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Abstract. It  is provably difficult (NP-complete) to determine whether a given 
point can be defeated in a majority-rule spatial voting game. Nevertheless, one 
can easily generate a point with the property that if any point cannot be defeated, 
then this point cannot be defeated. Our results suggest that majority-rule equi- 
librium can exist as a purely practical matter: when the number of  voters and 
the dimension of  the policy space are both large, it can be too difficult to find 
an alternative to defeat the status quo. It  is also computationally difficult to 
determine the radius of  the yolk or the Nakamura  number  of  a weighted voting 
game. 

1. Introduction 

Majority rule equilibrium exists when there is a candidate who is undominated; 
that is, he cannot be defeated by any other candidate in a pairwise election 1. 
Once in place, such a candidate can never be voted out of  office. It  need not be 
that an undominated candidate exists. For  spatial voting games, when there is 
no undominated point the entire policy space collapses into a voting cycle and 
the process of  social choice is vulnerable to manipulation [14, 20]. Accordingly, 
one of  the most  studied problems in the spatial theory of voting is to give simple 
conditions for the existence of  a undominated point. (See [6, 7] for surveys.) 

We show that it is computationally difficult - more precisely, NP-complete 
[9] - to determine whether a given point can be defeated in a spatial voting game. 

* The first author was supported in part by a Presidential Young Investigator Award from 
the National Science Foundation (ECS-8351313) and by the Office of Naval Research (N00014- 
85-K-0147). The third author was supported in part by a Presendential Young Investigator 
Award from the National Science Foundation (ECS-8451032). 

We are grateful to Norman Schofield and an anonymous referee for many helpful sugges- 
tions. 
i Alternative terminology: core point, Condorcet candidate. 
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This provides strong theoretical evidence that there are no simple conditions by 
which to check that a given point is undominated. Indeed, assuming NP:¢ co- 
NP as is widely thought to hold [9], all such conditions must require space that 
increases exponentially in the size of the problem (the number of voters and the 
dimension of the policy space). Furthermore, this difficulty is inherent in even 
the simplest model of spatial voting, in which each voter is assumed to have 
Euclidean preferences, and so prefers candidates that are closer to his ideal point. 
A corollary of this result is that it is computationally difficult to determine the 
radius of the yolk [8, 13]. 

Our results are consistent with known conditions for the existence of an 
undominated point, all of which require computation that grows rapidly in the 
size of the problem. The definition of an undominated point cannot be tested 
directly since such a point must not be defeated by any conceivable alternative, 
of which there are an infinite number. Local geometric conditions for the existence 
of an undominated point were given by Plott [18]; however these conditions are 
sufficient but not necessary when the ideal points of some voters are coincident 
[6]. Conditions that are both necessary and sufficient were given by Slutsky [24], 
but these are not directly testable since they are not finite conditions. Subse- 
quently, Davis, DeGroot, and Hinich [4] gave simpler conditions that are both 
necessary and sufficient for the existence of an undominated point. We state them 
in detail because we will use them to establish our results. 

A point v0 is undominated if and only if any hyperplane containing v0 divides 
the ideal points of the voters such that at least one-half lie on either closed 
side of the hyperplane. 

As suggested by the geometry of this condition, the authors call a hyperplane 
which so divides policy space a median hyperplane and an undominated point a 
total median. 

The total median condition is pleasing because it is purely geometrical. How- 
ever, like the others, the total median condition is not directly testable: it requires 
that a property hold for every hyperplane containing v0. 

Hoyer and Mayer [10] suggested a natural generalization of the spatial model 
of voting that allows each voter to have a separate utility function with elliptical 
indifference contours. They also defind a "generalized total median", showed it 
to be undominated when it exists, and gave necessary and sufficient conditions 
for its existence. Again, as stated, these conditions are not directly testable. 

The final word in this line of inquiry may have been given by McKelvey and 
Schofield, who established very general conditions for social equilibrium under 
arbitrary voting rules [15]. These conditions are satisfying because they are ex- 
plicitly finite and so are directly testable. However, the work required to test 
these conditions increases exponentially in the number of voters since one must 
consider all possible coalitions. 

Our results show that exponential work is apparently necessary, at least in 
the worst-case, to prove that a given point is undominated. This suggests that it 
can be impractical to decide whether majority-rule equilibrium holds - except, 
of course, when the instances are sufficiently small or specially structured. For 
the special case in which the number of voters is large and the dimension of the 
policy space is small, we observe that an algorithm due to Johnson and Preparata 
[11] gives a new test for equilibrium that, even though requiring exponential time 
in the worst case, is nevertheless considerably more practical than any other 
known. 
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interestingly, it is easier in a sense to search for an undominated point than 
it is to test whether a particular point is undominated. Specifically, we give a fast 
procedure that produces a point with the following property: if any point is an 
undominated point, then this point is. Our algorithm uses specialized techniques 
of computational geometry to achieve remarkable speed. If  the election is mod- 
elled by the ideal points of n voters in E d, then our algorithm requires only O (dn) 
computational steps. This is within a constant factor of the effort necessary simply 
to read the data. 

