
J. Math. Biol. (1990) 28:237-256 
,Journal of 

Mathematical 
Biology 

©Spdnger-Veflag 1990 

Evolutionary optimization and neural 
network models of behavior 

Marc Mangel 
Zoology Department and Center for Population Biology, University of caqifornia, 
Davis, CA 95616, USA 

Abstract. One of the main challenges to the adaptionist program in general 
and the use of optimization models in behavioral and evolutionary ecology, 
in particular, is that organisms are so constrained'by ontogeny and phy- 
logeny that they may not be able to attain optimal solutions, however those 
are defined. This paper responds to the challenge through the comparison of 
optimality and neural network models for the behavior of an individual 
polychaete worm. The evolutionary optimization model is used to compute 
behaviors (movement in and out of a tube) that maximize a measure of 
Darwinian fitness based on individual survival and reproduction. The neural 
network involves motor, sensory, energetic reserve and clock neuronal 
groups. Ontogeny of the neural network is the change of connections of a 
single individual in response to its experiences in the environment. Evolution 
of the neural network is the natural selection of initial values of connections 
between groups and learning rules for changing connections. Taken together, 
these can be viewed as "design parameters". The best neural networks have 
fitnesses between 85% and 99% of the fitness of the evolutionary optimiza- 
tion model. More complicated models for polychaete worms are discussed. 
Formulation of a neural network model for host acceptance decisions by 
tephritid fruit flies leads to predictions about the neurobiology of the flies. 
The general conclusion is that neural networks appear to be sufficiently rich 
and plastic that even weak evolution of design parameters may be sufficient 
for organisms to achieve behaviors that give fitnesses close to the evolution- 
ary optimal fitness, particularly if the behaviors are relatively simple. 
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1. Introduction 

Among the main challenges to the "adaptionist program" (Gould and Lewontin 
1979) and to the use of optimality models in biology are the assertions that (i) 
natural selection does not optimize and (ii) organisms are so constrained by 
structure that they may not be able to obtain optimal solutions, however such 
solutions are defined. This paper and an accompanying one (Mangel 1989) are 
attempts to answer these challenges, using behavioral modeling as an example. 
Mangel (1989) considers the very general problem of habitat selection and asks 
when optimal behavior will arise as a result of natural selection. Here optimal is 
interpreted to mean the sequence of behaviors that maximize individual fitness. 
Thus, neither ESSs nor co-evolution are considered. 

This paper treats two specific problems--the movement by a tubular worm 
and learning by tephritid fruit flies--and asks if the evolutionary optimum can 
be achieved by an organism given its biological constraints. Two modeling 
techniques are used. The first is the "evolutionary optimization" approach, based 
on dynamic state variable modeling of behavior (Mangel and Clark 1988). In 
this approach Darwinian fitness is defined in terms of survival and reproduction. 
State variables are used to link physiology, ecology and fitness. I consider an 
interval of length T and assume that evolution has selected behaviors in the 
interval that maximize the "terminal" fitness at time T (Mangel and Clark 1988); 
this provides a means for computing both fitness and optimal behaviors. 

The second modeling approach is based on "neural networks". (See, e.g. 
Brady 1985; Bounds 1987; Dehane et al. 1987; Edelman 1987 or Cowan and 
Sharp 1988 for a discussion of neural networks; the paper by Cowan and Sharp 
is especially biological.) In this approach, a neural network that solves the 
biological problem is developed. The strength of connections between different 
neural groups and "learning rules" for changing those connections provide a 
"template" for behavior. Natural selection causes learning rules to evolve. Once 
the template is given, ontogeny determines the detailed nature of connections 
between different neural groups and the feedback that different groups provide 
to each other (see Aoki and Siekevitz 1988 for a discussion of plasticity in brain 
development). The model based on evolutionary optimization provides a stan- 
dard against which the model based on neural networks can be assessed. In 
particular, we ask: can an organism, modeled by a neural network, achieve 
fitness that is close to optimal, as defined by the evolutionary optimization 
model? 

In Sect. 2, the evolutionary optimization model is described for a polychaete 
worm. This animal is very simple and there exists abundant information about 
it (Evans 1966, 1971, 1981; Evans and Downie 1986). The neural network model 
for this worm is described in Sect. 3 and the "evolution" of the neural network 
model is described in Sect. 4, using Monte Carlo simulation to mimick natural 
selection. In Sect. 5, the ontogeny of the evolved neural network is modeled, and 
the fitness of the neural network model is compared to the fitness of the 
evolutionary optimization model. In Sect. 6, I describe more complex evolution- 
ary optimization models for polychaetes. Section 7 describes learning problems 
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of  tephritid fruit flies such as the apple maggot Rhagoletis pomonella. Finally, 
Sect. 8 contains discussion and conclusions. 

