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Abstract. The lung is a highly branched fluid-filled structure, that develops by 
repeated dichotomous branching of a single bud off the foregut, of epithelium 
invaginating into mesenchyme. Incorporating the known stress response of 
developing lung tissues, we model the developing embryonic lung in fluid 
mechanical terms. We suggest that the repeated branching of the early 
embryonic lung can be understood as the natural physical consequence of the 
interactions of two or more plastic substances with surface tension between 
them. The model makes qualitative and quantitative predictions, as well as 
suggesting an explanation for such observed phenomena as the asymmetric 
second branching of the embryonic bronchi. 
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1 Introduction: biology of the embryonic lung 

The development of the lung is immensely complex but can be divided into 
four phases. In the embryonic stage, which spans the first few weeks of 
gestation in the human, the basic bronchial tree is laid out, and the lung lobes 
are defined. An initial lung primordium buds off the foregut after week 3, and 
in the next week, divides at its tip into the two lung buds which will become 
the right and left lungs. The two lung buds elongate and branch again, the left 
bud into two more branches, and the right into three (Fig. 1). These tips 
continue to grow and split, until, by the end of the embryonic period, the basic 
lobar structure and the bronchi are established. The glandular or pseudoglan- 
dular stage begins after 5-7 weeks, and lasts until weeks 14 16. It is character- 
ized by the formation of the bronchioles, by continued branching of the 
bronchial tree, until there are between 16 and 25 generations of branching. 
The canalicular stage follows, until week 24-26, at which time the saccular 
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Fig. 1. Early embryonic lung epithelium-mesenchyme boundary at different times, develop- 
mental weeks 4 6. Adapted from (Hodson 1977; Nelson 1985) 

phase begins, and the acini have begun to form (Crystal 1991; Nelson 1985). It 
is primarily the embryonic stage of development with which we shall be 
concerned in this study, since it consists of the development and interaction of 
a minimal number of different types of tissues, and therefore is the most 
tractable to model. 

The embryonic lung can be thought of as an inside-out organ, a clump of 
mesenchyme which is invaded by invaginating epithelium. As such, it is 
developmentally and structurally quite similar to the salivary gland, kidney, 
and other branched organs. The hollow finger of epithelium is filled with fluid, 
primarily secreted by the epithelium, but continuous with the amniotic fluid, 
and undergoes repeated tip-splitting until it becomes the highly branched 
structure which we think of as the bronchial tree. The mature lung has 
a scale-invariance to its branching from 0.1 mm to 10 mm, which optimizes 
the fluid flow from the trachea down to the smallest bronchioles (Weibel 
1991). However, this optimization of branching sizes occurs in the later stages 
of development, possibly in response to the mechanical stresses caused by the 
fetal breathing movements, which have not been observed before week 10 
(Crystal et al. 1991), and which are essential to the proper development of the 
lung. 

The branch structure of the lung is highly consistent at the level of the 
largest bronchi, to the extent that each lobe, defined by a bronchus, has 
a name. However, developmental variations are common (Hodson 1977), and 
the later the generation of branching (the smaller the branch), the more 
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variation is seen. (This is to be expected, even at the statistical level: there are, 
at each generation g, 2g branches of the airways, so we expect to observe more 
variations at large g.) 

The form of the lung is described consistently as arising out of repeated 
dichotomous branching: the airways contain essentially no junctions where 
a single passage splits into three daughter passages, and it is believed (Alescio 
and Cassini 1962) that the lung never develops by side-branching except in the 
highly artificial case of transplantation, that is grafting of side-branches. The 
absence of trifurcating branches and side-branching are examples of develop- 
mental constraints predicted by the "morphogenetic rules" postulated by 
Oster et al. (1988). (For an extended discussion, see Murray 1989.) Thus an 
appropriate model mechanism should form pattern almost exclusively by 
dichotomous tip-splitting. 

The embryonic lung, like other branched organs such as the salivary 
gland, is developmentally self-sufficient, that is, it can branch and differentiate 
normally in vitro. The branching and growth are controlled by chemical and 
mechanical interactions between the epithelium and mesenchyme. The chem- 
ical aspects of branching development have been extensively studied (for 
reviews, see Jetten 1991; McGowan 1992), but the mechanical aspects are very 
much less widely studied, and shed more light on the actual form of the 
branched organ than is possible with the extensive (and important) chemical 
mechanisms. Studies of ligation and tracheostomy in vivo (Alcorn et al. 1977; 
Fewell et al. 1983; Moessinger et al. 1990) dramatically and quantitatively 
demonstrate the effect of variable luminal pressure on developing lung mor- 
phology. In the later stages of development, it is clear that high luminal 
pressure strongly stimulates growth, while low pressure leads to abnormally 
small lungs. 