Continuing the theme of discovering what might and might not be computable 
in practice, we also show that even conditions that are merely sufficient (but not 
necessary) for equilibrium, if very general, can be difficult to check. For example, 
a sufficient condition for majority-rule equilibrium in a weighted voting game is 
that the "Nakamura number" be sufficiently large; however, we show that it is 
NP-hard to determine the Nakamura number. 

At the very least, our results say that, assuming N P . c o - N P ,  any computa- 
tional procedure to check for majority rule equilibrium must be essentially an 
enumeration over an exponentially large set. It might be that such computational 
difficulties introduce new tactics into spatial voting games since players might 
not have sufficient time to perform the computation necessary to recognize whether 
a given point can be defeated. (Similar work has appeared in [1, 2, 3].) 

Two notes on terminology: since "undominated point" and "total median" 
mean the same thing, we use the former term when emphasizing social choice 
issues and the latter term when emphasizing geometrical issues. Also, we use the 
"Big O" notation of computer science to indicate the asymptotic rate of growth 
of functions: we write that function f (n) is "O (g (n))" when there exist integers 
n o and K such that f (n) <= Kg (n) for all n >__ n o. Thus for large n, the function g 
will not underestimate f by more than a constant factor. See [12] for more details. 

2. Computational complexity 

For convenience of the reader we briefly and informally describe some terms 
from the theory of computational complexity. The  interested reader should con- 
sult [9] for more information. 

NP is the class of "yes/no" problems for which, if the answer to an instance 
is "yes", then there exists a polynomial-time proof of this fact. Thus once one 
has the proof in hand, thereafter one can quickly convince others, even though 
to find the proof originally might have required a very long time. For example, 
the question "Does there exist a point that can defeat x?" is in NP since a "yes" 
answer can be quickly proved by displaying a winning alternative and counting 
votes to verify that it beats x. (In this case, finding the proof means finding a 
winning alternative, which might be hard even if one exists.) NP-complete prob- 
lems are those that are members of NP and, moreover, have the property that if 
there exists a polynomial-time algorithm to solve any one of them, then all 
problems in NP could be solved in polynomial time. It is thought that no NP- 
complete problem admits of polynomial-time solution. Thus the NP-complete 
problems are in a sense the most difficult problems in NP. 

The class co-NP is complementary to NP; it is the class of problems for which 
a "no" answer can always be proved in polynomial time. For example, the ques- 
tion "Is x undominated?" is in co-NP. Co-NP-completeness is defined similarly 
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to NP-completeness and has the same practical import as the more familiar NP- 
completeness. A problem that is co-NP-complete is NP-hard, and so is at least 
as hard as the NP-complete problems [9]. 

Finally, class P consists of those problems for which either a "yes" or a "no" 
answer can be proved in polynomial time. 

It is widely believed that the problems of P, the NP-complete problems, and 
the co-NP-complete problems are all distinct, although this is not known for 
sure. At any rate, much theoretical evidence and computational experience con- 
firms that for problems in P the computational effort to solve does not grow too 
quickly as the size of the instance increases. In short, problems in P can be solved 
in reasonable amounts of time. On the other hand, problems that are NP-or co- 
NP-complete are impractical to solve unless the instances are small or specially 
structured; the computational effort increases exponentially in the size of the 
problem, whatever the solution procedure. It is thought that this difficulty is 
inherent. 

3. Is there an undominated point? 

Ideally we would like to either find an undominated point or else prove that none 
exists. We partition this task into two simpler tasks: find a promising point; and 
test whether it is undominated. We shall show that finding is significantly easier 
than testing. 

If  we are given a set V of ideal points of voters in E d, it is not obvious even 
where to look for a point that might be undominated. In the following we give 
an algorithm that will quickly generate a point with the property that if any point 
is undominated, then this point is. We refer to such a point as a best bet. The 
algorithm hunts for a "best bet" by constructing a special kind of hyperplane 
that must contain an undominated point if one exists. 

Throughout  the paper we make the allowance that the points of V need not 
be distinct, since several voters might have ideal points that are coincident. Also, 
in the remainder of  this section we assume that the points of  V span E d. This is 
a reasonable restriction, since if the points do not span E d, then in a sense some 
dimensions of policy space are superfluous since they are unnessary to distinguish 
among the voters. 