2. Polychaete behavior: evolutionary optimization model 

Polychaete (tubular) worms often have a life pattern (e.g. Evans 1966, 1971, 
1981; Evans and Downie 1986) that consists of  moving in and out of  a tube in 
response to hunger and to visual stimulation. I assume that the worm can sense 
shadows, but does not have the ability to detect images. A shadow can be caused 
by a piece of food or a piece of debris drifting by the tube or a predator moving 
by the tube. I f  the worm exits its tube in response to the shadow and the shadow 
is caused by a predator, the worm is killed. If  the shadow was caused by a piece 
of  food, then food is ingested and the worm's reserves are increased by the 
network energetic value of the food. This simple life cycle continues from period 
t = 1 until period t = T, at which time reproduction occurs. 

The evolutionary optimization model is used to compute the set of  behaviors 
(rules for exiting from the tube) that maximize expected lifetime reproduction at 
time T (Mangel and Clark 1988). Introduce a state variable X(t) defined by 

X(t) = level of  reserves of the worm at the start of period t (1) 

The reserves are bounded with xc < X(t)<<, Xm, where xc denotes a critical, 
starvation level of reserves such that the worm dies if its reserves fall below this 
level and Xm denotes a maximum level of  reserves (e.g. limited by the size of the 
tube). In Sect. 5, the effects of letting Xm ~ O0 are discussed. 

At the start of  period T, terminal fitness R(X(T)) is assessed. In general, this 
function will be some measure of resources available for reproduction or 
reproduction itself. For  the computations used in this paper, I chose a linear 
function of  reserves with a threshold: 

R(X(T)) = {~(X(T) - xr) if X(T)  > xr 
otherwise (2) 

where xr denotes a minimum reserve level needed for reproduction. Here 
Xm > Xr > X~, SO that an individual can be alive, but still unable to reproduce. 
The choice of  the terminal fitness function R(z) is not particularly important, but 
one wants R(0) = 0 and R(z) non-decreasing in z. Here T is fixed and known; 
Mange1 and Clark (1988), p. 71, show how to treat uncertain end times. The 
overall objective of the evolutionary optimization method is to be able to relate 
short term behaviors to a measure of long term fitness; this is accomplished by 
specifying the terminal fitness function and solving for the short term behaviors 
using stochastic dynamic programming. 

The environment of  the worm is characterized by two probabilities associated 
with the visual stimulus: 

2s = Prob{a visual stimulus occurs in period t} (3) 

fl = Prob{stimulus is caused by a predator I visual stimulus occurs} (4) 
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and by a set of  probabilities for the energetic value of  possible food types 

p; = Prob{stimulus is caused by food particle with 
energetic value Yilvisual stimulus occurs} (5) 

The food types are indexed by i = 0 . . . . .  K. Here Y0 = o, corresponding to a 
piece of  debris, which can be thought of  as food with no energetic value. 

The energetic consequences of  the worm's behavior are determined by two 
"costs" that measure decrement in the reserve levels 

~t h = cost of  staying in the tube for a single period (6) 

• g = cost of  exiting the tube and returning in a single period (7) 

Since it should be energetically more costly to exit the tube than to stay in it, 
0~g >0~ h . 

Fitness is defined in terms of  expected reproduction and survival. In particu- 
lar, 

F(x, t, T) = max E{R(X(T))  Ix(t) = x} (8) 

is the Darwinian fitness, where the maximization is taken over feasible behav- 
ioral decisions (i.e. movement out of  the tube) between period t and T and E 
denotes the expectation over the stochastic environment. 

In order to determine F(x, t, T) we derive an iterative equation (Mangel and 
Clark 1988) characterizing the time evolution of  F(x, t, T). This equation is 

F(x, t, T) = (1 - 2~)F(x - ah, t + 1, T) 

+ 2s max [F(x - -ah ,  t +  1, T); ( I - t )  ~ p i F ( x - a g +  Yi, t +  1, T) (9) 
L i = 0  d 

This equation is derived by use of  the law of  total expectation (Mangel and 
Clark 1988, Chap. 2). The left hand side of Eq. (9) is the maximum expected 
lifetime fitness from period t to period T, assuming that the worm is alive at the 
start of  period t. The first term on the right hand side is the future expected 
fitness if no stimulus occurs during period t (this happens with probability 
1 - 2s). If  no stimulus occurs, the worm remains in its tube and the state variable 
is decremented by ah ; its expected future fitness from period t + 1 to period T is 
given by F(x - ah, t + 1, T). A stimulus occurs with probability 2,. In that case, 
a decision is made (corresponding to the "max"  on the right hand side of  Eq. 
(9)). I f  the worm stays in its tube, its expected future fitness is still 
F(x -- ah, t + 1, T). If  the worm exits the tube and the stimulus was caused by a 
predator (which occurs with probability fl), the worm is killed and its expected 
future fitness is 0. If  the stimulus was caused by a piece of food or debris of  type 
i (which happens with probability (1 -fl)p~) the state variable is augmented by 
the network energetic value of  the food Y~ - ag so that expected future fitness is 
F(x - ~g + Yi, t + 1, T). If  x -- ~g + Y,. either exceeds Xm or falls below xc, then 
x - ~g + Yg is replaced by x,, or xc in the formula for the future fitness on the 
right hand side of  (9). Thus, the condition that the fitness is 0 at x = x~ acts as 
a boundary condition. 
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Fig. 1. Switching curve for the 
following parameters described in the 
text. For values of X(t) above the 
switching curve, the worm should 
remain in its tube if a visual 
stimulus occurs; otherwise it should 
exit 