In vitro experiments have dramatically demonstrated the responsiveness 
of fetal lung fibroblasts (Bishop et al. 1993) and mixed lung tissues (Liu et al. 
1992) to cyclic mechanical deformation mimicking fetal breathing move- 
ments. For example, cyclic deformation of 10% strain for 2 days increased 
fibroblast number by 39% over control (Bishop et al. 1993). The greater 
the average stress/strain level, the greater was the increase in growth 
rate. This strong responsiveness points to an important role of the fetal 
breathing movements in mechanically stimulating lung development; it also 
highlights the important role of general mechanical aspects of development 
of the lung. 

Epithelium is also strongly stress-responsive. It is typical of epithelium to 
maintain a uniform thickness, despite substantial deformations and stresses. It 
is also characterized by its tendency to adapt to the mechanical stresses 
imposed on it by deforming and undergoing mitosis, so as to maintain 
a uniform residual tangential stress (Takeuchi 1979; Kolega 1981). 

It is this strong response of embryonic tissues' growth rate to mechanical 
stress, and the tendency of epithelium to maintain a fairly uniform residual 
tangential stress, that suggests a mechanical description of the tissue growth 
and deformation of branching development. 
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2 Mechanical model of tissue deformations 

The simplest mathematical  interpretation of the stress-growth response of the 
in vitro studies is that there is an approximately linear relationship between 
the average stress on lung mesenchyme and its growth rate. Geometrically, 
growth rate is equivalent to strain rate, and therefore our model will assume 
a linear relation between stress and strain rate of the lung mesenchyme. This is 
exactly equivalent to the stress-strain rate description of fluid flow; the 
proport ionali ty factor,/~, is called the tissue's viscosity. Note  that on the fast 
time scale of breathing movements,  lung tissues behave viscoelastically and 
not as a fluid. However, on the slow time scale of growth and develop- 
ment - days, rather than seconds - the  mesenchyme behaves as a viscous fluid, 
averaging the fast-time-scale stresses. (The luminal/amniotic fluid which fills 
the lung behaves as a viscous fluid on any time scale.) 

The tendency of epithelium, on the time scale of development, to maintain 
a uniform tangential stress is mechanically equivalent to the behavior of 
a surface tension between two fluids. 

We have thus arrived at a mechanical description of the deformation and 
growth of lung tissues during development. The mechanisms by which the 
tissues sense stresses and respond with deformation of their cytoskeletons, 

~_O 

Fig. 2. The lung is modeled as a collection of fluids with interfaces between them. The 
amniotic fluid, naturally considered a fluid, is the innermost, and the mesenchyme, which 
could be considered either as a single fluid component or as two different fluids with 
different consistencies, is outside. Between the amniotic fluid and mesenchyme is epithelium, 
its thinness exaggerated in this drawing, which behaves like a surface tension ~ between two 
fluids. The viscosity/~1 of the luminal fluid is negligible (close to water) compared to that of 
the mesenchyme, #2 
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altered mitotic rates, and altered rates of synthesis and degradation of ex- 
tracellular matrix (ECM) and basement membrane are another question 
entirely, but the facts of the known tissue responses to stress lead us to a useful 
and powerful mechanical description. 

We consider the embryonic lung to consist of two fluids of very different 
viscosities, luminal/amniotic fluid and mesenchyme, separated by a "skin" of 
surface tension, the epithelium (Fig. 2). In Sect. 4 we will consider the implica- 
tions of modeling the lung as three fluids. The viscosity of the luminal fluid is 
clearly negligible compared to that of the mesenchyme, since the former fluid 
is close to water, and deforms almost immediately, whereas mesenchyme has 
a viscosity many orders of magnitude greater (see Appendix). 