Definition 1. A median hyperplane is unique for a set of  points V if there exist 
no other median hyperplane s with the same slope. 

Lemma 1. I f  H is a unique median hyperplane for V and i f  v o is an undominated 
point, then v o lies on H. 

Proof  If  v 0 does not lie on H, then the hyperplane passing through v o parallel 
to H is another median hyperplane, contradicting the uniqueness of  H. [] 

Our strategy to find a "best bet" candidate will be to construct sufficiently 
many unique median hyperplanes that they jointly determine a candidate point. 
It is sufficient for our purposes - and essential to the speed of our algorithm - 
to do this in only two dimensions. Therefore we begin by restricting the problem 
to d =  2. In E z we will construct two unique median hyperplanes, which by 
definition must intersect. By Lemma 1 the point of their intersection must be an 
undominated point if any point is undominated. 
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In our statement of the algorithm, Steps 1 and 2 contain the essential ideas; 
Step 3 handles "degenerate" cases, including when n is odd. 

Algorithm GENERATE-POINT (2D): to produce a "best bet" candidate for undom- 
inated point 

Step 1. Find//1,  the leftmost vertical median hyperplane, and/ /2 the rightmost 
vertical median hyperplane. 

Step 2. If//1 :~//2 then there can be no points of V strictly between/'/1 and 1t2, 
so the hyperplane (1/2)/-/1 + (1/2)H 2 strictly separates V into two disjoint sets, V~ 
on the left and V2 on the right. Construct the two hyperplanes that separate V~ 
and V 2 and are tangent to both V~ and V 2 (the "transverse tangents"). Return 
the intersection of these two hyperplanes as the candidate point. 

Step 3. If/ /1 = H 2, find the topmost and bottommost horizontal median hyper- 
planes. 

3.1 If they are distinct, then perform Step 2 with them as/-/1 and H2; 

3.2 Otherwise, return the intersection of the (unique) vertical median hyperplane 
and the (unique) horizontal median hyperplane. 

Figures 1 and 2 illustrate the constructions of Steps 1 and 2. 

I/1 ½ 
o 

Fig. 1. The leftmost and rightmost median hy- 
perplanes partition V 

o 

• • 0 0 

V2 

Fig. 2. The intersection of the transverse tan- 
gents to V 1 and V 2 is the "best bet" for undom- 
inated point 



188 J.J. Bartholdi, III et al. 

Theorem 1. Algorithm GENERATE-POINT (2D)produces a point that is undominated 
i f  any point is. 

Proof The algorithm can halt in either of  two places. It can halt after Step 3.2 
(as when n is odd), in which case it produces a point that satisfies the theorem. 
Alternatively, it can halt after Step 2 (as when n is even). In the latter case each 
of the hyperplanes that is a transverse tangent to V~ and V 2 is a unique median 
hyperplane. This follows since each of  V 1 and V2 must contain exactly n/2 points 
so that each transverse tangent is a median hyperplane; and each is a unique 
median hyperplane because any distinct hyperplane that is parallel must have 
less than n/2 points strictly to one side. Therefore any undominated point must 
lie on the intersection of  the transverse tangents. In addition, there must be two 
distinct transverse tangents since the points of V span the space. Therefore the 
transverse tangents must intersect at a unique point. [] 

Theorem 2. Algorithm GENERATE-POINT (2D) can be implemented to run in time 
o (n). 

Proof The leftmost and rightmost vertical median hyperplanes can be found in 
time O (n) using fast median-finding techniques such as described in [12]. 

The transverse tangents to V~ and V 2 can be constructed by brute force in 
O (n 2) time by considering the line segments formed by all pairs of  points, one 
in V 1 and the other in V2; the line segments of  greatest and smallest angle deter- 
mine the desired hyperplanes. However there is a significantly faster method based 
on linear programming. It requires only O (n) time. 

To find a hyperplane with boundary y -- m x +  b that separates V 1 and V 2 and 
that is tangent to both V 1 and V2, consider the following linear program, with 
variables m and b and with a constraint for each point (x, y) e V. 

m a x  m 

Yi <---- mx, + b (x,, Yi) ~ V1 ; 

ys>mxj+b (xs, yj)e V2 ; 

The constraints require the hyperplane with boundary y = m x ÷  b to separate V 1 
and V 2, and the objective function seeks such a hyperplane of largest slope. 