The fitness also satisfies the end condition F(x, T, T) = R(x). Equation (9) is 
solved "backwards" in time, starting at t = T - 1 and decreasing in t until t = 1; 
thus the condition on F(x, T, T) acts as an initial condition in the iterative 
solution of  (9). As Eq. (9) is solved, the optimal decisions are obtained. For  this 
model, the optimal decisions are d*(x, t) indicating whether the worm should exit 
its tube when a stimulus appears in period t and X(t) = x. These decisions can be 
summarized by a "switching curve" x*(t I {p,, Yi}) in the (t, x) plane. 
Figure 1 shows such a switching curve for reproduction given by Eq. (2) and the 
following parameters: X,n = 20, X, = 4 ,  Xc = 2, T =  50, 2s = 1, 0t h = 1, ~g = 3, 
fl = .05, Po = .9, Pi = .025 for i = 1 to 4, and IT,- = i + 3 for i = 1 to 4. 

For  values of X(t) above the switching curve, the worm should remain in its 
tube if a visual stimulus occurs; otherwise it should exit. Such switching curves 
determine the optimal behavior of  the worm. Except for values of  t near T, the 
decision threshold for moving out of  the tube in response to a visual stimulus 
depends only on the physiological variable and not on time. As t approaches T, 
the worm becomes more "risk averse", only exiting the tube if physiological 
reserves are low. Similar kinds of switching curves are obtained for other 
combinations of  parameters. 

3. Polyehaete behavior: neural network model 

Neural network models have become very popular in the last few years (Bounds 
1987; Cowan and Sharp 1988). The key features for a neural network model are: 
(i) nonlinearity of  interactions leading to a rich and wide variety of  behaviors, 
(ii) plasticity of  the interactions so that the neural network can change in 
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response to the environment and (iii) lack of knowledge of the specific problem 
being solved so that the neural network "works in the dark" about the objective 
functional; behaviors are selected and reinforced by the environment. In particu- 
lar, recent work on models for central pattern generators (Getting 1988; MUl- 
loney and Perkel 1988), olfactory detection (Getz 1989), drosophila motor 
neurons (Friesen and Wyman 1980), crayfish motoneurons (Edwards and Mul- 
loney 1987) and swimming (Getting 1983a,b) have shown how the "neural 
groups" used in this paper can actually be identified for relatively simple 
invertebrates. 

The neural network model for the polychaete consists of different neural 
groups chosen to mimic the biology of the polychaete. The different neural 
groups are linked by connections. The strengths of these connections are 
modified by "learning rules" that describe how the connections change in 
response to experience of the individual. For example, the connections will 
change in one way when the worm exits the tube and finds food and in a 
different way when food is not found. In addition to connections, the states of 
the neural groups follow non-linear dynamics. The dynamics chosen below are 
typical logistic-like functions. These mimic the generally observed neural physiol- 
ogy (Edleman 1987). 

The neural network thus has a set of "design parameters" (Williams 1966; 
Grafen 1988) that includes the initial values of the connections, parameters for 
learning rules describing how the connections change upon experience, and the 
parameters of the nonlinear dynamics of the neural groups themselves; this set of 
design parameters is denoted by ~.  Ontogeny of the network is manifest in the 
change of connections, given initial values and learning rule parameters, accord- 
ing to individual experience. Evolution of the network is the result of the natural 
selection of the initial values and the learning rules. Darwinian fitness for a set 
of design parameters of the neural network is measured in terms of the expected 
terminal fitness of individuals with this set of design parameters. Natural 
selection does not "optimize" design parameters. Rather, for a given set of 
environmental conditions, natural selection provides a "ranking" for the quality 
of different sets of design parameters, with the better parameter sets being more 
prevalent in the subsequent generation. 

The evolution of the design parameters Can be mimicked by Monte Carlo 
simulation. We begin by specifying a set of environmental parameters 
{2s, P, {Pi, Y;}}, which generate various realizations of the environment. We then 
consider a large number of worms with different design parameter sets ~.  This 
corresponds to the current "generation". The environmental parameters are used 
to generate realizations of the environment (within the generation) and the 
worms with design set ~ respond according to the rules of the neural network. 
At t = T, fitness is determined by R(X(T)). This gives a fitness F{~} for the 
design parameters ~.  Evolution consists of considering another set of design 
parameters ~ ' ,  computing the fitness F{~'} of that set and comparing the two 
fitnesses; the precise rules for choosing the variants of the design parameter sets 
will be given below. Briefly, the design parameters will be chosen uniformly over 
given fixed intervals. If F{~'} > F{~} then the design parameters ~ are replaced 



Evolutionary optimization and neural network models of behavior 243 

by the new set ~ ' .  This process continues over many generations; with one set 
of  design parameters being replaced by a superior set as natural selection occurs. 
This entire process can be repeated over many different "worlds" or "patches" 
(essentially enlarging the number of  different designs studied). 

