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Abstract. Brownian dynamics simulations were performed 
to study the contribution of electric interactions between 
charged membrane components to their lateral distribution in 
a two-dimensional viscous liquid (bilayer lipid membrane). 
The electrostatic interaction potential was derived from an 
analytical solution of the linearized Poisson-Boltzmann equa- 
tion for point charges in an electrolyte solution - mem- 
brane - electrolyte solution system. Equilibrium as well as 
dynamic quantities were investigated. The lateral organiza- 
tion of membrane particles, modelled by mobile cylinders in 
a homogeneous membrane separating two electrolyte solu- 
tions was described by spatial distribution functions, diffu- 
sion coefficients and cluster statistics. Disorder, local order 
and crystal-like arrangements were observed as a function 
of the particle charge, the closest possible distances between 
the charges and the particle density. The simulations revealed 
that the system is very sensitive to the position of the charges 
with respect to the electrolyte solution - membrane interface. 
Electrostatic interactions of charges placed directly on the 
membrane surface were almost negligible, whereas deeper 
charges demonstrated pronounced interaction. Biologically 
relevant parameters corresponded at most to local and tran- 
sient ordering. It was found that lateral electric forces can 
give rise to a preferred formation of clusters with an even 
number of constituents provided that the closest possible 
charge-charge distances are small. It is concluded that lat- 
eral electrostatic interactions can account for local particle 
aggregations, but their impact on the global arrangement and 
movement of membrane components is limited. 
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Introduction 

In biological membranes lipids form a two-dimensionai liq- 
uid phase in which membrane proteins are embedded or to 
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which they are attached. It is generally accepted that the 
lateral distribution and dynamics of membrane proteins and 
lipids are important for their biological functions such as 
ligand-stimulated membrane receptor aggregation in trans- 
membrane signalling (Hendrickson 1992). Similarly, inter- 
molecular helix-helix interactions are believed to be respon- 
sible for membrane protein oligomerization (Lemmon and 
Engelman 1992). To understand these processes, it is impor- 
tant to have a clear and detailed understanding of the driving 
forces and the underlying physical and biological principles 
of particle-particle interactions in membranes. 

To describe the lateral organization of particles in bi- 
ological membranes, numerous approaches have been ap- 
plied. Besides indirect, lipid-mediated interactions of pro- 
teins (Marcelia 1976; Sperotto and Mouritson 1991; Mourit- 
sen and Bloom 1993), direct particle-particle interactions 
have been frequently discussed. The range of the underlying 
interaction potentials varied from the avoidance of particle 
overlap and its effect on the diffusion coefficient (Pink et 
al. 1986; Karyakin 1989; Saxton 1994) to arbitrary potential 
functions and even detailed Molecular Dynamics simulations 
of lipid membranes (Abney and Owicki 1985; Egberts et al. 
1994). 

Electric fields are crucial to many membrane processes 
(Nelson and McQuarrie 1975; Honig et al. 1986; McLaugh- 
lin 1989; Brown 1990; Cevc 1990). To assess the signifi- 
cance of electrostatic forces on the dynamic lateral structure 
in membranes, we have studied their influence using Brow- 
nian dynamics simulations of a simplified model system. In 
particular, the biologically relevant conditions under which 
long-range interactions are possible were explored. 

The efficiency of electric interactions at the electrolyte 
solution - membrane - electrolyte solution interface is con- 
trolled by several parameters including pH, ionic strengths 
of the adjacent electrolyte solutions, pKa of titrating sites of 
interacting molecules and the position of membrane parti- 
cle charges with respect to the membrane-solution interface. 
Consequently, the variation in strength of lateral electric in- 
teractions may serve as a regulatory system for membrane 
related processes. It is also noteworthy that surface diffusion 
and aggregation of particles became increasingly important 
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for controlling small-scale structures in submicron techno- 
logical applications (Jensen et al. 1994). 

Computer simulation is a powerful technique to study the 
independent contribution of electric forces between mem- 
brane particles and to follow the formation of ordered struc- 
tures of such particles in lipid membranes over time. The 
Brownian dynamics of particles in three-dimensional sys- 
tems have been addressed by several authors (Northrup 
et al. 1988; Davis et al. 1991; Zhou 1993; Kozack et al. 
1995), but to the best of our knowledge, the considera- 
tion of charged membrane particles has not yet been com- 
prehensively treated. Therefore, we carried out a Brown- 
ian dynamics simulation of a model system consisting of 
charged model particles embedded in a two-dimensional liq- 
uid (membrane) separating two electrolyte solutions. The 
electric interaction potential was derived from an analytical 
solution of the linearized Poisson-Boltzmann equation for 
point charges in such an electrolyte solution - membrane - 
electrolyte solution system. We believe that the investigated 
model reflects all the principal features of long-range charge- 
charge interactions in biological membranes and the different 
regimes of lateral electric interactions revealed should help 
in understanding the dynamic behaviour of membranes. 

