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Abstract Aggregation is a well documented behaviour 
in a number of animal groups. The "confusion effect" 
is one mechanism thought to mitigate the success of  
predators feeding on gregarious prey and hence favour 
aggregation. An artificial neural network model of prey 
targeting is developed to explore the advantages prey 
species might derive through a tendency to group. The 
network illustrates how an abstract model of the com- 
putational mechanisms mediating the perception of 
prey position is able to show a degradation in perfor- 
mance as group size increases. The relationship between 
group size and predator confusion has a characteristic 
decreasing decelerating shape. Prey "oddity" is shown 
to reduce the impact of the confusion effect, thereby 
allowing predators to target prey more accurately. 
Hence shoaling behaviour is most profitable to the prey 
when prey phenotypes are visually indistinguishable to 
a predator. Futhermore it is shown that prey "oddity" 
is relatively more costly in large groups than in small 
groups and the implications for assortative schooling 
are discussed. Both the model and the results are 
intended to make the general point that cognitive con- 
straints will limit the information that a nervous sys- 
tem can process at a number of different levels of neural 
organization. 

Key words Confusion effect - Groups - Oddity 
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Introduction 

There is abundant evidence across a number of taxa 
which suggests that living in groups is a selectively 
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advantageous strategy for individual organisms 
(Kenward 1978; Myers et al. 1979; Foster and Treherne 
1981). Increased foraging success (Pulliam 1976b; 
Major 1978) and a reduced predation risk (Hamilton 
1971; Calvert et al. 1979; Duncan and Vigne 1979) are 
currently the most empirically and theoretically com- 
pelling hypotheses that account for gregariousness. The 
"confusion effect" describes the reduced attack-to-kill 
ratio experienced by a predator resulting from an inabil- 
ity to single out and attack an individual prey in a 
group (Miller 1922; Milinski 1977a, b; Landeau and 
Terborgh 1986). While predator attack is thought to 
be less efficient when confronted with a multitude of 
similar targets, many predators are highly effective 
stalkers of solitary or conspicuous prey (Milinski 
1977b; Pitcher and Parish 1993). 

In this paper I present a neural network model of 
prey targeting which aims to capture some essential 
properties of a nervous system involved in the compu- 
tation of spatial position. Artificial neural networks are 
models that in some way aim to mimic the operational 
properties of animal nervous systems. The most criti- 
cal property of these models are therefore the distri- 
buted representation of information among the units 
of the network, and the parallel processing of  data by 
these units. Units in networks are conceived of as the 
computational analogues of neurons, while connections 
between the units correspond to synaptic processes. 
Inputs presented to the network are processed in par- 
allel through the activities of the units and result in an 
output value, or list of output values, in the form of a 
vector. The network can be seen as having implemented 
a mathematical function mapping the inputs onto a set 
of outputs. 

Marr (1982), in an attempt to define the levels 
of functional organization in the nervous system, 
identified three levels at which the visual system in par- 
ticular might be described: the computational, the algo- 
rithmic, and the mechanistic. This paper concentrates 
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on a simplified model of  the algorithms required by a 
simple network to target on a prey object, circum- 
venting the need for a detailed description of any par- 
ticular nervous system which would correspond to 
Marr's mechanisms. The network demonstrates how 
computational principles operating at the algorithmic 
level are likely to operate in real nervous systems to 
give rise to processing bottlenecks, thereby restricting 
the accuracy of the input-output function. 

In the model that follows, inputs represent some 
feature of prey objects stimulating the visual system of 
a predator, while outputs form an internal representa- 
tion of these features in the form of a topographic map. 
This is a map in the sense that neighbouring units of 
the output are made to correspond to neighbouring 
units in the input, hence spatial relationships in the 
input are preserved in the computation of the output. 
The map therefore provides the predator with adap- 
tively important percepts about its external world by 
indicating the spatial positions of likely food sources. 
I assume throughout that an accurate representation 
of prey position on the internal map, translates into an 
effective consummatory behaviour. Thus I have located 
the source of the confusion effect in errors of percep- 
tion, and not in errors experienced during the execu- 
tion of a motor response. 

If one insists on locating this algorithm in the archi- 
tecture of real nervous systems, it might plausibly be 
situated in the higher vertebrate's visual system in the 
retinal, lateral geniculate nucleus (LGN) to superior 
colliculus visual pathway (Dowling 1987). Alternatively 
it might be interpreted as the retina, LGN to optic-tec- 
turn projections in non-mammalian vertebrates (Sarnat 
and Netsky 1981) or the ommatidium-lamina-medulla 
parallel processing channels in arthropods (Laughlin 
1983). However, it is not important that the model be 
thought of as a representation of any particular path- 
way, the results are intended to be general and the 
aforementioned structures are merely examples of pos- 
sible sites where these effects are likely to occur. 

It is assumed that the visual system of many preda- 
tors will have been configured during the course of 
evolution to identify the spatial position of prey objects 
passing across the visual field, thus eliciting an appro- 
priate goal-directed movement culminating in a con- 
summatory response. The computational capacity of 
nervous systems is, however, limited and I suggest that 
prey species are able to exploit the preferences of preda- 
tors for small prey distributions, by forming groups 
that strain the informational capacity of a predator's 
visual system. Thus it is central to this investigation 
that there are constraints imposed on the information- 
processing capacity of a nervous system (Broadbent 
1965) by a finite set of algorithms or neural connec- 
tions. The ability of predators to accurately fix the posi- 
tion of a prey object (analogous to the construction of 
a "spatial spotlight of  attention", Alport 1989) depends 

upon the elaboration of an attentional mechanism 
which identifies prey position and excludes vacant posi- 
tions in space. This ability to target prey objects will 
be investigated in network models of finite computa- 
tional ability. This constraint on vision should be dis- 
tinguished from physical and optical limitations on 
visual acuity, or on spatial resolving power, and is log- 
ically distinct from possible constraints acting on "deci- 
sions". More precisely, an animal faced with a choice 
from a number of options must decide between these 
options according to some criterion. When confusion 
results from ambiguity acting on the criterion, rather 
than ambiguity in perceptual information furnishing 
this criterion, we are not dealing with the ~confusion' 
effect but another sort of confusion stemming from a 
conflict of interest or motivation. 