In this paper, no explicit genetics are assumed, so that design parameters 
replicate perfectly from one generation to the next. Thus, from one generation to 
the next, the best designs are maintained and additionally many variants are 
constructed, for comparison with the current best design. In the actual computa- 
tions reported below, the best design was maintained from one generation to the 
next, and in each generation 500 variants were compared to it. 

The neural network model involves four "neural groups": (i) a sensory group 
that responds to the visual stimulus, (ii) a motor group that moves the worm in 
and out of the tube, (iii) a "reserves group" (stretch receptor) that measures the 
level of  energetic reserves of  the worm and (iv) a clock group that indicates when 
t is approaching T. Figure 2 shows a schematic drawing of  the neural groups and 
their interactions. In principle, the motor, sensory and reserve groups all interact 
with each other; the clock group interacts in a one-way fashion with the motor  
group. The purpose of  the clock group is to "shut down" the motor  group when 
t = T so that reproduction occurs. 

The interactions between the different neural groups are determined by 
connections 

flij = strength of the interaction from neural group i to neural group j (10) 

Here i,j will range over the indices m (motor), s (sensory), r (reserve) and c 
(clock). In particular, I assume that ~ms, fl,m, ~rm, ~,~ and tom are non-zero and 
that ~mr and flsr are identically 0. 

We must also specify the nonlinear dynamics of  the neural groups and 
learning rules for the connections between the neural groups. The states of  the 
neural groups are denoted by Xs, Xm, Xr and Xci. A discrete time formulation is 
used, so that the group dynamics connect a state X~ at time t with its value at 

Sensory group 

Motor / /  group 

Clock 

Reserve group 

Fig. 2. The neural groups and 
their interactions. In principle, 
the motor, sensory and reserve 
groups all interact with each 
other; the clock group interacts 
in a one-way fashion with the 
motor group 
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time t + 1. All neural groups should have bounded state variables (see Cowan 
and Sharp 1988 for a general exposition of the modeling approach). 

For the computations reported above and below 2s = 1; this is done to 
simplify the study in terms of the number of  parameters involved. This means 
that in each period the sensory group is stimulated. Following Dehane et al. 
(1987), Eqs. (11, 12), assume that the updating of the sensory group follows a 
sigrnoidal response. In particular, Xs(t) is updated according to 

Xs(t + 1) = [1 + e x p ( - ( a ~ -  #,)/~)]--1 (11) 

In this equation, #s centers the response, e determines the sensitivity of the 
response to the exponent and Q, summarizes the interactions between the 
sensory, motor and reserve groups. When choosing variants for the neural 
network,/z, and e are uniformly distributed as [0, 1]. The function Q, is used to 
relate the inputs from the other neural groups to the updating of the sensory 
group. The form of this function is 

Qs = yxs(t) + zs exp[--flmsXm(t) - -  flrs(Xr(t)/Xm)] (12) 

In this equation, 7 and Z~ are fixed parameters. When choosing variants, ~ is 
uniformly distributed on [0, 1] and Z, is uniformly distributed on [0, 2]. The flo 
are the strengths of the neural connections between groups i and j. These change 
according to individual experience, but even so initial values need to be specified. 
When choosing variants of the neural network, the initial value of each flo is 
uniformly distributed on [0, 1]. 

The important aspects of (12) are that Q~ increases with Xs and decreases 
with Xm and Xr. That is, X,(t + 1) increases as the sensory group is stimulated, 
the motor group rests, or reserves become low. Other functional forms would 
probably work as well (see, e.g. Finkel and Edelman 1985). The dynamics of X~ 
thus involves the states of the motor, sensory and reserve groups at time t; y, Z~, 
#~, and e are parameters determined by evolution through the natural selection 
of the neural network. 

The dynamics of the motor and reserve groups, and the connections between 
the groups, depend upon the "decision" at period t. If  a combination of  inputs, 
denoted by X*, is below a threshold value ~, then the worm remains in its tube 
in response to the visual stimulus. When generating variants of the neural 
network, ~ is uniformly distributed on [0, 1]. 

If  X* < ~, the dynamics of the motor group are 

Xm(t q- 1) : rXm(t) (13)  

Thus, according to (13), the state of the motor group decreases exponentially 
when the worm remains in its tube. When generating variants of the neural 
network, V is uniformly distributed on [0, 1]. 

The combination of inputs that determines exit is 

X* = Xcl {Xm(t ) ~- Xs(t)[~sm -~- firm/[Xr(t)/Xm] } (14) 

The clock state is basically 0 or 1, so that the worm does not exit when t is close 
to T unless the term in brackets is very large. The crucial aspects of the term in 
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brackets are the increase in X* with the state of the sensory group Xs and with 
a reduction in the state of the reserve group Xr. Recall that X* needs to be above 
the threshold ~ for exit to occur. The functions in (12) and (14) are chosen 
because they are mathematically convenient; they are not based on neurobiolog- 
ical considerations (but see Getting 1983a,b, 1988 for a way of getting such 
forms from neurobiological data). 

The dynamics of the reserve group depend upon the dynamics of the motor 
group. If the worm does not exit its tube during period t, then 

Xr(t -k- 1) = max{xc, Xr(t ) - -  0C h } (15) 

and the connections change according to the rule 

80 ~ ~u + 6o(s) (16) 

Here the set {rij(s)} is the set of learning rules that the connections follow when 
the worm stays in its tube. 