Note that the linear program is feasible since the hyperplane - (1/2)H~- 
(1/2)H 2 can be perturbed to make the slope finite, which gives values of m and 
b that satisfy the constraints. Furthermore, the linear program must have a finite 
solution since the constraints imply that for any (x;, y ; ) e  V, and (xj, y j ) e  112, it 
must hold that 

y j -  y,>= (mxj + b) - ( rex , -  b) --- m ( x j -  xi) . 

But x s -  x i > 0 since by construction all the points of V~ are strictly to the left of 
the points of  V 2. Therefore we have that 

m<=YJ--Yi 
X j - -  X i 

and so the linear program is bounded from above. Thus the linear program has 
a feasible, finite optimum solution, which will determine one of  the transverse 
tangents. Similarly we can pose the problem of  finding the other transverse 
tangent as the following linear program. 
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rain m 

Yi>=mxi+b (x i,yi)~ V 1 ; 
yj<=mxj+b (xj, yy)~ V 2 . 

Furthermore, these two linear programs will have distinct solutions since the 
points of V span the space. Since each of these linear programs is restricted to 
two dimensions, we can solve them in time O (n) by the specialized techniques 
of Megiddo [5, 16]. 

Finally, a candidate for undominated point can be found as the intersection 
of two hyperplanes in two dimensions within time O(1). [] 

Now we are ready to give an algorithm to produce a "best bet" point for the 
general problem in d dimensions. 

Algorithm GENERATE-POINT 
Step 1. For i = 1, 3, 5 .... , d -  1, project the points of V onto the plane determined 
by the ith and i + 1 st coordinates. The projected points must span the plane since 
the points of Vspan E d. Therefore we can determine the/ th and i + 1st coordinates 
of the "best bet" point by calling Algorithm GENERATE-POINT (2D) on the pro- 
jected points. (Note that if d is odd, Algorithm GENERATE-POINT (2D) is called 
for each i = 1, 3, 5 .... , d -  2, d -  !.) 

Theorem 3. Algorithm GENERATE-POINT runs in time 0 (dn). 

Proof At each of Fd/2q iterations, the algorithm constructs a projection of V 
onto two dimensions, which requires O(n) time, and then calls algorithm 
GENERATE-POINT (2D), which also requires O (n) time. [] 

Finally, from the mechanics of the algorithm we have the following obser- 
vation. 

Corollary 1 .1fa l l  the points of  V have rational coordinates, then if  there exists an 
undominated point, there exists one with rational coordinates. 

Proof If  the number of voters is odd, then the point generated by our algorithm 
is identical to one of the points of V and so has rational coordinates. If  the 
number of voters is even, then each coordinate is part of the solution of a linear 
program with rational data and is therefore rational. [] 

4. Is this point undominated? 

4.1. The difficulty of  knowing 

While we are interested in recognizing an undominated point, it will be convenient 
to study the complementary problem of recognizing when a point is dominated. 
We formalize the complementary problem according to the usual conventions of 
complexity theory [9]. 

Recognizing A Dominated Point. 

Given: A set V of the ideal points of n voters in E a and an additional, distinguished 
point v0, where the coordinates of all points are rational. 

Question: Is there any point in E a with rational coordinates that can defeat v 0 in 
a majority-rule election? 
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If  there exists a polynomial-time algorithm to recognize an undominated 
point, then we could use it to recognize when a point is dominated. However the 
following theorem shows that it is highly unlikely that there exists a polynomial- 
time algorithm to answer Recognizing A Dominated Point. 

Theorem 4. Recognizing A Dominated Point is NP-complete 2. 

Proof This problem is a member of the class NP since an answer of "yes" can 
be proven in polynomial time by giving an alternative point and confirming that 
it will defeat v o. 

To show that the problem is complete for NP, we show a polynomial-time 
reduction between it and the following problem that is known to be NP-complete 
[9]. 

Open Hemisphere. 

Given: A finite set V of d-tuples of rational numbers, and a positive integer 
x<=lvl. 
Question." Is there a d-tuple y of rational numbers such that v.y > 0 for at least 
K d-tuples v ~ V? 

Now, as is traditional in complexity theory, we show how, given any instance 
of  Open Hemisphere, one can, in polynomial-time, contrive an instance of Re- 
cognizing Dominated Point such that the answer to the former is "yes" if and 
only if the answer to the latter is "yes". Thus each problem is "as hard as" the 
other; and Open Hemisphere is known to be NP-complete [9, 11]. Furthermore, 
Open Hemisphere remains NP-complete even when K is restricted to be greater 
than I VI/2. (This follows from the straightforward observation that the answer 
to Open Hemisphere is always "yes" when K__< F I VI/2],. ) 

Given an instance of Open Hemisphere, interpret the points of  V as the ideal 
points of  voters. In addition, augment the election by adding the ideal points of 
p additional voters at the origin, where p is chosen so that n = I VI +P  is odd 
and K =  F( I VI +p)/2] .  (This is always possible since K > I VI/2.) Let U be the 
set of ideal points of  the p additional voters. The voters of  U prefer the origin 
to any alternative. 