Interaction potential 

Several approximate expressions for the electric potential 
caused by discrete charges in the electrolyte solution/mem- 
brane/electrolyte solution system have been reported (Nel- 
son and McQuarrie 1975; Edmonds, 1988; Schnitzer and 
Lambrakis 1991; Frausto et al. 1992; Martinez and San- 
cho 1993; Clarke 1993; Forsten et al. 1994). In our simula- 
tions, we used expressions obtained for the electric potential 
around point charges in a three layer system presented ear- 
lier (Arakelian et al. 1993). The Debye-Htickel approach was 
applied and linearized Poisson-Boltzmanns equations were 
solved. This was justified by the low ionic strengths of the 
electrolyte solutions (I=100 mM in most cases) and the low 
mobility of the charge carrying particles with a diffusion 
coefficient Dparticle of 10 -8 - 10-9cm2/s, compared to the 
mobility of the ions of the adjacent electrolyte solution Dion 
of ~ 10-Scm2/s (see section parameter values). Thus, the 
ion clouds around the membrane particle charges may be as- 
sumed to be in equilibrium. An outline of the derivation of 
the analytical expressions for the electric potential is given 
in the Appendix. To prevent particle overlap, the electric 
interaction was replaced by an elastic repulsion term. The 
interaction energy V between two particles was calculated 
as 

Material and methods 

The model 

The model used here assumes a sandwich-like three-layered 
system consisting of two electrolyte solutions separated by a 
membrane as shown in Fig. 1. The membrane is considered 
as a plane-parallel dielectric layer of thickness d and a low 
dielectric constant cm. The electrolyte solutions are char- 
acterized by their ionic strengths I,  a corresponding Debye 
parameter t~ and by their dielectric constant E~. The ionic 
strengths were identical for both electrolyte solutions. The 
coordinate system used is oriented with the z-axis normal to 
the membrane's surface, with its origin in the middle plane 
of the membrane. Membrane particles are represented by 
cylinders with a radius R and the same height as the mem- 
brane d with cylinder axes parallel to the z-axis and the 
same dielectric constant as the membrane. The membrane 
particles carry c~ elementary electric charges q of a given 
sign located at defined z-positions (the same for all particles 
in the system) along the cylinder rotation axis. The particles 
are distributed within the membrane with an average particle 
density cr and are mobile in the membrane plane (xy-plane) 
only. The motion of a membrane particle is determined by 
two processes: 1) stochastic thermal motion with a diffu- 
sion coefficient D ° for particles in infinite dilution, and 2) 
migration in the electric field resulting from the charges of 
other charged particles as well as from the surrounding ionic 
atmosphere. Hydrodynamic effects have not been taken into 
account. Recent studies related to these effects have been 
shown to reconcile discrepancies between theoretically and 
experimentally determined diffusion coefficients (Brussel el 
al. 1995). 

Vd(p) = c~ic~jq~(pij i f  Pij > 2R 

and 

V(p) = aiajqqo(2R) + 

(1) 

( 2 R -  p~j)2 i f  p~j < 2R (2) 
4u6t 

where pij is the distance between two particles in the xy- 
plane, ~ is the electric potential of an elementary charge q 
at the distance pij (see Appendix), c~i and c~j are the re- 
spective signed charge numbers and u is the mobility of the 
particle. The mobility u is related to the diffusion coefficient 
by D ° = ukBT where kB is the Boltzmann constant and T 
is the absolute temperature. The soft repulsive force was 
sufficient to keep colliding particles apart from one another. 
The deterministic additive forces Fa acting on the particle i 
were derived from numerical differentiation of the interac- 
tion potential with respect to p such that 

Fd,i = --V ~ V(Pij,c~i,ctj,zi,d, I i ,h ,era,cs ,T)  (3) 
j,i#j 

Except the particle density, Eq. (3) summarizes all relevant 
system parameters determining the electric interactions be- 
tween the particles. 

Simulation algorithm 

Our goal was to study the time evolution of the system in 
order to determine the dynamic structuring and the kinetic 
behaviour of the system. Molecular dynamics simulations 
with an atomic description of the system appeared very ex- 
pensive and time consuming. In any case, since we were 
not interested in the detailed characterization of the random 
collisions of our model particles with the surrounding lipid 
molecules, they were considered as a heat bath only. Thus, 
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Fig. 1. Cross sectional view of the model system with the 
physical parameters of the model and the coordinate system 
used. The current location of the charges are depicted by the 
filled/open circles. The open circles represent charges of oppo- 
site sign as compared to the charges represented by the filled 
circles. The particles carry a elementary charges q. The prop- 
erties of the electrolyte solutions are described by the dielec- 
tric constant es ,  the ionic strengths I and, correspondingly, the 
Debye-Hiickel parameter t~. The indices correspond to the re- 
spective regions in the system. The membrane is assigned a 
dielectric constant e m  

the Brownian dynamics simulation technique omitting the 
solvent particles from the detailed simulation was appropri- 
ate to propagate our particle system through configurational 
space in time. Thus, Newton' s equations of motion could be 
replaced by the Langevin equations as given in Eqs. (4) and 
(5): 

v = ~ ,  (4) 

dg dfi Fd(t) +Fs(t). (5) 

where Fg is the deterministic electric force, Fs is a stochas- 
tic force,/3 is the drag coefficient and m is the particle mass. 
Random collisions of the model particles with the surround- 
ing lipids are represented by a combination of a stochastic 
force term l~8(t) and a drag term. The drag coefficient/3 can 
be replaced by the reciprocal value of the mobility (/3 = l / u )  
and in terms of the Einstein relation/3 = ( k B T ) / D  °, where 
kB is Boltzmann's constant and T is absolute temperature. 
The Brownian dynamics approach involves numerical in- 
tegration of the system of Eqs. (4) and (5). If the inertial 
behaviour of the particles were of interest, the integration 
time step 5t had to be much smaller than the autocorrelation 
time ~- of the particle velocity. ~- is given by 

