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Abstract. Among the options suggested in phylogenetic systematics to solve 
the species problem is the Hennigian or internodal species concept. This 
concept interprets species as parts of the genealogical network of individual 
organisms between two successive permanent splits or between a permanent 
split and an extinction event. Though this option is at present not favoured by 
phylogeneticists, we believe that, to solve the species problem, there is no 
alternative to finding a satisfactory partition of the genealogical network. In 
previous work a formal definition has been developed of Hennigian or 
internodal species (called internodons here), based on a logical relation be- 
tween individual organisms. In this paper, we prove that this definition indeed 
partitions genealogical networks exhaustively into mutually exclusive entities, 
by showing that the defining relation is an equivalence relation. Although 
internodons should not themselves be seen as species, they are essential 
building-blocks for any satisfying species concept. 
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1 Introduction 

Though the concept of species is a basic one in biology, there has never been 
agreement on its definition. This disagreement, which has persisted at least 
since the time of Darwin, is referred to as 'the species problem'. The contro- 
versy revives repeatedly, in particular in systematics, the discipline concerned 
with discovering, describing, and naming species. In recent decades, with the 
rise of phylogenetic systematics, founded by Hennig (1966), the species prob- 
lem has received attention from a fresh perspective. This perspective has 
stressed to a greater extent the nature of species as historical entities, indi- 
viduals even, which can arise and become extinct (Ghiselin, 1974; Hull, 1976). 
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Phylogenetic systematists have proposed several definitions of the species 
concept, but still none of these has appeared good enough to win general 
acceptance. 

In the face of such deep disagreement, the way to a solution is surely to 
identify some tenets to which all participants can be expected to assent. One 
such is the proposition that the overwhelming majority of individual organ- 
isms of the past and present are members of one genealogical network. (Our 
reasoning, however, holds as well in the case of two or more separate 
networks.) This suggests that the species problem should be interpreted as the 
problem of demarcating groups of individual organisms within a genealogical 
network on particular criteria. Taking this view to its logical conclusion, we 
think that a species definition should and will find general acceptance only if it 
partitions genealogical networks of individual organisms exhaustively into 
mutually exclusive and historically continuous parts. The species definitions 
which have so far been put forward fail to meet this requirement. We first 
review how some well-known species definitions propose to demarcate species 
in the genealogical network. 

Morphological species concepts, which define species by reference exclus- 
ively to the similarity of organisms, meet two principal problems. First, these 
definitions require the existence of clear gaps in similarity if they are to group 
organisms into mutually exclusive sets. This presupposition is vulnerable to 
challenge for organisms in any one time-slice, but is certainly untenable for 
organisms in different time-slices: it will generally be impossible to find gaps in 
morphological similarity among the organisms belonging to an ancestral line. 
Not surprisingly, adherents of the morphological species concept portray 
speciation as a lengthy process, during which it is difficult to tell, even in 
principle, whether organisms belong to the ancestor or the descendant species. 
Secondly, morphological species definitions run the risk of generating a parti- 
tion of the network into parts which are not historically continuous, since the 
morphological similarity of organisms is not invariably evidence that they 
share a recent common ancestor. In the light of these problems, the mor- 
phological species concept has justifiably failed to win general acceptance 
among biologists. 

The so-called biological species concept, advanced principally by Mayr 
(1940), though very popular, also violates the condition for general accept- 
ance. In the biological species concept, the criterion on which organisms are 
grouped into species is their interbreeding ability. This criterion excludes all 
asexual organisms that may arise within the genealogical network. The 
biological species concept therefore fails to partition the whole of the genea- 
logical network into species. 

