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Suppose that there are at least three alternatives on which everyone has a strong 
preference ordering. If a social ordering is constructed by simple majority vote, 
this ordering may not have a maximal element. We can avoid this by restricting 
the preferences that individuals are allowed to have. Sen and Pattanaik [3] showed 
over 20 years ago that a necessary 1 and sufficient condition for the existence of  
a maximal element is that for each triple of  alternatives at least one of  the 
following three constraints is satisfied: 

Value restriction." There is some alternative, x, in the triple and some position, i 
( i=  1, 2 or 3), such that x is never in position i in anyone's ordering (restricted 
to the triple). 

Limited agreement: There are two alternatives, x, y, in the triple such that everyone 
orders x and y the same way. 

Extremal restriction: For  each x, z in the triple, if (in his restricted ordering) 
someone has x first and z last, then anyone else who puts z first must put x last. 

Given n alternatives, there are n! different strong preference orderings; these 
make up the set S. Associated with each set C of  n!/[(n-  3)!. 3!] constraints (one 
constraint for each triple) there are subsets T of S consisting only of  orderings 
that are "admissible", that satisfy all the constraints. Of course, if T is a set of  
admissible orderings, so is any subset of  T. Accordingly, we look for subsets that 
are large. For  any set C of  constraints we look for largest subsets T c of  S 
consisting only of  admissible orderings. (Because of extremal restriction, these 
largest TCs may not be unique.) Now suppose that we vary the set C of con- 
straints, looking for the set with the largest T c. We put the question: What set 
of  constraints maximizes the number of  admissible preference orderings and what 
is that number? 

1 See also Kelly [2]. 
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John Craven, in a forthcoming social choice textbook [1], conjectures that 
the maximum number is 2 n-~. He illustrates this with an example on four alter- 
natives, [a, b, c, d}. There are four different triples: [a, b, c}, [a, b, d}, [b, c, d}, and 
[a, e, d}. On each of  the first three triples, we impose the constraint: b is not 
ranked last in anyone's ordering (restricted to the triple). On the fourth triple, 
we impose the constraint: d is not ranked last in anyone's ordering (restricted to 
the t r ip le ) .Of the  24=4!  

abcd abdc acbd acdb 
baed badc bcad bcda 

cabd cadb cbad cbda 

dabc dacb dbac dbca 

possible strong orderings 

adbc adcb 
bdac bdca 

cdab cdba 
dcab dcba 

16 orderings (emboldened) violate at least one of these constraints. There remains 
a set of 8 = 2 4 - 1  orderings satisfying all the constraints. 

Our first result generalizes this example. On the set of n alternatives, 
[x I , x2,.. . ,  xn}, consider the following set of n ! / [ (n -  3)!. 3 !] constraints: for each 
k, 3 <_ k_< n, x k is not last in anyone's ordering restricted to a triple containing 
x k from Ix1, x2,.. . ,  xk}. Call this the "basic" set of constraints on Ix1, x2,... ,  xn}. 

Theorem. There are 2 ~-  1 admissible orderings f o r  the set o f  basic constraints. 

P r o o f  We use induction on the number of alternatives. For  our basis step, we 
take n = 3; the set of alternatives is ~xl, x2, x3}. There is one constraint: x~ does 
not appear last in anyone.'s order. Of the six possible orderings on three alter- 
natives, 4 = 23-1 satisfy this constraint: XlX3X2, X3XlX2, x2x3x  ~ and x3x2x  ~. 

Now suppose that the claim is true for n -  1. For  the nth alternative, x, ,  we 
introduce ( n -  1). ( n -  2)/2 new basic constraints: xn can not appear last in any 
triple in which it occurs. There are by the induction assumption 2 ~- 2 orderings 
of (x 1 , x 2 .. . . .  x~_ ~ } satisfying the basic constraints on that set. For  each of those 
orders on n -  1 alternatives, create two new orderings on n alternatives: one with 
x n as the new first and one with x n inserted as the new second. These 2.2 ~-2 
orderings satisfy all the basic constraints. It is straightforward to see that only 
these orderings satisfy all the constraints. [] 

R e m a r k  1. Clearly this is not the only set of  constraints with 2 n- ~ admissible 
orderings. Changing "last" to "first" in the definition of "basic" would create 
another. 