O O  

ksr  m D °  
r = e - ~ W d t  - . 

k s T  
o 

(6) 

Assuming characteristic values for the parameters in Eq. (3), 
e.g. the transmembrane protein Band 3 of human erythro- 
cytes with D ° ~ 10-9cruZ/s, molecular weights of M=50- 
100 kDa and a temperature of 300 K, this correlation time 
corresponds to ~- ~ 10-aSs. Since we were interested in the 
simulation of the system over a longer time interval (10-3s), 
the diffusion limit, Eq. (5) can be simplified by neglecting 
the drag term. One finally obtains the "Position Langevin 
Equation" introduced by Lax (1966) and Zwanzig (1969): 

- kB ~Fa(t)l + dt " (7) dt 

The term dp~/dt describes a random velocity process with a 
delta function as autocorrelation function (Allen and Tildes- 
ley 1987). Consequently, the time step 5t guaranteeing a cor- 
rect integration of the equation of motion could be increased 
up to 10-%. The Position Langevin Equation (Eq.(4)) was 
integrated by using the algorithm proposed by Ermak (1975). 
The position of a particle evolved as follows: 

D O 

d(t + 6t) = f( t)  + ~ F e ( t ) 6 t  + ~fc ,  (8) xB/ 

where p is the position vector of a given particle in the 
xy-plane and 5pc was obtained from a two dimensional 
Gaussian distribution with a mean equal to zero and the 
variance < (5/9 2 > =  4D°St .  The values for the input diffusion 
coefficient D ° were taken from experimentally determined 
diffusion coefficients in a system of low particle density (see 
below in parameter values section). The time step 5t was 
chosen such that maximal displacements of the particle in 
one dimension were small compared to the particles radius 
such that 

D O 

k B T F d ( 2 R ) 6 t  + 6 ~  _< 0.5R, (9) 

where Fa(2R) is the electric force at particle-particle contact 
and 6t is the maximal possible value satisfying the condition 
in Eq. (9). The simulation box represented a square patch of 
the membrane with box length L. Periodic boundary condi- 
tions were applied. A cutoff distance for interparticle inter- 
actions (Porto f f )  was selected such that the pairwise elec- 
trostatic energy decayed below the value of k B T / I O  at this 
distance. The cutoff distance was required to be minimally 
8R and maximally L/2 .  Because of the large size of the 
simulation systems, the utilization of the upper boundary for 
cutoff was always avoided. To reduce the computation time, 
a neighbour list was introduced for every particle (Allen and 
Tildesley 1987) with a cutoff distance P~to f f .  The neigh- 
bour list was updated every tenth time step. Starting from 
a random particle distribution and after equilibration which 
required at most 500000 cycles for strongly interacting par- 
ticles, the system was simulated over an acquisition time 
ta. This time corresponds to time intervals in which non- 
interacting particles diffused on average a distance of 50R as 
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calculated from the Einstein-Smoluchowski relation for two- 
dimensional diffusion t~ = (50R)a/(4D°); i.e. of the order of 
milliseconds given values of D ° as described below. Con- 
trol runs starting from initially regular particle assemblies 
eventually resulted in qualitatively identical particle distri- 
butions. The results presented were obtained by averaging 
over three independent runs for each system examined. 

Structural and kinetic quantities 

In the field of statistico- mechanical physics, various cor- 
relation functions are used to describe the spatial order of 
fluid systems. We calculated the radial distribution function 
9(P), the orientionally averaged part of the correlation func- 
tion g(r). To exclude trivial spatial effects caused by ex- 
cluded volume, g(P) was normalized to the radial distribution 
function of randomly distributed non-overlapping particles 

adjusted to smaller values so that 5gt _< A ~ h ~  was al- 
ways fulfilled. If a cluster was identified as unmodified, its 
life time was prolonged by A~eh~ or otherwise, the cluster 
species counter was incremented by one and the lifetime of 
the new cluster was initialized by Ateh~,.. It was assumed 
that the particles in the system are distinguishable so that a 
cluster was not only defined by its size but also by its ac- 
tual constituents. The cluster lifetime characterizes the local, 
electrostatically mediated stability of the system and indi- 
cates whether other processes such as chemical reactions or 
transport processes have sufficient time to proceed. The ki- 
netic behaviour of the particle system was characterized by 
the diffusion coefficient D via the Einstein-Smoluchowski 
relation for two-dimensional diffusion, D = (p2)/4A~. The 
mean square deviations from initial positions, {Ap 2) were 
obtained by comparing starting and final positions of the 
particles without application of the periodic boundary con- 
dition. 

g~d(P) (10) 

where 6 is the Dirac's delta function. During the computa- 
tions (5 was replaced by a small radial increment A r  -- R/5.  
9,~,~d(p) was obtained from simulations without electric in- 
teractions but with elastic repulsion (Eq. (2)) and is simply 
given by 

g .d(p) = ( Z  6(p-  p j/. (11) 
i j~i  

The commonly used expression g~nd(P) = NTrcr((p+ Ap) 2 - 
p2) where cr is the particle density was not suitable because 
of the finite particle radius. Apart from quantitative aspects 
of depletion and accumulation of particles, g(P) gives insight 
into the range of lateral order. Short range order will result 
in peaks near p = 2R only, whereas long range order will be 
represented by multiple peaks. The radial distribution func- 
tion 9(P) was calculated every 50th time step for systems in 
equilibrium, with subsequent averaging. Thus, correlations 
between consecutive configurations were reduced 