The biological species concept meets serious problems also in drawing the 
boundaries of species as parts of the genealogical network. The defining 
criterion 'interbreeding ability' cannot partition genealogical networks into 
mutually exclusive parts, because it is a non-transitive relation: suppose recent 
organisms a, b, and c belong to populations of a ring species which are just far 
enough apart that, while b can interbreed with both a and c, a cannot 
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interbreed with c. To accommodate the phenomenon of ring species, we could 
relax the criterion of interbreeding ability, and accept an indirect connection 
by interbreeding ability as a sufficient criterion for conspecificity. This option 
will however cause serious difficulties in the delimitation of biological species 
in the time dimension. It is likely that the criterion of indirect interbreeding 
ability will unite in the same species a present-day organism and an ancestor 
of it from early evolution. " 

The difficulty it meets in determining species boundaries, particularly in 
the time dimension, as well as its limited operationality, have prevented the 
general acceptance of the biological species concept. Mayr was well aware of 
the limitations of the biological species concept, and consequently came to 
suggest (1978: 85) that it should be interpreted as a "non-dimensional con- 
cept", to be applied only at one particular time and place. This is of course 
equivalent to admitting that the biological species definition is unable to deal 
with the genealogical network of individual organisms as a whole. 

The same defect besets the so-called phylogenetic species concept 
(Cracraft, 1983; Nelson and Platnick, 1981; Nixon and Wheeler, 1990), in 
which species are defined as the smallest groups of organisms living at 
a particular time that are recognizable by a unique combination of properties 
shared by their members. Since this species concept was designed to apply 
only to organisms of a particular time-slice, it not surprisingly lacks the ability 
to find boundaries in the genealogical network in the time dimension. 

One may wonder, at this stage, whether it is at all possible to partition the 
genealogical network exhaustively into mutually exclusive and historically 
continuous entities. If not, the principle that a species definition should and 
will find general acceptance only if it meets this criterion implies that no 
satisfactory species definition will ever be found. This may mean that we will 
end up with pluralism: we will find ourselves adopting a different species 
concept in each context (taxonomy, paleontology, ecology, etc.), rendering 
statements about species which transcend these contexts worthless, thereby 
impeding communication between workers in different fields. 

But this conclusion is unwarranted. There is a group of species concepts 
which explicitly refer to the structure of the genealogical network of individual 
organisms. Hennig stated that speciation takes place by the splitting up of 
parts of the genealogical network; he illustrated his view with diagrams 
representing a part of the network containing a split (Hennig, 1966: 19, Fig. 4). 
Hennig does not further qualify the properties of splits that constitute speci- 
ation events; for example, he did not distinguish between temporary and 
permanent splits. Hennig's view suggests that we can interpret species as parts 
of the genealogical network contained between two successive splits. Nixon 
and Wheeler (1990: 213) introduced the name 'internodal species concept' for 
species concepts of this kind. The evolutionary species concept of Wiley 
(1981), which builds upon Simpson (1961), also appears to construe speciation 
events as splits in the genealogical network, though this is not stated explicitly. 
We can infer this view from, for instance, a diagram of Wiley in which he 
relates character evolution to speciation events (Wiley, 1981: 125, Fig. 5.3). 
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Ridley (1989) elaborated Hennig's definition, allowing temporary splits to be 
speciation events. 

In fact, if Hennig's approach is to be successful, only splits that are 
permanent can plausibly be interpreted as speciation events, if only because 
temporary splits are very numerous in the network, opening up for instance 
between any two siblings that do not interbreed (Kornet, 1993). Under this 
qualification, the approach of partitioning the genealogical network into 
entities bounded by two successive splits, or between a split and an extinction, 
seems a promising procedure to cut up the network exhaustively into mu- 
tually exclusive parts. The entities delimited this way may indeed meet the 
criterion for general acceptance of a species concept. 

To investigate whether this suggestion could be pursued further, Kornet 
(1993) replaced the informal definition of internodal species as suggested by 
Hennig by a relation employing formal logic and set theory. (This approach is 
not unprecedented in biology: many tools were developed by Woodger 1952 
and Gregg 1954, and applied in evolutionary biology by e.g. Williams 1970.) It 
appeared possible to define internodal 'species' by a relation INT, which 
groups all organisms that are connected to each other by this relation into 
internodal 'species'. This paper provides the proof that INT is an equivalence 
relation. Being an equivalence relation, INT partitions the genealogical net- 
work exhaustively into mutually exclusive sets. 