Assume that in the contrived election the origin can be defeated by some 
other point Yo. Let V' ~ V be the voters who prefer Yo to the origin; and for each 
v ~ V', let B (v) be the open ball centered at v whose boundary contains the 
origin. Since each v ~ V' prefers Yo to the origin, it must be that Yo ~ nv  ~ v. B (v). 
Thus n v ~ v. B (v) is non-empty and open, and so there exists y ~ n~ ~ v. B (v) with 
rational coordinates. Furthermore, since y ~ B (v) for each v e V', it must be that 
v .y  > 0 for the v ~ V', of  which there are at least K. Thus if the answer to 
Recognizing A Dominated Point is "yes", then so is the answer to Open Hemi- 
sphere. 

Now assume that there exists a point y with rational coordinates such that 
for at least K elements v e V it holds that v .y  > 0. Let V' S V be the points for 
which this is true. For  each B (v) there is an e~ such that the point e,y lies entirely 
within B (v). Then all of the points )~y, where 0 < 2 =< (min~ ~ v, e) must lie within 
B (v) for each v ~ V'.  Let Yo be such a point with rational coordinates. Then each 
voter in V' prefers Y0 to the origin, which is sufficient for Y0 to defeat the origin 
in a pairwise election. [] 

2 In fact this theorem is implicit in [11]; however the result seems unknown in the social choice 
literature. 
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That Recognizing A Dominated Point is in NP means that a "yes" answer can 
always be established by a short (polynomial-time) proof. One can quickly prove 
that a point is dominated by simply displaying an alternative and tallying the 
votes. However there is no apparent way by which a "no" answer can always be 
quickly proved. Indeed, unless NP = co-NP there is in general no succinct dem- 
onstration that a point is undominated [9]. Thus even if one knows that a point 
is undominated, it might be impractical to convince anyone else. 

Now we formalize the question of whether majority-rule equilibrium holds. 

Majority-Rule Equilibrium. 

Given: A set V of the ideal points of n voters in E d, where the coordinates of all 
points are rational. 

Question: Is there any point in E a that is undominated? 
The following result is strong theoretical evidence that it is computationally 

difficult to determine whether majority-rule equilibrium pertains. 

Corollary 2. Majority-Rule Equilibrium is eo-NP-complete. 

Proof The problem is in class co-NP since an answer of "no" can be verified in 
polynomial time by the following procedure. Use algorithm GENERATE-POINT 
to produce a "best-bet" point v 0 and then exhibit a point that defeats v 0. Com- 
plexity follows from Theorem 4. [] 

A second corollary shows that it is formally difficult to determine the radius 
of the "yolk" of a spatial voting game. This conclusion is consistent with the 
empirical observations of [13], wherein it is remarked that "even for a small 
committee determination of the location and size of the yolk is a formidable 
task". 

Corollary 3. It is NP-hard to determine the radius of the yolk. 

This follows since if there were a polymonial-time algorithm to determine the 
radius of the yolk, then one could test for equilibrium in guaranteed polynomial 
time by checking whether the radius is zero. 

4.2. A fast test for a special case 

While Recognizing A Dominated Point is NP-complete, nevertheless special cases 
of this question can always be answered quickly. For example, we now give a 
polynomial-time algorithm for the special case in which v o ~ V. The algorithm is 
based on the fact that a point v 0 is a total median when the points of V are 
arranged about v 0 according to a weak sort of radial symmetry in which angle 
but not distance matters. This idea is well-known [7, 18]. However we formalize 
it as a computational procedure that gives conditions that are both necessary 
and sufficient: a point that is distinct from the ideal points of all the voters is 
undominated if and only if the following algorithm says it is. 

The basic idea of the algorithm is to match points that correspond under the 
necessary symmetry. Without loss of generality, let v 0 be the origin. 

Algorithm. TEST: to determine whether v o is a total median of V 

Step O. Compute the polar coordinates of all points of V. 
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Step 1. For each point in V with coordinates (r, 01 .. . . .  0d), if there exists some 
other point in V with polar coordinates (r ' ,  01 + zc,..., Oa + tO, then match these 
two points and remove them from further consideration. 

Step 2. If  any point is unmatched, return FALSE; otherwise return TRUE. 

Lemma 2. The point v o ~ V is a total median if  and only if  identified as such by 
Algorithm TEST. 