The static and dynamic clustering of the system was 
quantified using the following cluster counting algorithm. 
A particle was considered to belong to a cluster if the dis- 
tance of closest approach de to at least one neighbouring 
particle was less than 0.5 nm, within which protein-protein 
interactions are largely determined by short-range forces and 
chemical processes. Furthermore, the lipid matrix cannot be 
considered as a continuum below this range. The cluster fre- 
quency as a function of time and the cluster size distribution 
function (CSD), the mean frequency of clusters of a certain 
size, were also calculated. The former provides information 
about the rate of global lateral structural changes. Clusters 
may disappear either through dissociation into smaller units 
or association into larger clusters and hence their persistence 
was monitored at a characteristic interval of time Bteh~. 
This interval was adjusted such that freely moving, non- 
interacting particles diffuse on average over a distance of 
1/10 of de in this period of time; i.e,, z l ~ h ~  = d2/(40D°). 
If necessary, the integration time step of simulation (5~ was 

Parameter values 

The strength of lateral electric interactions of charged mem- 
brane particles is influenced by a number of factors such 
as the charge numbers, ionic strengths of the electrolyte 
solutions separated by the membrane, the sterically per- 
mitted closest distances between charges, the particle den- 
sity, the location of the charges with respect to the mem- 
brane/solution interface, the dielectric constants and the tem- 
perature. In order to obtain biologically relevant results, the 
range of parameters were confined to biologically reason- 
able conditions. The thickness of the membrane was taken 
as 5 nm. The dielectric constant e~  of the membrane was 
assumed as 3 and 80 for the electrolyte solution (e~). The 
temperature in both the electrostatic potential calculations 
and in the Brownian dynamics simulations was 310 K. Two 
different particle populations distinguished by their respec- 
tive radii were investigated. One with a radius R of 0.5 nm 
corresponding to the approximate radius of a phospholipid 
molecule or a single membrane-spanning protein s-helix. 
Another particle type with R = 1.5 nm was taken to rep- 
resent a membrane protein of small to medium size with a 
molecular weight of about 20-50 kDa. For these two parti- 
cle systems, the respective input diffusion constants D ° were 
10-8cm2/s for the smaller and 10-gcm2/s for the larger par- 
ticles (Gennis 1989; Clegg and Vaz 1985). The density of 
the particles cr was kept within a biological range and was 
generally assumed as 0.02 nm -2. All simulations were run 
with 500 particles in a simulation box of appropriate size 
calculated from the particle density and number of particles. 

Results 

Investigations commenced with control simulations without 
electric interactions at particle densities of 0.02 nm -2 and 
0.04 nm -2. These values correspond to a distance of ap- 
proximately 7 nm for the former and 5 nm between the 
nearest neighbours on a square lattice. Assuming a particle 
radius of 1.5nm (0.5nm) the diffusion coefficient decreased 
to 78.2% (98.4%) of the input diffusion coefficient D ° . At 
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Fig. 2. Simulation snapshots of an op- 
positely charged particle system. A par- 
ticle radius R=0.5 nm, A. 1 - charge di- 
rectly onto the membrane surface, A.2 - 
charge 1.0 nm beneath the surface, A.3 - 
charge in the middle plane of the mem- 
brane, I=100 raM, cr = 0.02 nm -2,  
D ° = 10-Scm2/s;  B charge position 
in the middle plane of the membrane, 
radius R=l .5 nm, cr = 0.02 nm -2,  
[= t00  raM, D ° = 10-9cm2/s,  B.1, B.2, 
B.3 correspond to the charge numbers c~ 
= 1,2 and 3, respectively• The instanta- 
neous mean potential energies per par- 
ticle (V ,~m/N}  in units of k B T  were 
-0.04, -6.13 and -9.84 for snapshots A.1, 
A.2 and A.3 and for the snapshots B.1, 
B.2 and B.3 ( t /s~m/N)= -0.8, -7•8 and 
-28.3, respectively 

cr = 0.04 nm -2 it decreased to 60.5% (91.4%), respec- 
tively. Given these particle densities, lateral order is more 
likely to be caused by electrostatic particle attraction rather 
than repulsion. Assuming close contacts between oppositely 
charged particles, the characteristic interaction distance is 
smaller than the typical Debye length (1-10 nm) while in 
the case of repulsion for equally charged particles, the mean 
distance between the charges is large. The interaction en- 
ergy would decay to small values as compared to kBT at 
these distances of separation. Consequently, the simulations 
focused on particle systems consisting of an equal number 
of positively and negatively charged particles. 

Static (equilibrium) properties 

The snapshots shown in Fig. 2 give an impression of the 
qualitative behaviour of the simulated particle system• As 
a function of the increasing interaction by positioning the 
charges into the membrane or increasing the charge, the tran- 
sition from a randomly distributed particle system to a well 
structured system, finally demonstrating two-dimensional 
crystallization, can be observed. 

Figure 3 summarizes the radial distribution functions ob- 
tained for particle systems with a radius of 0.5nm. The lateral 
ordering was drastically increased when the charges were lo- 
cated inside the membrane region (Fig. 3A), particularly for 
middle membrane plane charges where a pronounced lateral 
correlation at the characteristic second neighbour distance 
and a weak third neighbour correlation was observed. This 
is in sharp contrast to positioning the charges directly onto 
the membrane's surface. Even by reducing the screening of 
the charge-charge interactions by lowering the ionic strength 
of the electrolyte solutions from 100 mM to 1 mM, the lat- 
eral correlations were almost negligible (Fig. 3B). 