As explained by Kornet and McAllister (subm.), the equivalence classes 
delimited by INT in the genealogical network - that is, informally speaking, 
the entities contained between two successive permanent splits in the network 
- do not meet our intuitions about the life span of species. Because smaller 
branches of the genealogical network are continually becoming extinct, per- 
manent splits occur very frequently. Each of these splits brings to a close one 
entity and gives rise to a new one. Therefore, the life span of these entities may 
well often be limited to a few generations of their member-organisms. For this 
reason, Kornet and McAllister declined to consider these entities as species, 
and introduced the name 'internodons' for them instead. 

However, the partition generated by the INT relation retains its import- 
ance for a solution of the species problem. Though they cannot reasonably be 
interpreted as species, internodons have proved to be valuable building- 
blocks out of which, on the basis of a further criterion, longer-lived entities can 
be formed. These entities are moreover recognizable in practice by the ap- 
plication of morphological criteria. Kornet and McAllister (subm.) interpret 
these entities as species, introducing the concept of composite species. 

It may be that the relation INT does not apply to the universal set U of all 
organisms. Organisms are ordinarily connected to other organisms by par- 
ental relationships which makes them members of a supra-organismal struc- 
ture. The domain of INT is a subset of gf consisting of GN organisms. 
Organisms with the property GN are members of a genealogical network, 
a structure of organisms connected by parental relationships which includes 
at least one occurrence of sexual reproduction. If life hasarisen several times, 
the universe may contain more than one such genealogical network. 



114 D.J. Kornet et al. 

Any organisms of gr that are not G N  organisms are outside the domain of 
INT. These organisms may be members of so-called trees, independently 
arisen ancestor-descendant sequences of organisms in which no sexual repro- 
duction has even taken place. While such trees may have existed in early 
evolution, it is unlikely that any remains today, so the exclusion of organisms 
forming such trees has minor impact on the definition of species. Finally, there 
may be organisms which neither have nor are parents. Possible candidates for 
that category are 'shoats '  or 'geeps' which are artificially produced by mixing 
the embryos of a sheep and a goat, and which do not themselves reproduce. If 
it is denied that such organisms have parental relationships, they too are 
outside the domain of I N T  (see also Kornet,  1993). 

The I N T  relation is based on an I N T S D  relation which applies only to 
a subset of G N  organisms, the so-called SD organisms: organisms that either 
have interbred, or reproduced asexually but have at least one descendant that 
reproduced sexually. In the next two sections we will define I N T S D  and prove 
that it is an equivalence relation. Section 4 gives the definition of the I N T  
relation, accommodat ing I N T S D  for G N  organisms which are not SD 
organisms, and shows that I N T  too is an equivalence relation. 

2 Definition of the INTSD relation 

The route chosen differs somewhat from the one taken in Kornet  (1993), wh,i, ch 
presents more of the biological background. 

First, some notational conventions. Bold upper-case letters denote predi- 
cates, either single-argument or relational ones. If one of the arguments in 
a relational predicate is considered as fixed, and the predicate is thus trans- 
formed into a predicate having one argument fewer, this argument is indicated 
between brackets. Outlined letters denote the extensions of the single- 
argument  predicates indicated by the same letters in bold type, i.e. the sets of 
all organisms to which those predicates apply. These single-argument predi- 
cates may of course themselves be derived from a relational predicate by fixing 
all but one of its arguments. 

2.1 Primitive terms 

x P y  reads as 'x is parent of y'. 

x > y reads as 'x was born at the same time as or after y'. By reasonable 
assumptions on the nature of time, > totally orders our universe: > is 
reflexive and transitive, and for all x, y it holds that x > y or y > x. We will 
write < for the converse of this order: i.e. x < y reads as 'x was born at the 
same time as or before y'. Similarly we use x < y for 'x was born before y', and 
x ~ y for 'x Was born at the same time as y'. 