Proof Sufficiency is obvious. To argue necessity, consider an instance for which 
Algorithm TEST returns FALSE. Then there must exist some unmatched point 
v that is distinct from Vo; let l be the line determined by Vo and v. There can be 
no other unmatched points on l opposite v, since otherwise such a point could 
be paired with v. 

Project all of the points onto a 2-dimensional plane chosen so that no projected 
point lies on the projection of I unless the original point lies on l. (This is always 
possible since there are only finitely many points.) Denote the projection of Vo 
by P (Vo), the projection of l by P (l), and so on. Let V 1 and V 2 be the points 
strictly to each side of P(l), and assume without loss of generality that 
I VII > I V21. Rotate P (l) slightly about P (Vo) so that P (v) is to the same side 
of P (l) as the points of V~; then P (l) determines a hyperplane for which one 
side - the side opposite that on which P (v) lies - now contains strictly less than 
I V[/2 points, so that P(vo) is not a total median for the points of P(V). But 

then v 0 cannot be a total median for the points of V. [] 

Lemma 3. Algorithm TEST halts within 0 (dn log n) steps. 

Proof The points can be sorted lexicographically on the angles of their polar 
coordinates within O (dn log n) steps. Now within the sorted list the points can 
be matched within O (dn log n) steps using binary search [12]. [] 

Since the Plott conditions are necessary for v 0 ~ V when I VI = n is odd and 
Vo is distinct from all other points of V, algorithm TEST applies in this case too. 
Thus the difficult instances of recognizing a total median must be confined to 
the problem in which v o e Vand, in addition, either n is odd or else v 0 is coincident 
with some other point of V. 

Algorithm TEST quickly recognizes an undominated point when equilibrium 
is unstable (that is, when small perturbations in the locations of the voter ideal 
points can destroy the equilibrium [22]). This reflects the severity of the Plott 
conditions: their restrictiveness supports easy testing, but this restrictiveness is 
naturally "brittle". We do not know whether all unstable equilibria can be quickly 
recognized nor whether there are interesting special cases in which stable equi- 
libria can be easily recognized. Nevertheless, it is tempting to think that, at least 
in an informal sense, it is easier to recognize unstable equilibria because they are 
so much more highly constrained. 

4.3. Computing the Nakamura number 

If  it is suspected that an undominated point exists, one might check sufficient 
conditions and hope they confirm the fact. It seems natural to apply the most 
general possible conditions sufficient to guarantee an undominated point since 
the test is more likely to give information. However, we will demonstrate a 
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previously unsuspected tradeoff here: the more general (and therefore more pow- 
erful) the sufficient conditions, the more difficult they can be to invoke. 

Consider the Nakamura number, which is defined for a more general model 
than we have considered heretofore: In a weighted voting game voter i has a 
weight Pi, and there is a quorum rule q such that a candidate is elected only if 
the sum of  the weights of  the voters who support him is at least q. Let (q;Pl,.-. ,Pn) 
denote an instance of  a weighted voting game with n voters. For  a weighted 
voting game the Nakamura number N is the cardinality of  the smallest set of 
winning coalitions with the property that the intersection of  its members is empty 
[17, 21]. An interesting feature of the Nakamura number is that if N=> d +  2, where 
d is the dimension of  the policy space, then there exists an undominated point 
[17, 21]. (The converse is not true.) Thus, in a sense, the higher the Nakamura 
number of a weighted voting game, the more likely there is to be an undominated 
point. However, we show that it is probably not practical to depend on the 
Nakamura number to signal equilibrium; it is NP-hard to determine whether the 
Nakamura number is large enough. 

We formalize the problem of  computing the Nakamura number as follows. 

Nakamura Number. 

Given." A weighted voting game (q;Pl , - . . ,P,)  and an integer m >_ 3. 

Question." Is the Nakamura number N > m? 

We establish the complexity of Nakamura Number somewhat indirectly, by 
showing that the complementary problem is formally difficult. In the comple- 
mentary version of the problem we ask whether the Nakamura number is small. 

Complementary Nakamura Number. 

Given." A weighted voting game (q;Pl,. . . ,Pn) and an integer m_> 3. 

Question." Is the Nakamura number N=< m? 

Theorem 5. Complementary Nakamura Number is NP-complete in the strong sense. 3 

Proof  Complementary Nakamura Number is in NP since an answer of  "yes" 
can be verified in polynomial time by exhibiting a set of  no more than m coalitions 
and checking that each is winning and that no voter is a member of all the 
coalitions. Now we show that Complementary Nakamura Number is "as hard 
as" the following problem that is known to be NP-complete in the strong sense 
[9]. 