The dielectric constant of the membrane naturally affects 
the lateral organization of charged particles. The far reaching 

50.0 

40.0 

30.0 
"o.. 

" ~  2 0 . 0  

10.0 

A 
q, 

c - o  zi=O ohm 
z~=1,5nm 
zi=2.0nm 

e - *  z,=2.5nm 

8.0 

6.0 

, ~  4 . 0  
0 3  

B 

f 20 
, , , , , , , r , i , i , 

0"00.0 1.0 2.0 3.0 4•0 0"00.0 1.0 2.0 3.0 4.0 
9'=p/2R p'=p/2R 

Fig. 3. Normalized radial distribution function g(pl) for an oppositely 
charged particle system with radius R of 0.5 nm and c~=l (single charges) A 
Dependency of the radial distribution on the position of the charges as given 
in the legend• The parameters were as follows: the ionic strengths of both 
adjacent solutions were I=100 mM; the particle density was cr = 0.02 nm -2  
and the input diffusion coefficient was D ° = 10-Scm2/s.  Graph B shows 
the obtained radial distribution for modified system parameters. In curve 2, 
the charges were located on the membrane's surface (zi = 25  nm) and the 
ionic strengths were lowered to 1 raM. Curve 3 corresponds to charge loca- 
tions in the middle plane of the membrane but increased dielectric constant 
of the membrane (Crrt=10) For comparison, the curve obtained for surface 
charges of graph A (zi=2.5 nm, /=100  mM) is repeatedly shown (curve 1) 

lateral correlations, obtained for charge positions in the mid- 
dle plane of the membrane, were almost cancelled if a higher 
membrane dielectric constant of 10 was assumed (curve 3 
of Fig. 3B). Since the dielectric constant of biological mem- 
branes close to the membrane - solution interface is higher 
than in the interior, curve 3 of Fig. 3B allows conclusions 
about the extent of interactions of charged phospholipids 
(see discussion). 

As expected, the lateral ordering is less pronounced for 
the larger, 1.5 nm particles (Fig. 4) since, to a first approxi- 
mation, the maximal electric interaction energy is inversely 
proportional to the particle radius. However, comparing Fig. 
3 and Fig. 4, a characteristic feature is apparent. The aggre- 



130 

(b. 

2 . 0  . , . , • . . 

A 

I o--o z=O Ohm 
| ~ zi=1,5rim 

1 .5  1 z,~ z = 2 0 n r n  
zi=2 5nm 

1.0 

0"50.0 1.0 2.0 3 0 4.0 
p'=p/2R 

. . - . , .  

Q . .  

2.0 

1.5 

1.0 

0.5 
0,0 

• , . , . , . 

B 

1 

i , i ' i 

1,0 2 0 3.0 4.0 
p'=p/2R 

Fig. 4. Normalized radial distribution function 9 ( J )  for an oppositely 
charged particle system with radius R of 1.5 nm. A Dependency of the 
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D ° = t0 -9cm2/s .  Graph B shows the obtained radial distribution for mod- 
ified system parameters. In curve 2, the single charges were located on the 
membrane's surface (zi = 2.5 nm) and the ionic strengths were lowered to 
1 mM. The charge number was set to 3 in curve 3 and the ionic strengths of 
both sides solutions were 1 raM. Curve 4 corresponds to charge locations 
in the middle plane of the membrane but increased dielectric constant of 
the membrane (era = 10).For comparison, the curve obtained for surface 
charges of graph A (zi = 2,5 nm, I=100 mM) is repeatedly shown (curve 
l) 

gation is very sensitive to the position of the charge with re- 
spect to the membrane - solution interface. For both particle 
radii, positioning charges only 1.0 nm beneath the membrane 
surface led to considerable lateral structuring as shown by 
the first peak in the radial distribution function. Remarkably, 
if single charges were placed directly onto the interface, no 
noticeable transient order was observed. Under these condi- 
tions the mean electric interaction energy per particle was 
approximately 2 to 3 orders of magnitude lower than the 
thermal energy as given by kBT. This indicates that the 
Debye-screening of the charges is strongly dependent on 
the position of the charges. Only by assuming 3 elementary 
charges per particle and low ionic strengths of the adjacent 
solutions (I=1.0 mM) could a noticeable effect be observed 
for the larger particles (curve 3 in Fig. 4B). 

The particle density also influenced the lateral distribu- 
tion. Simulations with two different densities (~r = 0.02 nm -2 
and cr = 0.04 nm -2) revealed that increasing particle den- 
sity was naturally accompanied by increased lateral order of 
equally charged particles and decreasing lateral order of op- 
positely charged particles (data not shown). This can be ex- 
plained by an additional two-dimensional Debye-screening 
effect. 

Unfortunately, the normalized radial distribution func- 
tion 9(p ~) does not permit a direct comparison between the 
degree of clustering for different particle radii. For smaller 
particles 9(p r = 1) adopts greater values for the same degree 
of pair formation as for larger particles. It is therefore more 
informative to examine the cluster size distribution (CSD). 