3 Mathematical description of the model 

The flow of developing tissues is slow, and is characterized by very low 
Reynolds number (see Appendix). Thus it can be described by Stokes' 
equation, 

Vp = #V2u (1) 

for each fluid, where p is pressure, u is velocity (vector), and #, viscosity 
(Landau and Lifshitz 1959). We assume a constant intrinsic growth rate c of 
the mesenchyme, 

V .  u = c (2) 

and incompressibility of the amniotic/luminal fluid, 

v .  u = 0 (3) 

Either of these assumptions reduce Stokes' equation to Laplace's equation for 
pressure in each fluid: 

V2p = 0 (4) 

Epithelium is considered to be thin, and is described by a geometric 
relation between the pressure jump ~p across it, its surface tension z, and its 
two curvatures ~c± and /¢11, 

~ p  = - ~(~c± + ~:ll) (5) 

When one fluid is driven into a less viscous fluid, the interface between 
them remains relatively smooth. However when a fluid is driven into a m o r e  

viscous fluid, an initially planar interface between them becomes unstable. 
This instability generates fingers of a characteristic range of wavelengths if the 
surface tension is nonzero. In certain arrangements, these fingers in turn 
become unstable by tip splitting, and often a branched structure can result. 

The most common experimental and theoretical configuration for study- 
ing this viscous fingering is flow in a linear Hele-Shaw cell (Saffman and 
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Taylor 1958). The two-dimensional chamber has parallel plates maintained at 
a constant gap b and rigid side walls at a distance a from each other. In this 
simplified system, there is a single nondimensional control parameter, 

g2 b 2 "c 
B = -j- a- 7 Ua~  (6) 

where U is the average velocity of the interface and 6# the difference in 
viscosities across the interface (see Sect. 4.1). When B is large, that is, at low 
velocity, high surface tension, or low difference in viscosities, a planar interface 
is stable. When B is sufficiently smaller, an initially planar interface becomes 
unstable to various wavelengths, and fingers develop. In the Saffman-Taylor 
configuration, the only stable interface in this parameter range appears to be 
a single finger, of width generally close to a/2. If B decreases still further, one 
observes tip splitting, tip wander, and other phenomena, but in general, 
a single finger dominates. If a tip splits in two, one tip will be seen to grow at 
the expense of the other (Kessler et al. 1988). 

Another configuration of a Hele-Shaw cell that has been studied, although 
less widely than the Saffman-Taylor finger, is radial flow. Experiments show 
that as the less viscous fluid is driven into the more viscous fluid from the 
center of the cell, an initially circular interface goes unstable with a character- 
istic wavelength that depends on the control parameter B, but also on the 
radius of the circular interface. At larger radii, the fingers in turn go unstable, 
and split. At very low values of B, the structure becomes highly branched 
(Kessler et al. 1988). 

While the lung is clearly a three-dimensional organ, we believe that some 
of the major branching aspects can be seen in a simplified two-dimensional 
model. Numerical simulations of a three-dimensional version are considerably 
more complex and computationally intensive, and are currently under invest- 
igation. We shall therefore simplify the analysis of our fluid model, by 
reducing it to two dimensions by a Hele-Shaw approximation. This has the 
dual advantages of placing the model in the context of a well-studied physical 
phenomenon, and also of immediately leading to verifiable experimental 
predictions, since the technique of two-dimensional culture already exists. 

The justifiable ansatz of a parabolic profile between the parallel plates, 
where b is small, leads to an asymptotic form of Stokes' equation, Darcy's law: 

12// 
V p -  b2 u (7) 

where u and Vp are now considered to be vectors in R 2. 
It remains to specify a driving force for the fluid motion, or a pressure 

driving the deformation of the tissues. Pressures in the lung have been 
measured in the latter stages of development in fetal sheep, and it is found that 
there is a positive pressure of 1.5-3 mm Hg over amniotic pressure in the 
trachea, and a negative pressure of 1-2 mm Hg in the pleura (Fewell and 



A mechanism for early branching in lung morphogenesis 83 

Johnson 1983; Vilos and Liggins 1982). Thus there is a total pressure across 
the epithelium-mesenchyme interface of approximately 5 mm Hg, at least in 
the later stages of development (Alcorn et al. 1977). There is no experimental 
evidence of pressure across this interface in the embryonic lung, but based on 
the evidence at later stages, it is not an unreasonable assumption for this 
model. 