For  more discussion of the semantics of the primitive terms, see Kornet  (1993). 
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2.2 Definitions and lemma 

The relation A is the transitive closure of P (D1) 

xAy  reads as 'x is ancestor of y'. 

The relation C is the symmetric closure of P (D2) 

xCy  reads as 'x is immediately connected to y'. 

x(C>p)y : <=> xCy  Ax > p a y  > p (D3) 

x(C>p)y reads 'x and y are immediately connected and both are born after or 
at the same time as p'. Observe that relation C>p is symmetric. 

The relation PC>=p is the reflexive and transitive closure of C>p (D4) 

x(PC>_p)y reads as 'x is path-connected to y so that no organism on the path is 
born before p'. Relation PC>p clearly inherits symmetry from C>p. Observe 
that by definition, if x(PC>=p)y and q < p, then x(PC>=q)y. 

~31DVN(y) = {x I x(PC>yly} (D5) 

G1DNN(y) reads as 'the gross dynasty set of y'. An organism x belongs to the 
gross dynasty of y if x is path-connected to y such that no organism on the 
path is born before y. As y(PC_>y)y, obviously y E GID~N(y) .  

xIy  : e,, (x ~= y)/x 3q{(xPq/x yPq)} (D6) 

xIy  reads as 'x has interbred (i.e. shares offspring) with y'. 

SDx :¢~, 3p ~q{(plq)/x [(x = p)/x (xAp)] } (D7) 

SDx reads as 'organism x possesses at least one sexually produced 
descendant'. 

1DYN(y) = {x I x(PC>,)y/x SDx} (D8) 

ID~N(y)  reads as 'the (proper) dynasty set of y'. The (proper) dynasty of y is 
the set of those organisms x of gross dynasty set ~;IDYN(y) which are SD 
organisms. 

A useful lemma: If r ~ ID~N(y)  and r -- y, then ID~N(y)  = ID~N(r). (L1) 

Proof. Let x~IDYN(y) .  Then x(PC>_y)y and SDx, and as r = y also 
x(PC=>,.)y. Since r e lDVgN(y) we have r(PC>__y)y, so y(PC>=y)r by symmetry, 
and y(PC__>r)r because r -= y. We conclude x(PC=>,.)r by transitivity, and, since 
SDx, we find x e ID~N(r). 

2.3 Definition of INTSD 

Write E for the earlier born and L for the later born of organisms {x, y}, with 
the convention that, whenever x --- y, we take E = x and L = y. (Observe that 
consequently E and L are always defined.) Further, let _~(x) denote {y] y > x}. 
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Suppose SDx and SDy, then 

x l N T S D y  :<=~ L e IDrgN(E)/x 

Vr{(r  ~ ID'~arN(E)/x r < L) ~ ( IDYN(E)~  ~(r)  = ID~gN(r))} (D9) 

x l N T S D y  reads as 'x and y are SD organisms that are co-SDinternodal' .  Note  
that the relation I N T S D  is defined for SD organisms only; the I N T  relation is 
an extension of the I N T S D  relation for all G N  organisms (organisms in 
genealogical networks), including non-SD organisms. First we will prove that 
I N T S D  is an equivalence relation. 

3 Proof that INTSD is an equivalence relation 

Theorem. INTSD is an equivalence relation on SD. 

For  I N T S D  to be an equivalence relation on the subset of SD organisms of 
U it must be proved that on that set I N T S D  has the properties of symmetry, 
reflexivity, and transitivity. 

3.1 Symmetry 

The symmetry of I N T S D  follows immediately from its definition (D9). 