The CSD for the two selected particle systems distin- 
guished by their radii are shown in Fig. 5. Conditions for 
low and pronounced, but reversible, aggregation were as- 
sumed. Surprisingly, a qualitatively different behaviour was 
observed for the two different systems. For the larger parti- 
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cles with radii of 1.5 nm and pronounced attractive particle- 
particle interactions in parallel, the CSD decayed almost ex- 
ponentially with increasing cluster size whereas a clearly 
non-monotonous decay was obtained for the smaller parti- 
cles (insets in Fig. 5). Furthermore, with smaller particles, 
cluster sizes with an even number of constituents were pre- 
ferred. Apparently, the cluster energy as a function of the 
cluster size as well as of the cluster geometry must behave 
differently for the different radii. The mean electric energy 
per particle participating in the formation of isolated clusters 
of different sizes and geometries is plotted in Fig. 6. With 
growing cluster sizes, the electric energy decreases. The con- 
tinued fall of the CSD is caused by entropic effects. Assum- 
ing as a first approximation a linear cluster size - cluster en- 
ergy dependency, Fig. 6 reveals that triplets formed by small 
particles have relatively higher energy than quadruplets and 
are therefore relatively disfavoured. In contrast, triplets of 
the larger particles fall onto the straight line connecting the 
doublets and quadruplets. This is caused by the different 
slope of the electric potential decay in these distance ranges 
entailing different weighting of interactions between closest 
and more remote neighbours. 

Nonequilibrium properties 

While the equilibrium properties of the studied systems 
could also have been obtained by means of Monte Carlo 
simulation or analytical estimation, it is more complicated 
to characterize the non-equilibrium behaviour of the system, 
where the Brownian dynamics simulation is a simple, pow- 
erful method. As a local kinetic property we were interested 
in the lifetime of individual clusters. This characteristic time 
might be important for other cluster-mediated processes, e.g. 
transmembrane transport or chemical reactions and the like. 
The characteristic time of global lateral changes should de- 
pend on the interaction energy and on the mean interparticle 
distance as well as on the particle mobility. Finally, the dif- 
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fusion coefficient characterizes the kinetic properties of the 
particle system and describes the efficiency of  the lateral 
transport within membranes. 

Figure 7 summarizes the data for the obtained diffusion 
coefficients as a function of  the mean electric energy per 
particle. Positive as well as negative energies characterize 
the lateral ordering of  either a hexagonal lattice for equally 
charged particle systems or a quadratic array for oppositely 
charged systems. The diffusion coefficient decreased for both 
systems. Despite the different diffusion coefficients of  the 
smaller and larger particles when the electric interaction was 
switched off, the dependency found for the relative diffusion 
coefficient on the mean interaction energy was similar. The 
relatively high energies required for a significant change of 
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Fig. 8. Time evolution of the cluster size distribution function. The starting 
point t = 0 corresponds to a randomly distributed, non-overlapping particle 
system. The particle radius was 0.5 nm. The charges were positioned at 
various z coordinates as indicated in the graph. The ionic strength of both 
adjacent electrolyte solutions was 100mM and the charge number o~ was 1 

the diffusion coefficient as compared to the effect of  crowd- 
ing (see above) is remarkable. Figure 7 also reveals that the 
dependency of the diffusion coefficient on the mean electric 
interaction energy is not necessarily a monotonous function. 
Even though the mean energy increased by assuming other 
system parameters, the diffusion coefficient was observed to 
increase in parallel. It is clear that restrictions of  particle 
motions are determined by the gradient of  the interaction 
potential and not by its absolute value. There are situations 
where the selected system parameters allow diffusion of  par- 
ticles on a 'plateau' of  high potential electric energy. 

Figure 8 demonstrates how a condensed equilibrium par- 
ticle arrangement starting from a random distribution of  par- 
ticles appears in time depicting the formation of  larger clus- 
ters at the expense of  smaller clusters. For smaller particles, 
equilibrium is nearly reached within about 0.2ms for strongly 
interacting particles (Lowest graph in Fig. 8). The slowest 
observed process was the decay of the number of  single par- 
ticles. Although increased particle radius is naturally accom- 
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panied by a decreased diffusion coefficient, the equilibration 
times were almost identical for particle systems with a radius 
of 1.5nm. For systems of oppositely charged single charges 
located in the middle plane of the membrane, the population 
of singles reached its equilibrium frequency within about 
0.3 ms and the population of doublets was stable within 
0.15 ms (data not shown). This observed coincidence of the 
global change rates of the different particle systems is cer- 
tainly explained by the different degree of occupancy of the 
membrane's area. In the case of smaller particles, a larger 
fraction of 'empty' area has to be traversed before the par- 
ticles can aggregate which is partially compensated by the 
higher mobility and stronger lateral interactions at closer in- 
terparticle distances. 

The fluctuations of the cluster size distribution in time, 
corresponding to the dynamic formation and dissociation of 
clusters, are depicted by mean observed cluster lifetimes in 
Fig. 9. For the smaller particles, a prolonged lifetime was 
observed for smaller to medium size clusters with increas- 

ing lateral interactions. The lifetimes were of the order of 
0.05 ms. As already obtained for the CSD (Fig, 5), clus- 
ters with an even number of constituents are found to be 
favourable. They were preserved longer (Inset in the upper 
graph of Fig. 9). For particles with a radius of 1.5 nm, in- 
creased lateral interactions mainly resulted in the dynamic 
formation and dissociation of larger aggregates and not in 
the prolongation of the lifetimes of individual, small clus- 
ters. The mean lifetime of doublets remains almost constant 
(around 0.23 ms) for different strengths of lateral interaction. 
This is also a consequence of the different relative occupan- 
cies of the area. It should be noted, however, that the al- 
gorithm of lifetime determination (see section Materials and 
Methods) has systematic imprecisions caused by the all-or- 
none cutoff and the discrete time step of measurement. 