R e m a r k  2. The same argument shows that if for any n the bound of 2 ~- ~ could 
be exceeded, then it could be exceeded for any larger n. 

The rest of this paper shows that we have found a "local" maximum in the sense 
that if we change from the set of basic constraints to a new set that differs for 
only one triple, then the number of orderings satisfying all the constraints is no 
greater than 2 ~- 1. 

To illustrate this idea, let us return to Craven's example. When all four of 
Craven's basic constraints are imposed, there are exactly eight admissible order- 
ings: 

abdc badc bcda bdac bdca cbda dbac dbca . 

Suppose that we remove the constraint that "b is not last in [a, b, d}". Then two 
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of the orderings previously rejected satisfy all the remaining constraints: 

adbc and dabc 

Combining these two with the eight that had already satisfied the basic constraints 
we have an "augmented" set of ten orderings. Now the claim of  local maximi- 
zation says that imposing any new constraint on [a, b, d} will throw out at least 
two orderings from the augmented set, leaving us with at most eight orderings. 

Example 1. Suppose that we impose a new value restriction: b can not be second 
in anyone's ordering restricted to [a, b, d}. This would reject three orderings from 
the augmented set: 

abdc dbac dbca 

all from the original eight. 

Example 2. Suppose that we impose a limited agreement: everyone prefers b to 
d. This would reject four orderings from the augmented set: dbac and dbca from 
the original eight plus adbc and dabe that had been originally rejected. 

Example 3. Suppose that we impose extremal restriction on [a, b, d}. Arrange the 
ten orderings of  the augmented set according to the way [a, b, d} is ordered: 

1: abde 2: adbc 3: badc 
4: bcda cbda bdac bdca 5: dabc 6: dbca dbae 

With the extremal restriction constraint, choosing an ordering from any one of 
these groups to be admissible means rejecting all the orderings from two other 
groups. Suppose, for example, that we declare the ordering from group 3 to be 
admissible; it orders [a, b, d} as: bad. Extremal restriction leads us to reject or- 
derings with dba and adb, i.e., the orderings in groups 6 and 2. By rejecting at 
least two groups, each with at least one ordering, we leave at most 8 =24-1 
admissible. 

Part 1. To get started now on a more general analysis, let's break our discussion 
into two parts. In the first part we drop one of the last constraints, one of the 
constraints that x,  not be last in a triple in which it appears. We drop the 
constraint that x~ not be last in [x~, xj, x~}. 

Case 1. xn_ 1 is not one of  xi or x i. 

We wish to show that in this case dropping the constraint does not increase the 
number of  admissible orderings. Hence imposing one new constraint on this triple 
either leaves the number at 2 ~- ~ or reduces it. 

Imagine an ordering that violates the constraint that x, not be last in [xi, xj, xn} 
but satisfies all the rest of  the original constraints. But x n_ ~ is not last in 
[xi, xj, xn_ 1}; this implies that x. is also last in both [x~, x ._  1, xn} and Ix1, x ,_  1,  Xn}, 
contrary to our assumption that all other original constraints are satisfied. Thus 
there is no such ordering. 