If X* i> ~, then the worm makes an excursive cycle from the tube and returns 
to the tube. If the worm is not killed by a predator, then it may find food (with 
probability Pi of finding food with energetic value Yi) or may not find food (with 
probability P0). In either case, the motor group is "reset" to a resting value 

Xm(t "q- l )  ---~ x . . . .  t (17) 

If the visual stimulus is caused by debris, then Xr(t + 1) is given by Eq. (15) 
with ~h replaced by ~g and the connections are modified by the learning rule 
80 ~ i j  + 6o(nf) where the set of learning parameters {rij(nf)} is used when the 
worm exits but does not find food. 

If the worm makes an excursion and does find food, then the reserve group 
dynamics are 

Xr(t + 1) = min(xm, X~(t) - %, Yi) with probability Pi (18) 

and the connections are modified by 80 ~ 80 + 6•(f) where the set of learning 
parameters {6o.(f ) } is used when the worm exits its tube and food is found. In 
this model, I do not presume that the worm "knows" the Y~ or p~; rather these 
simply describe what happens to the neural group. 

When generating variants of the nerual network, all of the learning rules 
{60(k)} are assumed to be uniformly distributed on [ - 6 ,  2 + 6], where 6 itself is 
uniformly distributed on [0, 1]. 

The clock is simply used to insure that the motor group is turned off when 
t = To Many chemical relaxation oscillators could be used to model the clock 
dynamics. 

4. Results of evolution of the neural network model by Monte Carlo simulation 

The neural network described in the previous section thus has a set of "design 
parameters" (Williams 1966; Grafen 1988) given by ~ = {~, Zs, #s, e, {ru(k) k 
= s, nf, f}, {initial values of//,y }}. Evolution by Monte Carlo simulation proceeds 
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Table 1. Rate of evolution of the neural group for four different patches 

M. Mangel 

Case Increase in fitness Size of increase 
at generation in fitness 

1(277) a 1 9 
2 12 
73 11 
112 20 

2(429) 3 14 
5 2 
9 9 
25 39 
216 2 
225 13 

3(500) 1 14 
32 3 
56 10 
66 7 
83 7 
223 2 
263 12 
398 2 

4(500) 1 24 
2 lO 
5 5 
7 2 
80 13 
87 5 
163 13 

a Numbers in paranthesis in the first column indicate the total number of generations 
simulated 

as described in the previous section. Table 1 shows the results of  evolution of  the 
neural network parameters  and learning rules for four different cases. In each 
case, there is a rapid initial increase in fitness, followed by a slower improvement  
in the fitness of  the neural network model. This result is similar to that  of  
Kauffman and Levin (1987), Figs. 5 and 6, who also found that, in general by 
200-500 generations the waiting times for the next increase in fitness become 
very large. That  is, after many  generations the waiting time for the next 
improvement  of  design parameters is long. Another  way to view this is that after 
many  generations of  natural selection, the currently best neural network parame- 
ters are drawn from the tail of  a distribution. When sampling f rom the entire 
distribution, the probability of  obtaining a "bet ter"  set of  parameters is small. 

There is another way of  viewing the evolution of  the neural network. 
Suppose that  instead of  specifying a single design parameter  set and a variety of  
realizations of  the environment, we specify a single realization of  the environ- 
ment and a large number  of  different design parameter  sets. The fitness of  each 
of  these sets can be compared with the fitness determined by evolutionary 
optimization. Most of  the randomly selected design parameter  sets will have 
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the situation in which a single realization 
of the environment and 500 different 
design parameter sets arespecified. The 
fitness of each of these sets can be 
compared with the optimal fitness 
determined by evolutionary optimization. 
Most of the randomly selected design 
parameter sets will have fitness far below 
the optimal fitness, but some will be 
close. Note that in each case there are 
one or two designs that actuary have 
neural network fitness higher 
thanevolutionary optimal fitness. This 
occurs because a single environmental 
realization is selected; by definition the 
evolutionary optimal is only maximized as 
anexpectation over many 
differentrealizations of the environment 

fitness far below the optimal fitness, but some neural networks will have fitness 
that is close to the evolutionary optimal fitness. These would correspond to 
sub-optimal peaks on rugged landscapes (cf. Kaufmann and Levin 1987). 
Mangel (1989) describes explicitly how such behavioral problems can be viewed 
as walks on rugged landscapes. Figure 3 gives two examples of distributions of 
fitness of design parameters. The cumulative number of individuals with fitness 
of the neural network as a percentage of fitness of the evolutionary optimization 
model is shown. Note that in each case there are one or two designs that actually 
have fitness of the neural network greater than evolutionarily optimal fitness. 
This occurs because a single environmental realization is selected; by definition 
the evolutionary optimal fitness is only maximized as an expectation over many 
different realizations of the environment. The environmental processes are gener- 
alizations of the Poisson process, so that the variances will be of the same order 
as means. Thus, the variance of the evolutionarily optimal fitness will be high; 
there will be many individual realizations in which the neural network can 
outperform the evolutionarily optimal behaviors. 