However, this transpleural pressure is too small, by an order of magnitude, 
to account for the observed growth rate (see Appendix for discussion of 
parameter estimates). The largest portion of the driving force must be due to 
the general expansion of the embryo during this period and to an intrinsic 
growth rate of the lung tissues. Lung explants develop fairly normally in vitro, 
without any externally imposed force. Generally the lumen closes in vitro, 
allowing for a positive luminal pressure. The intrinsic growth rate of the 
mesenchyme acts as a driving force giving an overall expansion (Eq. 2). 
Furthermore, the thoracic cavity is grossly enlarging, and this overall expan- 
sion has the mathematical effect of a moving boundary, and the same mechan- 
ical effect as the motion of a piston drawing fluid. We expect that the natural 
driving force in vivo is a combination of the intrinsic growth rate, the trans- 
pleural pressure, and the general expansion of the thoracic cavity. In the initial 
analysis to follow, we shall omit the source term c of the growth of mesen- 
chyme, and explore only the effect of the boundary conditions and driving 
pressure. 

An expanding lung is not completely unrestrained, in vivo, since there are 
the other organs of the early embryo to consider, such as the heart and the 
esophagus, which will clearly be obstacles to deformation or flow of a fluid. 
Thus there will be some cavity into which the deforming lung may grow, but 
its exact shape is not at all clear, nor how rigid are its boundaries. Moreover, 
the shape of the space (or simply of the pleural cavity) changes over time, as 
development proceeds. Analysis of the model could tell us something about 
the boundary conditions on the growing embryonic lung. 

4 Linear analysis of the pattern formation 

4.1 Two fluids 

Consider the case where there are two fluids in a Hele-Shaw cell, of different 
viscosities, with an interface F between them, possessing surface tension ~. 
Then the condition relating the curvature and the surface tension at the 
interface is 

P 2  - -  Pl = -- z(~c± + ~cll ) (8) 

A first approximation of ~c± is 2/b; more accurate determination can be given, 
but it is not important to our analysis. 

If we assume an interface at 

x = Ut  + ee ~t cos ky  (9) 
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where e ~ 1 and U is a constant velocity in the x direction we are led to the 
ansatz on the pressure, 

12#lU (x - Ut) + ~Bi (t)e kx cos ky (10) Pl = Pl0 b 2 

12#2U 
P2 = P2o b2 (x - Ut) + ~Bz(t)e kXcosky (11) 

which satisfies Laplace's equation (4). Then, assuming no source term c, the 
velocity and pressure are related by 

b 2 b 2 
V -- - -  Vpt - - -  Vp2 (12) 

12#1 12/-/2 

on the interface. To order e, curvature ~q is given by 

0 2 
/¢11 -- 0y 2 X(t,y) = gkZe~cosky (13) 

and the x-component  of velocity on the interface by 

Ox 
v = ~ -  = U + eo-e~tcos ky (14) 

If we assemble all these, we obtain the dispersion relation describing the 
growth of pattern of various wavenumbers (Saffman and Taylor, 1958), 

zbZk / 1 2 U ( # 2 - # ~ )  k2 ) 
(15) 

a -- 12(#1 + # 2 ) \  zb 2 - 

Thus there is a dispersion relation o-(k), with o- cubic in k, and pattern will 
grow for positive a, that is if U(#2 - #1) > 0, then pattern will grow. This is 
the standard result: if one drives a less-viscous fluid into a more viscous fluid, 
fingers grow, but a viscous fluid driven into a less viscous fluid has a stable 
planar interface. There is a fastest growing wavenumber,  

k2 __ 4U(#2 -- #1) 
zb 2 (16) 

In the degenerate case of the absence of surface tension, the interface is 
unstable to disturbances of all wavenumbers, and is most  unstable to the 
largest wavenumbers, i.e. to disturbances at the finest scales. The resulting 
interface is fractal, and outside of our area of interest. 

4.2 Model refinement." three fluids 

It  is clear from sections of embryonic lung tissue that there are two fairly 
distinct layers of mesenchyme in the lung. The inner mesenchyme, condensed 
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around the epithelium, has dense ECM and a high cell density. The outer layer 
is less structured, and we expect that it has different stress response (viscosity). 
A clear refinement of the model would be the inclusion of more than two 
different fluids. In Sect. 2, we made the simplifying assumption of two fluids 
(amniotic fluid and mesenchyme) with one interface between them. A more 
complicated model would incorporate the flow of three fluids, where fluid 
1 represented the amniotic/luminal fluid, fluid 2 represented the dense mesen- 
chyme that condenses around the epithelium, and fluid 3 represented the 
thinner outer mesenchyme. We suspect that such a model would more 
realistically mimic the lobar structure of the developing lung, if we make the 
correct assumptions about the relative viscosities of the three fluids. However, 
we have not found any experiments which enable us to make assumptions 
a priori on the relative viscosities (stress-growth response) of the inner and 
outer mesenchyme. One of the benefits of mathematical modeling is that it can 
lead to predictions of experimentally verifiable phenomena and quantities. We 
can use a little analysis of the model to make predictions of the relative 
viscosities of the inner and outer mesenchyme. 