3.2 Reflexivity 

Let E = L = x. We have to show that 

x ~ lDV~N(x)/x Vr{(r  ~ IDVgN(x)/x r < x) ~ (IDYN(x) c~ ~(r)  = IDYN(r)))  

(rl) 

x e D Y N ( x )  holds since SDx and x e ~;ID~gN(x) ((D5) and (D8)). For the 
second part  of conjunction (rl), note that if r < x, it is impossible that 
r e D ~ N ( x ) ;  if r -  x and r e D ~ N ( x )  then by lemma (L1), I D Y N ( x ) =  
ID~N(r) .  By definition of D~gN(x) we have lD~N(x)c~ ~(x)  = lD~gN(x), so 
we find 

l D Y N ( x )  ~ ~ (r) = ~ r N ( x )  c~ ~__(x) = I O W N ( x )  = ~ N ( r ) .  

3.3 Transitivity 

For  I N T S D  to be transitive it must hold that 

x lNTSDy/x  y l N T S D z  ~ x l N T S D z  (tl) 
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There are six possibilities for the relative times of birth of x, y and z with 
respect to < ,  which by symmetry  reduce to three: 

x < y < z ,  z<__y<x, or (I) E<=y<=L, 

x<_z<_y, z<_x<y,  or (II) E<_L<_y , 

y<x<=z, y < z < x ,  or (III) y<_E<_L. 

We have to prove in each case that  E I N T S D L  is implied. 

| .  We have to show that  for E __< y < L:  

y e ID•N(E)  A Vr{(r  ~ I D ~ N ( E )  A r __< y) ~ ( ID~N(E)  c~ ~(r)  = ID~N(r))}  

(t2a) 

and 

L e ID3fN(y) A Vr{(r  e 1D~N(y) A r < L) ~ (lD~gN(y) ~ ~(r)  = D ~ N ( r ) ) }  

(t2b) 

implies 

L ~ I D ~ N ( E )  A Vr{(r  e ID~fN(E) A r < L) ~ ( ID~N(E)  c~ ~(r )  = IDYN(r))} 

(t2c) 

Ia. We start by proving L ~ IDNN(E).  

The first part  of the conjunct ion in (t2a) informs us that  

y e ID~ZN(E) 

Obviously  y < y, so according to the second part  of (t2a) it is implied that  

IDNN(E)  a ~ (y )  = IDNN(y)  (t3) 

F r o m  (t2b) we know L ~ ID~arN(y). So by (t3) it follows that  L ~ IDYN(E).  

lb. This leaves us to prove the second part  of  the conjunct ion (t2c): 

Let r ~ 1D~(N(E) and r G L. We have to show 

~D'~N(E) c~ _~ (r) = ~D~N(r)  

If  r < y, this is immediate by (t2a). 
Otherwise y < r ~< L. 
By (t3) 

~D~N(E)~ >(y) = ~D'~N(y) 

Since r s IDNN(E)  and r > y, it follows that  r e ID~N(y) .  
Obviously,  since r > y, ___(y)c~ _~(r) = ~(r)  
Therefore 

ID'~N(E)c~ ~(r)  = IDNN(E)c~_(y)c~_(r) = lDV~N(y)c~_~(r) (t4) 
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Since r E IDNN(y)  and  r < L, by (t2b) 

D ~ N ( y )  c~ ~( r )  = IDUN(r )  
So by (t4) 

I D U N ( E )  c~ ~ (r) = D U N ( r )  

II.  We  have to show tha t  for E < L < y: 

y e I D N N ( E )  A Vr{( r  e D U N ( E ) / x  r < y) ~ (ID~(N(E) ca >(r )  = D U N ( r ) ) }  

(t5a) 
and  

y z ~DUN (L) A V r { (r e ~DYN (C) A r < y) ~ 0 D U N  (L) c~ ~ (r) = ~ U N  (r)) } 

(t5b) 
implies 

L e ID3fN (E)/x V r { (r e ID3fN (E)/x r =< L)  ~ ( D U N  (E) c~ ~ (r) = I D Y N  (r)) } 

(t5c) 
I Ia .  We start  by prov ing  L ~ IDUN(E) .  