Discussion 

A variety of parameters control the lateral structure of bi- 
ological membranes. Among these, networks formed by 
the membrane skeleton and chemical binding are certainly 
of major importance, although electric forces are always 
present and must be taken into account. Therefore we have 
attempted to delineate the influence of lateral electric in- 
teractions (representing a direct particle - particle potential) 
on the distribution of charged components in membranes via 
Brownian dynamics simulation of a simplified model system 
using parameters close to real biological situations. 

The main conclusions are that the closest possible ap- 
proach between oppositely charged sites of membrane parti- 
cles and the position of the charge with respect to the inter- 
face are the principal components controlling the efficiency 
of electrostatic interactions. Significantly, placing the charge 
slightly beneath the membrane surface enormously enhanced 
the effect that electric interactions have on the lateral order- 
ing (Figs. 3 and 4). This is due to the sensitivity of the 
electric potential distribution on the Debye-screening and to 
the low dielectric constant inside the membrane as compared 
to the electrolyte solution outside. 

However, locating the charge underneath the membrane's 
surface increases the energy of the system by reducing the 
screening effect of the mobile ions in the solution and, in 
parallel, increasing the electric field energy inside the mem- 
brane because of the lower polarizability of the membrane 
material. Consequently, to bury a charge into a membrane 
interior requires additional energy. This burial energy is the 
difference in the Born (or self- ) energies for two positions. A 
discussion of the role of electric forces in determining lateral 
order in membranes requires the simultaneous consideration 
of energeticaspects to estimate whether the differences in 
the Born energy for the simulated situations do not adopt 
unrealistically high values. The Born energy is given by Eq. 
(12), 

c~q 
P 

(12) 
, 2  

0 

Here ~ is the electric potential on the surface of the ion and 
q is the elementary charge. We approximated Eq. (12) by 
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Fig, 10, Approximate Born energy (EBor~) as a function of the z-position 
of a charge with finite radius (RZon) as given in the graph. The Born energy 
was estimated by averaging the electric potential caused by single charges 
c~=l) over the ion's surface, z~GATP corresponds to the amount of energy 
available by hydrolysis of one molecule of ATP under standard conditions 
and pH=7.8 (Hoppe et al. 1977) 

According to the data of Sitaraman et al. (1991), the 
mean charge number per membrane protein is +3.6 on the 
cytosolic and -2.95 on the periplasmic side of the membrane. 
Simulations performed with these charges assigning them si- 
multaneously to one of the two opposing surface positions 
of the particles showed that the repulsive forces between 
the equally charged particles would have almost no conse- 
quences for their lateral distribution (data not shown). Only 
interactions between charges on the same side of the mem- 
brane were considered. Trans-effects were estimated to be 
far too small to result in considerable interactions. 

Naturally, proteins are polyelectrolytes with several 
charged groups exposed to the aqueous solution and, con- 
trary to our assumptions in the performed simulations, these 
charges are not necessarily placed on the rotation axis of 
the molecule. Eccentric charge positions would result in in- 
creased local pairwise electrostatic interaction compared to 
our simulations. Rotational degrees of freedom have to be 
introduced in future simulations and real membrane proteins 
should be studied in order to study these questions in more 
detail. 

averaging the electric potential over the ions surface ~m; 
i.e. EBor~ ~ t~}2/(87rc0es/~). The results obtained as a 
function of ionic radius and location are plotted in Fig. 10. 
The Born energy decreases with increasing ion radius. As 
can be seen, transporting an ion deep into the membrane 
requires unreasonably high energies for small ions. (This is 
the main reason for the barrier function of a biological mem- 
brane). However, small depths may be achieved with ener- 
gies comparable to biologically relevant values as demon- 
strated by comparison with the free energy available from 
hydrolysing one molecule of ATP (Hoppe et al. 1977). Con- 
sequently, charges well within the membrane are virtually 
possible only for large ions and at least locally increased 
polarizabilities. If the charges are of opposite signs they may 
release free energy via aggregation. Nonetheless, the energy 
barrier remains very high (some tens of kBT) and charges 
deep within the membrane are still unfavourable. Honig and 
Hubell (1984) estimated a transfer energy for salt bridges 
formed by charge amino acids from water to the membrane 
interior of 17-27 kBT. Thus, it is obvious that long-range 
direct charge-charge interactions play only a secondary role 
in the global arrangement of membrane components. This 
is supported by experimental results for membrane proteins 
in erythrocytes (Pearson et al. 1979). Lipid mediated ag- 
gregation and restrictions of the particle movement due to 
the cytoskeleton may be more dominant factors. We showed 
that for our charged model lipids (R=0.5 nm) no significant 
lateral structurization was found if the charges were located 
directly onto the membranes surface or the dielectric con- 
stant of the membrane was relatively high (Fig. 3). This is 
consistent with experimental results (Marassi and MacDon- 
ald 1991). In their study, no evidence for long-living asso- 
ciations between negatively and positively charged species 
of membrane lipids was found. Nonetheless, even in these 
cases, electric effects might well be important for the early 
steps of the inter-particle approach until other forces come 
in to play. 