Suppose, therefore, that there are three fluids in the Hele-Shaw cell, with 
two well-defined nonintersecting simply-connected interfaces/'1 and F2. Again 
in the interests of simplicity, let us make the assumption of immiscibility of the 
inner and outer mesenchyme. Consider both interfaces to be moving at 
a constant velocity U in the x direction, as before, and let F1 and F2 be 
separated an average distance L. Then the interfaces influence each other 
through viscosity, though in the limit L ~ o% they influence each other very 
little. 

Assume, for this analysis, no complicating source term c, and let the 
interfaces be described by 

FI: x = Ut + ~e~tcosky (17) 

F2: x = Ut + L + ec~e~tcos ky (18) 

where ~ is to be determined. Then Laplace's equation (4) must be satisfied in 
each fluid, and at each interface, there is a curvature condition 

FI: P2 - P l  = - zl(~c± + tell) (19) 

/12:P3 - P2 = - "c2(K2 -}- Krl) (20) 

The ansatz for the pressure is then 

12#1 U 
Pl = P l o  b2 ( x -  Ut) + eBl( t)ekXcosky (21) 

12#2U(  L ) 
P2=P2o b2 x - ~ -  Ut + ~(A~(t)ekX + A2(t)e k~)cosky (22) 

12/t 3 U 
P3 = P30  b2 (x -- L - Ut) + eB3(t)e-kXcos ky (23) 
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which satisfies the Laplace  equat ion  (4). The  velocities on the interfaces are 
now given by 

and, to order  e, 

b 2 b 2 
Fl:  v - Vpl - - -  Vp2 (24) 

12//2 12#2 

b 2 b 2 
/"2: V -- - -  gp2 - - -  Vp3 (25) 

12#2 12#3 

~x 
F~ : v = & U + eae ~t cos ky (26) 

~x 
F2 : v = ~[ = U + eo~ae "t cos ky (27) 

Put t ing  these all together,  de termining the var ious  coefficients A1, A2, BI,  B3, 
gives the two equat ions  in ~ and  a, 

12U 128 f cOShsi~_k/~kL - ~z) k2z, + - - ~ -  (//~ - #2) + b ~  ~//1 + #2 / = 0  (28) 

k2z2 + ~ (#2 - -  ]/3) Av ~ #3  "~- ]12 s i ~ f  -~- 0 (29)  

These  are easily solved for a(k), the growth  rate, and for ~, the rat io of the 
ampl i tudes  of the two interfaces. They  are i l l -behaved as L -+ 0, due to the sinh 
term. However ,  limk~o o-(k) = 0. Equa t ions  (28) and (29) yield 

A a  2 q- Ba  + C = 0 

where 
A = dad2 - -  C 2 

B = cid2 + c2d i 

C ~ C l C  2 

and 

(30) 

(31) 

(32) 

(33) 

No te  that  

#2 
C --  - -  

sinh kL 

b2k3-ct 
Cl - 1 ~  + Uk(//1 - # 2 )  

b2k3T2 
C2 - -  1 ~  @ U k ( # 2  - -  #3 )  

da = / / i  + #2 coth  kL 

d2 - 113 q-/12 coth  kL 

(34) 

(35) 

(36) 

(37) 

(38) 

A = d l d 2 - c 2 = # i # 3  q-#~ q-(//i + P3)#2co thkL>O (39) 
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by suitable application of hyperbolic identities, and 

B 2 -  4A C = 2 2 2 2 Cld 2 + czd  1 + 4c 2 > 0 (40) 

There are therefore, from (30, 40), two real solutions o' l ,2(k ). Zero is always 
a root of each, since limk-~o o-(k) = 0. We also know that a depends on L, the 
distance between interfaces, only as//2 coth kL. Another observation we can 
make is that limk_~ a(k) = - 0% so the interface is always stable to the 
shortest wavelength disturbances. 