5. Ontogeny of the neural network and comparison 
with evolutionary optimization models 

Suppose now evolution leads to a set of "very good" design parameters ~*,  in 
the sense that many generations have passed without improvement in the fitness 



248 M. Mangel 

of the neural network (i.e. that no better design parameters have been found for 
many generations). The design set specifies initial values of connections flu and 
learning rules 60.(k); these have been determined by the evolution of the neural 
network. Consider a large number of worms, each with the naturally selected 
design parameter set ~*.  Each of these worms experiences a different random 
environment during its ontogeny, determined by the environmental parameters. 
Although the initial values of the connections the learning rules are the same, the 
different realizations of the environment will lead to different ultimate values of 
connections and states of neural groups. The ontogeny and plasticity of the 
neural network can thus be modeled. 

Each realization of the environment experienced by a worm using decisions 
based on the evolved neural network can also be applied to a worm making 
decisions based on evolutionary optimization. Doing this allows a comparison of 
the relative fitness of the neural network model to the evolutionary optimization 
model. Figure 4 shows the results of comparing 8 different design parameter sets; 
it is a plot of fitness of the neural network versus fitness of the evolutionary 
optimization model. About 4000 different realizations of environment were 
experienced by the worms. There is a generally positive, although weak, 
correlation between the fitness of the neural network and the fitness based on 
evolutionary optimization. The grand average of the data in Fig. 4 shows that 
Fitness ....  al network/FitneSSevolutionary optimization =0"85" That is, on average the 
fitness of the neural network model is about 85% of the evolutionarily optimal 
fitness. 

There are, in fact, three cases in which the fitness of the neural network is 
actually higher in the simulation than the fitness of the evolutionary optimization 
model (neural network fitness = 116%, 104% and 103% of evolutionary opti- 
mization fitness). This is caused by the relatively small number of realizations 
(4000) studied, compared to the large sample space over which the expectation 
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in the evolutionary optimization model is taken. That is, micro fluctuations in the 
"local" realization of the environment allow the neural network model to actually 
outcompete the evolutionary optimization model when the expression of environ- 
mental stochasticity is limited. 

The two neural network design parameters with the highest levels of relative 
fitness were then compared with the evolutionary optimization model for a much 
larger number of realizations of the environment, 100000 realizations and 50000 
realizations respectively. The relative fitnesses in these cases were 99.8% of 
optimal and 85% of optimal, with an average fitness over the total 150,000 
realizations of the environment equal to 94.9% of the evolutionary optimal fitness. 
For this simple neural network model of a polychaete worm, natural selection can 
attain a "design" that is almost equal in fitness to the evolutionary optimum. 

The good performance of the neural network, relative to the evolutionarily 
optimal fitness, can be attributed to a number of factors. First, there are no 
deleterious mutations and design parameters are replicated perfectly, so that 
design parameters never get worse, but only get better. Second, the decision of the 
worm is a binary decision (to exit or not), but there are many parameters available 
for tuning this decision. 

A smaller study was done for evolutionary optimum and neural network 
models for the case in which x,,--* 0o. There is essentially no change in the 
formulation of the evolutionary optimization model, but the dynamics of the 
neural groups do change since they involve Xm. These equations were changed by 
simply dropping Xm, but bounding the value of the connections associated with 
xm. The same procedure for studying the evolution, ontogeny and comparison of 
the neural network and evolutionary optimization models was followed on a 
smaller scale and qualitatively similar results were obtained. Over a total of 55000 
different realizations of the environment, the average fitness of the neural network 
model was 79% of the average fitness of the evolutionary optimization model. 

6. Polychaete behavior: more complex models 

A more complicated polychaete worm might have "visual" and "tactile" recep- 
tors, so that the worm could receive either a visual stimulus or a tactile stimulus 
or both in a single period. Assume that such stimuli occur independently, but may 
occur simultaneously. Other assumptions are, of course, possible. Let 

2v = Prob{visual stimulus received in a single period} 

2, = Prob{tactile stimulus received in a single period) (19) 

The different stimuli will have different associated probabilities of predation and 
food: 

fl~ = Prob{predator caused the visual stimulus I visual stimulus occurred} 

Bt = Prob{predator caused the tactile stimulus I tactile stimulus occurred} 
(20) 



250 M. Mang¢l 

A stimulus not caused by a predator is, by assumption, caused by a particle of  
food or debris. 

Finally, assume that either predators or food/debris might be present even 
though no stimulus occurs. This can be modeled by 

fl0 = Prob{predator is present Ino stimulus occurs} 

090 = Prob{food/debris is present [no stimulus occurs} (21) 

Defining F(x, t, T) as before leads to 

t, T) = (1 - 2v)(1 - 2,) max IF(x - ah, t + 1, T); F(x, 

(1 -- rio)[(1 -- O3o)F(x -- ~g, t + 1, T) + ~o ~ piF(x - ~g + Yi, t + 1, T) l 
i = 0  _l 

+ 2v(1- 2t) max IF(x - ah' t + l' T); (1-flv) i=o~ PiF(x-ag + Yi, t + l, T) ] 

+ ( 1 -  2o)2t max [ F(x - ah' t + l' T); (1-flt) i=o~PiF(x--~g+ Yi, t + l, T) ] 

+2~2t max IF(x - ah, t + 1, T); 
i_ 

( 1 -  fi t)(1-rio) ~ piF(x-ag + y,, t  + 1, T)[ (22) 
i = 0  A 

This equation is solved subject to the end condition that F(x, T, T) = R(x). The 
decision set generated during the solution of Eq. (22) will consist of  rules d*(x, t) 
and d* (x, t) indicating whether or not the worm should exit the tube if a visual 
or tactile stimulus is received during the period in which X(t) = x. 