Case 2. The triple is of the form [xi, x n_ 1, xn} 

If  we drop the one constraint that xn is not last in [xi, x n _ 1, xn} what orderings 
previously rejected are now admissible? Clearly, in such an ordering, x n must be 
last in [xi, x,_~, xn} but not last in any other triple. So the ordering must start 
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with initial segment 

x i x , _ l x , . . .  (A1) 
o r  

x n _ l X i X n . . .  (A2) 

Examining the constraints that x~_, must  not be last from any triple from 
[Xl,X 2 .... ,x,_2},  we see that x~_ 2 must either be x i or else x ,_  2 must be in the 
fourth position in the initial segment. There are then four possibilities: 

X n _ z X n _ l X n . . .  ( A l l )  

X n _  l X n _ 2 X n , . .  (A21) 

X i X n _ l X n X n _ 2 . . .  (A12) 

x , _  lXiXnX~_2... (A22) 

For  each of the initial segments of  types A11 and A21, the rest of the ordering 
will have to satisfy all the original basic constraints on [x~, x 2 .... , x ,_  3 }. There 
are by our theorem 2 ~-4 such orderings. So there are 2-2 n - 4 =  2 n- 3 orderings of  
types A11 and A21 previously rejected now admissible. 

In types A12 and A22, x ,_  3 must either be x~ or must be in the fifth position 
in the initial segment. There are then four possibilities: 

X n _ 3 X n _ l X n X n _ 2 . . .  (A121) 

x ~ _ l x , _ 3 x n x , _ 2 . . .  (A221) 

X i X  n -  l X i X n X n -  2 X n -  3 • . .  (A 122) 

X n __ l X i X n X n _ 2 X n _ 3 , . .  (A 222) 

For  types A 121 and A 221, we will get 2- 2 " -  s = 2 ~- 4 orderings previously rejected 
but now admissible. At the next stage, in A 122 and A222, x ,_  4 must either be 
x,. or must be in sixth place. Continuing, we find the total number of  orderings 
previously rejected but now admissible to be: 

N =  2n--3 + 2n--4 + . . .  q_ 2n--( i+ 1) = 2n--2 __ 2n--( i+ 1) 

These N orderings together with the original 2 n-  1 admissible orderings make up 
the augmented set of  orderings. 

When we now impose a new constraint on I x ,  x ,_  1, x,} and count the number 
of  orderings in the augmented set that violate the new constraint, the result may 
depend on the kind of new constraint imposed. So we must examine three cases. 

Case 1: Value restriction. 
imposed: 

1. x,  is not first; 

2. xn is not second; 

3. xn-1 is not first; 
4. xn_ ~ is not second; 

There are eight new value restrictions that can be 

5. x n_ i is not third; 
6. x; is not first; 
7. x,. is not second; 
8. xi is not third. 

For  each of these, we must calculate the number  of  orderings in the augmented 
set that violate the new constraint. Notice that in Example 1 it was possible to 
reject only orderings from the original admissible set; it was not necessary to 
look at the new augmenting orderings. In the general case, when imposing a new 
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value restriction constraint, we can work just with the smaller set of originally 
admissible orderings. 

Here we will not give details for all eight possibilities but work only with one 
that illustrates the kind of  analysis required. So suppose we consider imposing 
the new value restriction: x~ is not first. What orderings, previously admissible, 
must now be rejected? In such an ordering, x~ must be first in [x~, x~_ 1 '  X n } "  No 
other alternatives (except x ,_  1) can precede x,,. These constraints limit us to 
orderings with initial segments like: 

X i X n X n - -  1 ' ' "  (B 1) 

X i X n  - 1 Xn"  " " 

Either x , _  2 is xi, or xn_ 2 occurs fourth in the initial segment: 

X n - -  2 Y n X n  -- 1" ' "  

(B2) 

(Bll) 

x , , _ 2 x ~ _ l x ~ . . .  (B21) 

X i X n X n _ l X n _ 2 . . .  (B12) 

x i x  ~_ l xnxn _ 2. . . (B22) 

There are 2 ~-4 orderings of  type (B l l )  and another 2 n - 4  of  type (B21), for a 
total of  2 . 2 ~ - 4 = 2  "-3. Turning to (B12) and (B22), either x ,_  3 is x~, or xn_ 3 
occurs fifth in the initial segment: 

x , _ 3 x ,  x , _  lX,,_ 2. . .  (B121) 

x ,~_3x , ,_ lxnx , ,_2 . . .  (B22l) 

X l  JCnX n -- l X n - -  2 X n - -  3 • • .  (B 122) 

x # n -  lXnXn--2Xn--3"'" (B222) 

There are 2 n-5 orderings of each of  types (B 121) and (B221), for a total of 2 "-4. 
Continuing, we must now reject 

2 n - 3  + 2 n - 4 +  . . .  + 2~-( i+1)=N. 