We can further determine the behavior of o-'s k-dependence. Let the two 
roots be designated al  and o- 2. Then 

0al 
Ok (0) = 0 (41) 

~a2 U(//3 - / / 1 )  (42) 
ak ( 0 ) -  / / 3 + # 1  

692al  2UL(#~  - #2(#1 + #3) + #1#3) (43) 
~k ~ (0) = # ~ ( # 1  - m )  

02a2/0 ~ = - 8UL#1#3(#  2 - / / 2 ( # 1  +/23) + #1#3) 
(44) 

ak2'~ ! #2(#1 - -  #3 ) (#1  @ #3) 2 

For  a positive root of ~r to exist, with multiplicity 1 or 2, we need c1 < 0 or 
c2 < 0, making C < 0 and/or B < 0. We can now make four observations on 
pattern: 

• A necessary condition for pattern is that/ /1 ~" #2 o r  #2 <~ #3.  

• A sufficient condition for pattern is that #3 > #1, independent of #2. 
• It is not a necessary condition for pattern that /-/3 > #1, though it is 

sufficient. 
• If #3 < #1, a sufficient condition for pattern is that 

]A2 2 - -  # 2 ( # 1  -~ #3)  -I- #1#3 > 0 (45) 

This is satisfied as long as the viscosities are not monotonically decreasing. 1 

These observations indicate that only when viscosities are monotonically 
decreasing in the direction of fluid flow does pattern not form. It  is not the case 
that a monotonic increase in viscosity is necessary for pattern to grow; all that 
is required is that across one of the interfaces, viscosity increases in the 
direction of flow. 

Typical dispersion relations are shown in Fig. 3, which shows a(k) for all 
6 possible rankings of the magnitudes of three different viscosities, with 
positive velocity U, i.e. fluid being driven from region 1 into 2 and 2 into 3. 
Again, pattern forms for some band of wavenumbers in all cases except where 

1 Proof: Let #a =/13 + 61 and/11 = /22 -~ (~2" Then #2 _/12(/q + #3) + #J/~3 = - 61c52. 
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Fig. 3. Typical dispersion relation ~(k) with two interfaces. Representative curves are given 
for all possible orderings of the magnitudes of three viscosities. In all such cases pattern 
forms, except in the case where #a >/~2 > #3, i.e. monotonically decreasing viscosity 

fluid viscosity is monotonically decreasing outwards. Pattern grows wherever 
o-(k) > 0, and the amplitude relation between disturbances on the two inter- 
faces is given by c~(k), shown in Fig. 4 for the two viscosity configurations 
most relevant to the problem of modeling the lung, i.e. those where/~1 is 
negligible. 

In the absence of data distinguishing the stress-growth responses of the 
inner and outer mesenchyme, we cannot make many quantitative predictions 
based on the assumed different properties of these two tissues. We can, 
however, make qualitative predictions: we observe that the amplitude ratio 

can be negative in the case where/~1 < #2 < ]~3, meaning disturbances can 
grow where the inner interface and the outer interface are out of phase. 
Considering that this would, if pursued by the organism, lead to lumps of 
mesenchyme, rather than to a mesenchyme which evenly enfolds the lung, it is 
unlikely, based on this simple analysis of the model, that the viscosity of the 
outer mesenchyme is greater than that of the inner mesenchyme. Furthermore, 
the case/~1 < #3 < #2, which has only one positive root a, has for that root an 
amplitude ratio ~ < 1 for k > 0, which means pattern on the outer interface is 
of smaller amplitude than on the inner interface, as seen in vivo/vitro. We 
conclude that it is probable that the outer mesenchyme has a greater prolif- 
erative response to stress (lower tissue viscosity) than the inner mesenchyme. 
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log I~1 

J 

log c~ 
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Fig. 4. Amplitude-wavenumber relation e(k) for two interfaces, for the specific case where 
#1 </~3 and #1 < gz, the cases which are relevant to lung growth. In the case where 
#1 </~2 </~3, one of the roots of c~ is negative, indicating that pattern can grow on the two 
interfaces such that they are out of phase with each other, whereas in the case of the other 
root of c~, and always in the case where ]21 ~Q ]23 < [~2, the growing patterns on the two 
interfaces are in phase with each other 

5 Numerical analysis 

It is claimed (Bensimon et al. 1986) that diffusion-limited aggregation (DLA) 
with surface tension is a correct mathematical analogy of viscous fingering. 
Along these lines, Kadanoff(1985) and Liang (1986) developed a Monte Carlo 
"pedestrian" algorithm for simulating viscous fluid flow. Fluid flux is com- 
puted by probability densities, which are computed by averaged random 
walks. The random walks originate from loci on the boundary or the interface 
of equal probability, and terminate on the interface. Each random walk carries 
with it a flux which depends on its origin (boundary or interface itself) and on 
the local curvature of the interface. For  higher values of the control parameter  
B (6, 16), which is proport ional  to surface tension, the interface-interface walks 
are responsible for a greater proport ion of the motion of the boundary. For  
details of the method and its accuracy, see (Kadanoff 1985; Liang 1986). 

