate mentioned above, this 
means that the pressure loss across the PE segment var- 
ies from 0.3 to 3.1 kPa. Thus, the pressure losses across 
the Groningen prostheses (1.68 and 3.15 kPa respective- 
ly) contribute to a higher degree to the total pressure 
needed for phonation than that across the Provox de- 
vice. This is in accordance with the subjective judgment 
of patients, who in general reported a considerably de- 
creased effort needed for phonation with the Provox 
prosthesis compared to the standard Groningen button 
[4]. 
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