Case 2." L i m i t e d  agreement.  On the triple [xi, x , _ l ,  Xn} there are six strong or- 
derings which a limited agreement constraint could fix: 

1. x i >  x~; 4. Xn_ 1 > X i ;  

2. x i >  xn_a; 5. x , >  xi; 

3. X ,_ l>X~;  6. x ~ > x ~ _  1. 

Again, instead of providing details for all six possibilitis, we illustrate by 
considering the case where we drop the original constraint that x, not be last on 
~x~, x n_ i, xn} in anyone's ordering and instead require: all orderings must satisfy 
x~ > x n. What orderings in the augmented set must now be rejected? Clearly to 
violate the new constraint xnmust be ahead of  x;. Among the orderings previously 
admissible, x,, must not  be last in ( x ~ , x , _ l , x , } .  These constraints limit us to 
orderings with initial segments like: 

x , _ l x , . . . x ~ . . .  (C1) 

xn xn-  1"-xi--- (C 2) 
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x ,  x i x , _ ~ . . .  (C3) 

Of  types (Cl)  and (C2), there are 2 - 2 " - 3 = 2 " - 2  > N. 

Case 3: Ex t remal  restriction. Recall that the N orderings that were excluded under 
the basic constraints but which were brought into the augmented set when we 
dropped the basic constraints "x,  is not last in [xi ,  x,_  1, x,}" had to be of  the 
form 

or 
x i x , -  1 x , . . .  (A 1) 

x , _  l x i xn . . .  (A2) 

Hal f  of  the N were of  type (A1) and half of  type (A2). I f  we leave in even one 
ordering of type (A1), we must reject N/2  ordering of the form 

XnXiXn_l . . . .  (N1) 

Hence we reject N/2  of the form (A1) or N/2  of the form (N1). Similarly, we 
must reject N/2  orderings of  the form (A2) or N/2  of the form 

x , x ~ _ l x i . . .  (N1) 

In any case, we reject at least N altogether. 

Part  2. Now we must remember that we have so far, in Part  1, only dealt with 
the case where we dropped one of the last constraints, one of  the constraints that 
x, not be last in a triple in which it appears. Suppose that instead that we drop 
the constraint that X,_l in not last in some triple from [x~, x 2 . . . . .  Xn_2, Xn_l} 
and replace it by some other constraint on this same triple. By the kind of analysis 
we just completed, there are T__ 2 " -2  orderings on Ix1, x2,. . . ,  x ,_2,  x ,_  ~ } sat- 
isfying all the constraints on triples from this set. So we must be rejecting 
( n -  1 ) ! -  T orderings. For  each of these, any of the n possible insertions of  x n 
still must be rejected. This shows the rejection already of n [ ( n -  1 ) ! -  T] orderings 
on [ x l , x 2 , . . . , X n _ l , X , , } .  In addition we must now reject any of  the previous 
accepted T that have x,  inserted in positions 3, 4 .... , n. That  is, of  the n places 
among the previous n - 1 alternatives that  we could insert x~, 2 are OK, n - 2 
lead to rejection. Altogether, we must reject at least 

n ( ( n -  1)! - T) + ( n -  2) (T) = n !  - 2 T > n ! -  2-2 " - 2 =  n! - 2"-1 

so at most  2"-~ may remain. So the result for a constraint on x,  can be pushed 
back to a constraint on x ,_  ~. Using this argument as a pattern, we can push the 
result back to any basic constraint. 

There remain two obvious unsolved problems. The first is to extend our local 
result to Craven's global claim. The second is to work with weak as well as strong 
orders (but this is probably very difficult). 
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