The advantage of the Monte Carlo method over the more customary 
boundary integral method is that for small values of the control parameter  B, 
near the DLA limit, the flow is approaching indeterminacy, and is highly 
sensitive to noise of a wide range of frequencies. At greater values of B, noise is 
less important,  and the flow more deterministic. This, however, is adequately 
handled by the Monte  Carlo method simply by increasing the number  of visits 
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Fig. 5. Representative simulation of viscous fingering model of initial lung development. 
Contours represent the shape of the interface over time, starting with the smallest curve (an 
arbitrary initial condition). The lung is considered to be rigidly bounded on two sides, and 
free to expand on the third. Control parameter B = 0.02 

by a random walk required for a given spot on the interface to move. The 
method can be trivially generalized to three dimensions, though cost prevents 
its use in three dimensions in this study. 

In the interest of studying the simplest possible cases, we assumed for the 
simulations that the intrinsic growth rate c in equations (2, 4, 5, 7) was zero, 
that is, that the entire driving force was externally imposed, and simplified the 
outer interface to maintain a constant distance from the inner interface. 
A representative simulation is shown in Fig. 5. In this simulation, the lung is 
considered to be rigidly confined on two sides, and free to expand in the 
general caudal direction. 

The overall pattern is primarily dependent on the boundary conditions 
and the dimensionless parameter B, and we have extensively explored the 
effect of both. Given the same boundary conditions as in Fig. 5, a very similar 
pattern evolved from a variety of initial conditions, and for a range of B from 
approximately 0.01 to 0.05. For  B outside of that order of magnitude, the 
pattern was substantially different, either with branching of nonuniform size, 
or not enough branching. Variation was observed in the patterns, but the 
overall size, size range, time course, and number of branchings in our simula- 
tions depended only on the control parameter. The actual boundary condi- 
tions in the human lung in its embryonic period are, of course, in three 
dimensions, and in order to accurately duplicate them, one would have to 
account for the other organs nearby, such as the heart, liver, and esophagus 
(two of which, being asymmetrically placed, must surely affect the symmetry of 
the second branching). In addition, the entire organism is growing as the lung 
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is developing, and this provides, in effect, a moving boundary condition, which 
could be complicated to describe accurately in space and time. 

6 Discussion 

Our simulations show that a very simple fluid model captures many of the 
essential features of the early embryonic morphogenesis of the lung. Our 
model exhibits tip splitting, as does the embryonic lung, and is capable of 
reproducing the 2-3 split at the second branching of the bronchial tree, even 
without the inclusion of known in vivo boundary conditions (such as the 
presence of the esophagus and heart). Although the qualitatively and 
quantitatively observed behavior has been achieved with a two-dimensional 
simulation, we believe similar behavior will be found in a similar but much 
more mathematically complex and numerically costly three-dimensional 
model. Furthermore, our simulations demonstrated that even without 
the biologically realistic source term V. u = c > 0, representing an intrinsic 
growth rate without stress, the fluid model formulation provides reasonable 
qualitative and quantitative predictions of the tissue deformations and pattern 
formation. 

The model presented in this paper predicts the early embryonic branching 
of the presumptive lung, but in its present form, it cannot account for the later 
stages of development, which are characterized by many more different types 
of tissues, depending on the developmental age of the relevant portion of lung, 
as well as very different physical properties. For example, as the lung develops, 
the bronchi enlarge and develop cartilage. The cartilage must make the 
bronchi substantially stiffer, and it is unlikely that a purely fluid model can 
account for the expansion of the airways during the later development. The 
later development, in which the airways enlarge proportional to the volume 
flux of air that they will carry, must also involve stress-stimulated growth, the 
stress coming from the fetal breathing movements which are essential to 
healthy pulmonary development. 