3-Partition. Given." A positive integer B, and a set of  positive integers 
3m 

~Pl,P2 . . . . .  P3m} such  tha t  ~,pi=mB. 
i=l  

Question." Can I = [ 1 , 2  .... ,3m} be partitioned into m disjoint sets 
1 m [ j}~= 1 so that ~, Pi = B for each 1 __<j < m? 

3 This means that the problem remains difficult even when all numbers q,p~ are restricted to 
be no larger than some a priori bound. Thus the inherent difficulty can be attributed to the 
structure of the problem and not just the size of the numbers (voting weights and quorum rule) 
[9]. 
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Given an instance of  3-Partition we contrive a voting problem that we will 
show to be equivalent: Let there be n = 4m voters, with weights defined as follows. 
First there is a group of  3m "weak" voters, with weights Pi, i = 1,. . . ,  3m. To this 
we add a group of  m "strong" voters, with weights P3m+~ =P3,n+2 = "'" =P4m 
= 2mB. Finally, we set the quorum rule q = 2 ( m -  1)roB + ( m -  1)B. Notice that 
the quorum rule is such that a coalition of  all the strong voters will win, but any 
set of m -  1 strong voters needs additional support from the weak voters. Fur- 
thermore, no coalition containing fewer than m - 1 of the strong voters can win. 

We now argue that if the Nakamura number N_< m for this election then 
there exists a 3-partition of  I. Denote a coalition by the set of indices of the voters 
in that coalition. Note that if C is a winning coalition, then i¢ C for at most one 
strong voter i > 3m. Thus any collection of winning coalitions with empty in- 
tersection must include m coalitions, each one of  which is missing exactly one 
distinct strong voter. Thus if N=< m, in fact N- -m.  Without loss of generality let 
these m coalitions C1, C2,..., C m be indexed so that (3m + j ) ¢  Cj but (3m + i) ~ Cj 
for i * j  and i , j  = 1,2,. . . ,  m. Let Tj= Csn (1, 2, . . . ,  3m} be the set of indices of  the 
weak voters of the coalition Cj (j = 1, 2 .... , m). Since Cj is a winning coalition, 
~, p ; >  q, which implies that for all j = 1, 2 .... , m, 

iECj 

~, p~>=(rn-- I)B . (1) 
i~7 )  

However, since ~ Tj=0,  for each i, 1 <_i<_rn, there is some Tj such that i¢ Tj. 
j = l  

In other words, no weak voter can be in all coalitions. Thus, since each weak 
3m 

voter can be counted at most m -  1 times and since ~, Pi = roB, 
i ~ l  

2 ~ , p i ~ m ( m - - 1 )  B "  (2) 
j = l  i~7~ 

Now summing expression 1 over j = 1, 2 .. . . .  m gives 

~, ~ , P i ~ m ( m - - l ) B ,  
j = l  i e T j  

which, combined with expression 2 implies that expression 1 holds with equality. 
Thus, since each Pi > 0, for each i ~ I there exists a unique j, 1 < j  < m, such that 
iCTj.. 

Le t / j  = I -  Tj, the indices of the weak voters not in Tj. By the foregoing, the 
/j., 1 _<j=< m, form a partition of L Furthermore, since expression 1 holds with 
equality; and since by definition o f / j ,  ~. Pi + ~, Pi = mB, we have that for each 
l <=j<=m i ~  i~rs 

~,, p i = B  . 
i e  Ij 

Thus I~, 12 .... , I m form a 3-partition o f / ,  so that if N < m then the answer to the 
instance of 3-Partition is "yes". 

Now suppose that there exists a 3-partition I~, I2,..., I m o f / .  Reversing the 
development above, we construct Tj = I - / s  and Cj = [3m + i I i = 1, 2 . . . . .  m; 
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i . j } u T j ,  for j = l , 2 , . . . , m .  Then 

Cj = 0, so it must be that N <  m. 
j = l  

C 1, C2, . . . ,  C m are winning coalitions 

[] 
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and 

Finally we conclude that it is computationally difficult to decide whether the 
Nakamura number is large. 

Corollary 4. Nakamura Number is co-NP-complete in the strong sense. 

Thus the Nakamura number, while interesting, might not be practically com- 
putable and so of no help in deciding whether equilibrium pertains. 

5. Yes, but is there an undominated point? 

In summary, the practical hunt for an undominated point might proceed as 
follows. 

Step 1. Call algorithm GENERATE-POINT to quickly generate a "best bet" y. 

Step 2. If  y¢  V, then call algorithm TEST tO determine quickly whether y is a 
dominant point. 

Step 3. If  y ~ V, then apparently one must use an exponential-time algorithm. 
This step will be computationally infeasible for all but small or specially structured 
instances. 