The thickness of the membrane was 5nm with a ho- 
mogeneous low dielectric constant of c~ = 3. For biological 
membranes the thickness of the hydrophobic core is reported 
with 2.5-3.0 nm and c~ ~ 2 flanked by layers of polarizable 
phospholipid headgroups with 1.0-1.5 nm thickness each. 
For this polar region, dielectric constants of the order of 
10-30 have been estimated (Honig et al. 1986). Considering 
those additional layers explicitly would not change the gen- 
eral results. This would merely require a deeper insertion of 
the charges into the membrane at the same expense of Born 
free energy. It is the relation between the pairwise elec- 
trostatic attractive interaction energy which increases with 
positioning the charges deeper into the membrane and the 
Born energy which increases simultaneously that is finally 
important. These considerations show that the charge po- 
sitions used with respect to the interface are relative and 
model dependent while the qualitative results obtained still 
have general validity. 

Discrete charges within membranes as a part of a larger 
protein molecule are surrounded by regions of higher polar- 
izability. Calculations of the electric potential of discrete 
charges taking into account cylindric areas of higher di- 
electric constant have been reported (Sancho and Martinez 
1991). Future studies, especially those devoted to local elec- 
trostatic effects, should certainly use more detailed approx- 
imations of the lateral electric potential distribution. Al- 
though it can be concluded from our simulations that long 
range electrostatic effects in membranes are limited, the im- 
portance of electrostatic interactions for other membrane 
processes such as variations in ion transport characteristics 
(Frausto et al. 1992) or field sensitive switching elements 
should not be underestimated. 
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Appendix 

Assuming a model consisting of an electrolyte solution, a 
membrane and an electrolyte solution and the correspond- 
ing parameters as shown in Fig. 1, the position of the fixed 
charge q is given by the two components of the cylindri- 
cal coordinate system Pi and z~. Within the framework of 
Debye-Hiickel approach, the following system of linearized 
Poisson-Boltzmann differential equations are obtained for 
charge locations within the membrane or directly on the 
membrane's surface; namely, 

region 1 : Z~l(r  ~ -= N~@I, (13) 

6 ( f -  ~i) 
region 2 : A~2(~ = - q - - ,  (14) 

C0gm 

and 

region 3 • A~3(~ = n2~3, (15) 

where A is the Laplace' operator, eo is the absolute permit- 
tivity of vacuum, (5 is the Dirac' s Delta4unction and f is the 
position vector with the components p and z. 
The boundary conditions are: 

~2( Z, D) -- q 
4Heoe.~ 

fo ~((exp(-k  Iz - z~ I + B(k)  + C(k))Jo(k IP - P~l)dk,(23) 

where Jo is a zero-order Bessel function. 
The coefficients At(k) ,  A3(k), B(k)  and C(k) were ob- 

tained from the boundary conditions (Eqs. (16-20)): 

A1/3 = 

2k f3/lexp(~ V / ~  + ~2/3 - -~ k - /+  ( kzi - z ilg2 + t~/3) ) 

a3/1 ~ I~/3 -- k{b3/1 

B(k)  = ( I k 2  + t;~ - k~)flexp(k(zi  - d + z)) 

and 

a l  ~ f ~  + t~ 2 -- ];~bl 

(24) 

(25) 

~1 = ~21~=-@, (16) 

~ z  1 0~2 e~ = e,~ o-71z=_~, (17) 

~2 = ~31~=+~, (18) 

e,~ ~z2 = e ~ z 3  Iz=+~ (19) 

and 

c ( k )  = 

where 

(~22  + t~2 _ k~)exp(-k(d  + z + zi)) 

(1 ( ~ / ~  + r;~ - h~)flexp(k(2zi  - d)) 
- -  ) (26) 

= OII~-~I==L~ (20) 

The system of equations (Eqs. (13-15)) was solved by ex- 
panding the solutions in terms of Fourier- Bessel integrals. 
The solution is represented by the sum of the Coulomb po- 
tential of the fixed charge (Eq. (21)) and the potential of the 
induced charge at the interface. 

q 

i"  ~(~ = 4He.~eo  il' 
and ii : ~ ( ~  = q e -~l~-v~l (21) 

4Hese0 I f -  ril 

al/3 = 

(I]~2 q- N2/3- k~)exp(-2dk)  + ( ~ - ~  + t~2/3 + k~), 

bl/3 = 

(~/-~v + ~21/3 - k ~ ) e x p ( - 2 d k ) - ( x / ~ v  + t~2/3 + k~), 

(27) 

(28) 

~ m  = - - ,  (29) 
Cs 

i): fixed charge located in region 2; ii) fixed charge located 
in region 1 or 3. 

If the fixed charge is placed inside the membrane or pre- 
cisely onto the membrane surface, the solutions for resulting 
electric potential in the three regions of the system is given 
by Eqs. (22) and (23); namely: 

OG 

q / Al/3(h)Jo(k ]P -- PiD dk, (22) ~)l'/3(Z' P) -- 4/Teoes 
o 

and 

and 

f , /3 = ( I k  2 + t~2/3 -- k~)exp(-k(d-~- 2zi)) 

- (g / -~  + ~2/3 + k~). (30) 

For charge locations outside the membrane, in this work 
used only for the estimation of the Born energy (Fig. 10), 
and a discussion of the above solutions see Arakelian et al. 
(1993). A C-program solving the given equations is available 
upon e-mail request to walther@embl-heidelberg'de" 
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