The latest stage of lung development, the formation of the acini, will 
certainly be governed by a different mechanism, since the acini are structurally 
and geometrically very different from the bronchial tree. Furthermore, the 
acini develop both prenatally and postnatally: they develop both in a fluid- 
filled pressurized state and an air-filled state, which are mechanically very 
different. 

Perhaps the main point of our theory of lung development is that it makes 
predictions which can be experimentally tested. We have used our model to 
predict that the viscosity (stress-growth response) of the inner, denser mesen- 
chyme is greater than that of the outer mesenchyme. Another prediction 
comes from the fact that low Reynolds number flow is highly sensitive to 
boundary conditions. There have already been studies of embryonic lung 
tissues in vitro, and these could be adapted to include boundary conditions 
that would be more tractable. Since viscous fingering in a Hele-Shaw cell with 
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rigid sidewalls a set distance apart is known to have a single stable finger for 
moderate values of the control parameter B, cultured lung epithelium and 
fibroblasts should organize into a single finger, if confined to a channel in their 
medium of appropriate width. Another possible experiment would be to alter 
the pressure difference between the two tissues artificially, as in the in vivo 

experiments on the later stages of development (Alcorn et al. 1977; Fewell et 
al. 1983; Moessinger et al. 1990). A higher pressure difference should lead to 
finer and more irregular branching of the embryonic bronchial tree, and 
a lower pressure difference to coarser and less frequent branching. 

This methodology of addressing the stress responses of developing tissues 
should be applicable to a number of similar systems, such as the branching 
development of salivary glands. Numerous other tissues throughout the body 
have been found to be more or less strongly dependent on mechanical stress 
effects (Curtis and Seehar, 1978; Folkman and Moscona, 1978), and we expect 
that such stress responses may be a general feature of branching morphogen- 
esis, though we have not yet found experimental evidence of a specific stress- 
growth response in any specific glandlike tissue but the lung. 

What our model does not address is the specific chemical mechanisms and 
the other details of cellular responses to stresses and to each other, issues 
which have been studied in detail elsewhere. Our model is concerned with 
tissue deformations at the level of stress and growth, rather than at the level of, 
for example, GAG synthesis and degradation, in the same way that an 
ethologist may study insect movements in terms of velocities, without address- 
ing which pheromones are directing the movements. Our mechanical ap- 
proach offers a different and new perspective on lung development, and on 
branching organogenesis in general. 

Appendix: parameter estimation 

In this paper, we have introduced a new concept, that of the viscosity of 
developing tissues, defined, as is fluid viscosity, as the ratio between stress and 
strain (growth) rate. We can estimate the magnitude of fetal lung viscosity 
from the experiments of Liu et al. (1992) and Bishop et al. (1993) who give data 
relating the strain they imposed on the tissues and the resulting increase in 
growth rate over control. Under the assumptions that cyclically deformed 
tissues average their stress response over time and that their fast elastic 
response is linear, and supposing their modulus of elasticity to be of the order 
of 107 dyn/cm 2 (close to that of other soft tissues), we obtain the same estimate 
for viscosity from the data of both studies: # ~  101° to 1011 dyn_sec/cm 2. 

The flow of tissues in the developing lung is extremely slow, and on a very 
small length scale. We can estimate the Reynolds number of the flow, 

Re - p L  U (46) 
# 
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f rom the k n o w n  t ime and  length scales, the densi ty  of water,  and  the above  
viscosity, to be a b o u t  Re ~ 10-21, which is ext remely  low and t r ivial ly  justifies 
a Stokes '  app rox ima t ion .  

The  mos t  uns table  w a v e n u m b e r  of g rowing  pa t t e rn  on the interface 
between the two fluids is given by  (16). Assuming  tha t  the d o m a i n  is pe rhaps  
one o rde r  of  magn i tude  wider  than  the pla te  separa t ion ,  and  es t imat ing  
these length scales, the viscosity, velocity, and  surface tens ion (est imate 

~ 104 gm/cm a, of the same o rde r  of magn i tude  as cornea),  suggests tha t  the 
a p p r o p r i a t e  range of the con t ro l  p a r a m e t e r  B = ~2b2"c/(3a21~U ) is app rox im-  
ately 0.01 to 0.1. W e  found  tha t  the mos t  lung-l ike pa t te rns  formed in our  
s imula t ions  when B was between 0.01 and  0.05. 
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