As we know f rom (t5b), y e D U N ( L ) ,  so by definition (see D8) we have 
y(PC=>DL and by symmet ry  L(PC>=L)y. 

Since E < L we also have 

L(PC>=E)y (t6) 

But by (t5a) also y ~ IDNN(E) ,  so by definition 

y(PC>=E)E (t7) 

and  by transi t ivi ty f rom (t6) and (tT) we have 

L(PC>=e)E 

Since S D L  it holds indeed tha t  L ~ D U N ( E ) .  

l ib.  To  p rove  the second pa r t  of the conjunct ion  of (t5c) let r E D U N ( E )  and  
r < L. We have  to show 

D U N ( E )  c~ _~(r) = D Y N ( r )  

which we find immedia te ly  by (t5a), as L < y implies r < y. 

I I I .  We  have to show tha t  for y < E < L: 

E ~ I D ~ N ( y )  A Vr  {(r c IDWN(y)/~ r =< E) ~ ( ID~N(y)c~ N(r) = IDYN(r) )}  

(t8a) 
and  

L e D U N ( y ) / x  Vr{( r  e ID'IfN(y)/~ r < L) ~ ( I D ~ N ( y )  c~ N(r) = D N N ( r ) ) }  

(t8b) 
implies 

L e I D U N ( E )  a Vr{( r  ¢ I D V N ( E )  A r < L) ~ (IDWN(E) c~ ~( r )  = ID~rN(r))} 

(t8c) 
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Ilia. We start by proving L e DNN(E) .  

As we know from (t8a) 

E e D ~ N ( y )  

Obviously E < E, so according to the second part of (t8a) 

IDYN(y) n ~ (E) = IDVNCE) (t9) 

From (t8b) we know L e 1DNN(y). As L e k (E)  we find by (t9) L e IDYN(E). 

IIIb. To prove the second part of the conjunction of (tSc), let r e IDNN(E) and 
r < L. We have to show IDYN(E)c~ ~(r) = IDNN(r). 

We know by (t9) ID~fN(y) r~k(E)=  ID~N(E). Since r e l D ~ N ( E )  it 
follows that 

r e D a N ( y )  and r e  _~(E) (tl0) 

Moreover, if r e _~(E) then 2_(r)c~2_(E)= _~(r). Therefore 

DYN(E)c~ ~(r) = IDYN(y)n~_(E)c~_(r) = DYN(y)c~_~(r) ( t l l )  

Since r e IDYN(y) (by (tl0)) and r < L it follows from (t8b) that 

DxgN(y) n _k(r) = ID~N(r) 

So by ( t l l )  

ID '~N(E)  c~ ~ (r) = ~ )VN(r )  

We have proved for all conditions of relative order of birth (I-III)  that 

xINTSDy/x y INTSDz ~ x INTSDz 

holds and therefore that relation INTSD is transitive. 
This ends the proof of our theorem that INTSD is an equivalence relation. 

It should be noted that we have in fact shown how to partition an 
(abstract) network, i.e. an ordered set (U, =>) together with a notion of 
connectedness for elements of U (the network's universe). An element x in 
U represented an organism, and with each x was associated a unique 'point in 
time', say x's 'moment of birth'. 

The attentive reader will have observed that in the above proof no specific 
properties of the parenthood relation P are used; hence the construction might 
be carried out for any relation P on U whatsoever. Also, at no point were 
properties specific to the subset SD used; so the construction goes through for 
any subset W of gr whatsoever (including Er itself), giving rise to an equiva- 
lence relation INTV on W c gJ. We leave it to the reader to verify that the 
construction is stable in the following sense: if ~r c We, and x, y are V- 
organisms such that xINTWy,  then xINTVy. In other words, the partition of 
v( induced by INTW is a refinement of that induced by INTV. Moreover, in 
general it will be a proper refinement, as the converse of the above is easily 
shown to be false. 
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4 Definition of the INT relation 