The network corresponding to Eq. (22) would be richer in terms of neural 
groups and connections than the one studied in this paper. However, the 
problem being solved by the polychaete (to exit the tube or not) is still the same. 
For example, there will be many more connections and rules for changing 
connections. We have added just 2 environmental parameters, 2v and ~o 0, to the 
evolutionary optimization model but have added many more parameters (2 
sensory groups and 3 rules) to the neural network model. There are two possible 
arguments regarding the fitness of the neural network when compared to 
evolutionary optimization fitness. The first is that the neural network will still be 
solving the problem for a binary decision, but with many more parameters 
available for tuning. This suggests that it should be possible to find a neural 
network that has fitness nearly equal to the evolutionary optimal fitness. On the 
other hand, there is a tradeoff in that the parameter space being sampled is of  
higher dimension. This means that, in general, it will take longer to evolve the 
neural network and that evolution is more likely to become stuck on suboptimal 
peaks (cf. Kauffman and Levin 1987). 
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7. Speculative neurobiology of tephritid fruit flies 

In this section, the ideas developed throughout the paper are applied to a 
different and more complicated organism, the tephritid fruit flies (see Roitberg 
and Prokopy 1987 for a general review). Eggs are typically laid in healthy fruit 
and the larvae spend essentially their entire lives in the fruit. The adults are free 
flying. Females often mark fruit with a pheromone after oviposition and will 
usually reject a marked fruit as an oviposition site. The discussion in this section 
is based on experiments pertaining mainly to the flies Rhagoletis pomonella 
(apple maggot fly), Rhagoletis basiola (rose hips fly) and Ceratitis capitata 
(Mediterranean fruit fly). 

The kinds of problems that the fruit flies must solve include: 

Learning to recognize marking pheromones (Roitberg and Prokopy 1981). Naive 
flies do not recognize their own marking pheromone or the marking pheromones 
of other flies. It is only after ovipositions in fruit, and dragging her ovipositor 
across the fruit after oviposition, that a fly begins to recognize marking 
pheromone. 

Responding to marked fruit and host deprivation (Roitberg and Prokopy 1983, 
Averill and Prokopy 1987). In general flies will not oviposit in a fruit that is 
marked with a pheromone. After a sufficiently long period of host deprivation, 
however, flies will accept marked fruit. Evolutionary optimization arguments 
(Mangel 1987) show how such behavior is adaptive. 

Learning to recognize and accept or reject novel hosts (Prokopy et aL 1986). When 
flies are given known and novel hosts (e.g. hawthorn and apple), there is a 
time dependence of learning to accept or reject novel hosts. Figure 5 shows 
hypothetical time courses proposed by Prokopy et al. (1986) in which the 
acceptance level of known fruit remains constant, but the acceptance level of 
novel fruit changes over time. 

These phenomena can be discussed and interpreted in the framework of 
neural network models. Host finding typically involves visual and olfactory 
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Fig. 5a,b. Hypothetical time course proposed by Prokopy et al. (1986) in which the acceptance level 
of known fruit remains constant, but the acceptance level of novel fruit changes over time 
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stimuli (Miller and Strickler 1984). Thus, it is likely that at least two sensory 
groups are involved in the neural network. 

For Rhagoletis flies, at least, there is clear evidence that the neural receptors 
for marking pheromone are found on tarsal hairs (Crnjar and Prokopy 1982; 
Prokopy et al. 1982; Papaj and Prokopy 1986). When a fly lands on a fruit, she 
walks across the fruit, triggering the tarsal pheromone receptors if the fruit is 
marked and if she crosses the marking trail. (After oviposition, a fly drags 
her ovipositor across the fruit, leaving a thin trail of marking pheromone.) A fly 
may circumscribe a fruit 6 or 8 times before ovipositing or rejecting the fruit. 
The neural network model thus should involve a group representing tarsal hair 
receptors. 

Walking across the fruit may also help identify the size (and thus type) of 
fruit. For parasitoid wasps, Schmidt and Smith (1985, 1986, 1987a) have 
demonstrated that walking across the fruit allows the wasp to assess the size of 
the fruit. A neural network model for an oliphagous or polyphagous fruit fly 
should thus include a "fruit size neural group". 

Abdominal stretch receptors provide a means for the fly to determine egg 
complement, which is one of the key variables for the evolutionary optimization 
model. As before, a clock group will allow the fly to assess physical time. 
Schmidt and Smith (1987b) describe how the parasitoid's clock might work. 