While Step 3 could be implemented as the algorithm implicit in [15], there is 
a potentially serious difficulty. These conditions apply to more general preferences 
than Euclidean; the price to be paid for such generality is that the algorithm 
requires work that increases exponentially in the number of voters. This can 
be impractical when the number of voters is large. However, when d is small 
(2 or 3), an attractive alternative is to realize Step 3 by straightforward adaptation 
of the algorithm of [1 l], which requires O (n a- ~ log n) steps. This would be quite 
practical, even for large n. In addition, the algorithm of [11] can be extended in 
a straightforward manner to determine whether there exists an undominated point 
in a weighted voting game with Euclidean preferences and arbitrary suprama- 
joritarian voting rule. 

6. Conclusions 

It is a desirable feature of a model, like the spatial theory of voting, that it not 
only enlarge our understanding by supporting powerful characterizations, but 
that it allow us to answer operational questions, like "Is there an undominated 
point?" This was suggested by Hoyer and Mayer [10], who wrote 

At least one area for concern in attempting to fit a mathematical model to a 
sociopolitical environment and then generalizing the model is whether or not 
you eventually put yourself out of business. Certainly our principal interest 
is locating winning political strategies. If . . .we significantly limit our ability 
to locate optimal strategies, then our effort is, for the most part, wasted. 
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We have shown that it is NP-complete - hence computationally difficult in the 
worst-case - to recognize a winning (actually, non-losing) strategy. It is an em- 
pirical question whether the formal complexity of recognizing majority-rule equi- 
librium "significantly limits our ability to locate optimal strategies". Experience 
in other fields such as operations research and computer science confirms that 
NP-complete problems quickly become impractically time-consuming to solve as 
the size of the problem grows. It is widely thought that this difficulty is inherent, 
so that no conceivable algorithm can guarantee fast solutions for theses problems 
E9]. 

Of course it might be that difficult instances of the problem are rare. Indeed 
it has often been observed in the social choice literature that undominated points 
are highly unlikely. However, this sense is a casual interpretation of a careful 
theorem such as that of Rubinstein, who showed that, relative to a certain to- 
pology, the set of voter profiles for which an undominated point exists is a 
"nowhere dense set" [19]. Whether an undominated point exists in practice de- 
pends on the process by which the ideal points of the voters are generated. For 
example, if ideal points are generated by sampling a uniform distribution over 
some bounded region of policy space, then indeed dominant points will be rare. 
On the other hand, consider an alternative process that generates ideal points by 
sampling a uniform distribution to determine a position in policy space and then 
sampling another distribution to determine how many voters have their ideal 
points at that position. Such a process can be made to produce voter profiles for 
which dominant points (and perhaps difficult recognition problems) are quite 
likely. 

In any event our results have interesting theoretical implications for voting 
theory. For example, all algorithms to construct voting cycles [14, 20] must require 
exponential work in the worst-case and so might be impractical. (If any such 
algorithm could be guaranteed to run in polynomial-time, then one could use it 
to test quickly whether a point is dominated. This would mean that P = NP,  in 
contradiction to the belief of complexity theorists [9]). 

Our results further suggest that, as a practical matter, it can be computa- 
tionally infeasible to make strategic use of intransitivities in social choice, since 
finding an intransitivity is equivalent to proving the non-existence of an undom- 
inated point. Other researchers have tried to escape the apparent social chaos of 
intransitivities by suitably restricting the model (see [23] for a survey). However, 
our results suggest - without any restrictions on the model - that majority-rule 
equilibrium can exist as a purely practical matter: it can be too difficult to f ind  an 
alternative to overthrow the status quo! (Of course we do not suggest that the 
process of proposing alternatives need cease; rather just that it can take so long 
to find preferred alternatives that, for all practical purposes, society is stable.) 

Such practical considerations can suggest interesting tactics. For example, a 
party could use our O (dn) algorithm to choose quickly its platform, leaving to 
the opposition the computationally difficult (NP-complete) problem of finding a 
better alternative. Our results imply that the opposition cannot do significantly 
better than enumerative (or probabilistic) search over policy space to find a better 
alternative. 

Finally, we note that from one point of view our results are firmly within the 
tradition of previous work in social choice and welfare: The famous theorems of 
Arrow, Gibbard, Satterthwaite, G~irdenfors, the "chaos" theorems of McKelvey 
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and  Schofield  are  all "wors t -case"  results  tha t  say tha t  inconvenient  things can 
happen ;  indeed the poss ib i l i ty  is endemic  to  social  choice. To this list we add  
c o m p u t a t i o n a l  inconvenience.  
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