The domain of the relation INT is the subset of g; consisting of GN organ- 
isms, organisms that are members of a genealogical network. If the P A TH  
relationship is the reflexive, symmetric, and transitive closure of the parent- 
hood relation P, connecting all organisms of a network, then 

GNx :.~- 3y {xPATHy A SDy} (D 10) 

To define the relation |NT,  the definition of INTSD has to be accommodated 
for GN organisms which are not SD organisms. For  this we need the 
following relation: 

xLBAy:ec.(xAyASDx)A-q3r(SDrAx <rArAy) (Dl l )  

xLBAy reads as 'x is the latest-born ancestor of y with at least one sexually 
produced descendant'. 

The difference between the domains o f l N T  and INTSD is now bridged by 
determining for organisms x and y test-organisms ol and 02. If x and y are SD 
organisms, they serve as their own test-organisms. If, on the other hand, x and 
y are non-SD organisms, the test-organism of each will be its latest-born SD 
ancestor. (Note that it is possible that more than one organism, born at the 
same time, may satisfy this description, and therefore serve as test-organism.) 

oTx :¢:> { [SDx A (O = X)] V [---n SDx A oLBAx] } (D12) 

oTx reads as '0 is test-organism for x'. 
This enables us to give the definition of INT: 

x l N T y  :¢:> 3 01 302(01Tx A 02Ty A O11NTSD02) (D13) 

x I N T y  reads as 'organism x belongs to the same internodon as organism y'. 
Finally we show that INT inherits from INTSD the property of being an 

equivalence relation. The relation INTSD differs from INT in that INTSD 
applies only to SD organisms (organisms x for which it holds: x e 5;11)), while 
INT ranges over SD and non-SD organisms. Whether a non-SD organism 
belongs to one and the same internodon as some other organism z depends 
entirely on whether the SD test-organism of the non-SD organism belongs to 
the same internodon as organism z. Therefore we are entitled to state that INT 
inherits from INTSD the property of being an equivalence relation on its 
domain, the set of GN organisms. In the (easy) formal verification one shows, 
to prove transitivity, that oTy and o'Ty implies oINTSDo' .  

5 Discussion 

In the preceding treatment, we built upon the interpretation of Hennigian or 
internodal species proposed by Kornet  (1993). This interpretation offered, 
through the relation INT, a formalization of the notion of groups of organ- 
isms contained between permanent splits in the genealogical network. In the 
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present  paper  we prove  that  I N T  is indeed an equivalence relation, and 
therefore par t i t ions  its domain  exhaustively into mutual ly  exclusive sets. 

To  conclude, some b roader  considerat ions abou t  this app roach  to species 
in biology. We believe that  the formalizat ion based on I N T  is bo th  mini- 
mal  and unique. We invite the reader either to give a counte rexample  or to 
p rove  that  the relat ion I N T  as defined does not  derive uniquely f rom the 
requirement  that  it should formalize the definition of Hennigian  species as 
groups  of organisms conta ined between two successive pe rmanen t  splits, or 
between a pe rmanen t  split and an extinction event, in the genealogical 
network.  

Even though  in ternodons  as defined by I N T  are the ul t imate consequence 
of adher ing strictly to the basic Hennigian  idea, they are, as explained in the 
introduct ion,  very short-lived, cont ra ry  to the intuit ion of Hennig  and his 
followers. Their  short  life span renders in ternodons  poo r  candidates  for the 
status of species. However ,  it has already been shown that,  if g rouped  together  
into larger units on a suitable criterion, in ternodons  are valuable  building- 
blocks for a species concept  (Kornet  and McAllister, submitted).  These larger 
units inherit  the desirable propert ies  of internodons,  and  yet have a longevity 
which conforms more  closely to classical intuitions abou t  historical species. 
Even this entity m a y  not  be the last word. We therefore invite the reader  to 
jo in  us in extending and developing the above  proposals  for a construct ive 
app roach  to basic t axonomic  methodology.  
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