Finally, the neural network model should contain a neural group represent- 
ing the ovipositor. This group is similar to the motor group for the polychaete 
model: it opens the ovipositor in the same way that the motor group causes the 
worm to exit its tube. After oviposition, the fly is assumed to drag her ovipositor 
across the fruit. Roitberg and Mangel (1988), using evolutionary optimization, 
describe how oviposition and marking by dragging could evolve. 

Figure 6 shows a neural network model for such insects. There are about 20 
connectance parameters and a much larger set of learning rules (depending upon 

Olfactory group 

Fruit size 
group 

Abdominal stretch 
receptor 

® Visual group 

i f  Tarsal pheromone receptor group 

Clock 

i i  Ovipositor group 
Fig. 6. A possible neural network for a tephritid fruit fly 
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fruit type, whether the fruit is marked or not, whether oviposition occurs or not, 
etc), so that simulating "natural selection" by Monte Carlo methods would be a 
daunting task. 

On the other hand, knowing the biology of the flies and thinking about the 
neural network models leads to certain predictions. Consider, for example, 
learning to accept a novel host of different size (e.g. a small host like hawthorn 
compared to a large host like a Macintosh apple). Thinking about such a 
learning problem leads to a prediction that dynamics of the nerual group Xsi~(t ) 
that is used to measure size has two stable steady states, a "small" steady 
(indexed by 1, say) and a "large" steady state (indexed by 2). The evolution of 
the neural network provides the fly with initial values of the connectance between 
the size group and the ovipositor group flso(X~,eq(1)) that depends upon the state 
of the size group. A sufficient delay in encountering any kind of fruit will 
ultimately cause the fly to oviposit in a large fruit. When this occurs, a successful 
oviposition causes fl~o(Xs,eq(2)) to increase. The net effect will be the acceptance 
dynamics shown in Fig. 5a. Similarly, acceptance of a known fruit may lead to 
a decrease in flso(Xs,~q(2)); a simple form of re-entry interactions (Edelman 
1987). A decrease in fl~o(X,,eq(2)) caused by successful ovipositions in small fruit 
will lead to rejection dynamics similar to those shown in Fig. 5b. Prokopy et al. 
(1986) describe experiments that are consistent with this picture of the neural 
network dynamics. A tephritid fly may be too complex for a neurobiological 
study in which one tries to measure steady states of nerve groups that respond 
to pheromone or host size, but it might be a worthwhile project to try to 
determine if those groups do indeed have multiple steady states. 

8. Discussion and conclusions 

This paper contains a comparison of behaviors determined by evolutionary 
optimization methods and neural networks. The overall objective of this study 
was to address the challenge to the adaptionist program that "developmental 
constraints" will prohibit the achievement of evolutionarily optimal solutions. 
To answer this challenge, simple models for a polychaete worm were developed 
using both evolutionary optimization methods and neural networks. Allowing 
natural selection to act on the neural network connections, parameters, and 
learning rules lead to a number of neural networks with fitness nearly as high as 
the evolutionary optimum fitness. I propose that more complicated organisms 
(which must solve more complicated problems) will have neural networks that 
grow in complexity of connections and learning rules at a much faster rate than 
that difficulty of the problem that must be solved. In general, I thus propose that 
neurbiological mechanisms do exist for the achievement of near optimal or 
optimal fitness. A remaining open question concerns the general relationship 
between increased complexity of the neural network and increased complexity of 
the behavioral problem. In particular, if the complexity of the neural network 
increases at a rate much faster than the behavioral problem, will a neural 
network always lead to near evolutionarily optimal behavior? As mentioned 
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above, it is likely that the neural networks studied here performed so well 
because of no deleterious mutations, and the coupling of binary decisions to a 
neural network with a number of tunable parameters. In addition, since variants 
were selected uniformly, it was possible to escape false peaks in parameter space. 
Hill-climbing processes (Kauffman and Levin 1987) are more likely to be 
trapped at false peaks. On the other hand, because of uniform sampling for 
generating variants used in the paper, the rate of evolution is slower than it 
might be in a hill-climbing procedure that also had a method for escaping false 
peaks (e.g. simulated annealing, Aarts and Korst 1989). In more difficult 
problems, such as using a neural network to drive a system to one of many 
steady states of a large phase space, the success of the neural network is more 
problematical. Even so, there already exists encouraging evidence about the 
effectiveness of neural networks (Hoffmann et al. 1986). Hinton and Nowlan 
(1987) also provide an example of how a learning network can guide evolution 
(also see Maynard Smith 1987). Because of the large number of connections, 
nonlinearities, learning rules and plasticities, neural networks will always have 
rich behaviors. I suspect that one can always find a neural network that solves 
a complicated problem if one knows what the answer is. But it is the evolution- 
ary optimization approach that provides a benchmark for comparison. 

A model that somewhat bridges the neural network and evolutionary opti- 
mization approaches would be to assume that the polychaete evolves "knowing" 
that there is a switching curve, as in Fig. 1, but not knowing what the curve is. 
Natural selection will then act on genotypes that code different switching curves. 
This approach is similar to that used in Mangel (1989); it does not, however, 
deal with the constraints of biological design for achieving the evolutionary 
optimal solution. 
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