Methods 

Architecture 

Three models of prey-fixation are explored to demonstrate the con- 
tribution of increasing numbers of prey and the conspicuousness of 
prey on a predator 's  targeting accuracy. Furthermore, "compact- 
ion" or closing-in of an aggregation of prey objects is also explored 
with respect to its effect on targeting accuracy. The models are a 
set of artificial neural networks shown in previous studies to exhibit 
properties common to animal recognition systems (Enquist and 
Arak 1993, Krakauer 1995). The networks are intended to demon- 
strate properties assumed to occur at multiple levels of information 
processing. Objects or features of objects in the visual field, are pro- 
jected onto an internal representation (i.e. map) from which it is 
possible to extract environmental spatial relationships. It should be 
noted that  the input units in this model are not synonymous with 
single cells in the nervous system but potentially groups of such 
cells. Figure 1 is an illustration of the network showing only some 
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Fig. 1 Schematic illustration of the architecture of the neural net- 
work used to perceive a target prey (t.p.) in a shoal of fish. The 
network consists of input units ( I )  responding to features of indi- 
vidual prey , interneurons (I.N.) whose connections constitute a 
receptive field for the network, and a spatially explicit array of 
cells (MAP). These three layers are connected according to the 
wiring schemes of Fig. 2. The t.p fish depicts the target prey. The 
filled input unit represents stimulation by the target prey and causes 
an activation of the corrresponding positions on the MAP. The 
MAP provides spatial information on the whereabouts of the 
target image in the environment. The remaining fish are the 
distractors 
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of the connections, which demonstrates the layered architecture pro- 
ceeding from inputs back via a sequence of connections feeding 
onto inter neurons (or hidden units) - which define the receptive 
fields - and then through into further connections that project onto 
a spatially explicit array or map. The receptive field of one unit is 
defined as the area of the visual field which upon stimulation elic- 
its a response in this unit. Three 'wiring schemes' are used to 
configure the connectivities of the network and thereby produce 
three different types of receptive field. Figure 2a involves non- 
overlapping visual fields, in which adjacent regions of the inputs 
are connected exclusively to adjacent regions of the spatial array. 
Figure 2b involves overlapping visual fields where most connections 
innervating the map come from corresponding regions of the inputs, 
but where there is some convergence from more distant regions. In 
Fig. 2c every input unit connects to each and every map unit, and 
hence there is no spatial information explicit in the wiring. These 
connectivities are selected to explore the sensitivity of the confu- 
sion effect to anatomical variations in the wiring patterns of sen- 
sory channels. 

Perceptual systems in most taxa are likely to demonstrate at 
some points, both the divergence and convergence properties of 
these networks. We may however be entitled to cariciture the largely 
parallel connectivities of Fig. 2a with those found in arthropod 
visual channels (Bullock and Horridge 1965; Laughlin 1983) and 
the more branching connectivities of Fig. 2b with those found in 
vertebrates. The divergence and convergence properties of networks 
can in extreme cases cause information to become distributed over 
many neural loci or focused at a single neural locus. Divergence 

Fig. 2a-e The wiring shemes 
in two dimensions specifying 
the connectivity of the 
networks. The dark units 
make up the MAP, the cross- 
hatched units are interneurons, 
while the open units are the 
inputs. Only a and b are true 
spatial maps where the 
connectivities preferentially 
join corresponding positions 
on the input and MAP units. 
The inputs are least correlated 
over the surface of the MAP 
in a and most strongly 
correlated in e 

a 

b 

C 

maintains signal integrity across many cells but adds little new in 
terms of power of representation, while convergence increases the 
power of representation but at a loss of signal integrity. If our car- 
icature is legitimate we might expect the "confusion effect" to play 
a more significant role in the evasion behaviour of the prey of ver- 
tebrates where convergence is high (in contrast to the invertebrates 
where convergence is often lower, Laughlin 1983). This is a hypo- 
thesis seemingly borne out by the loss of the schooling tendency in 
guppy populations in Trinidad which are heavily predated by fresh- 
water prawns (A.E. Magurran, personal communication). 

Prey-fixing 

The networks are required upon stimulation of an input unit with 
a target prey object to activate the corresponding unit of the spa- 
tial array (from here on the map). In other words when a number 
of input units are set to on, corresponding to a group of prey enter- 
ing the visual field, the connections from these inputs propagate the 
stimulation through the hierarchy of network connections from 
inputs through to outputs culminating with an activation pattern 
on the map units. The values at the activated map units correspond 
to the probable spatial position of the input unit occupied by the 
target prey. The connections between the units of the network take 
particular values referred to as weights which control the influence 
of the input stimulation on the activation pattern of the map. This 
series of events is best described algebraically. Let us denote the 
number of input units and map units as N (16 in the simulations 
and in Fig. 1) and the number of interneurons as n (4 in the simu- 
lations, only 2 shown in Fig. 2). Each one of the input units i can 
take a value R of 1 if active and - 1 if inactive. Interneuronj  takes 
a value T which depends on a sum derived from the input units. 
Thus 

Tj = g RiWij (1) 

where g(x) is the functions tanh(0.5x) which constrains the value 
of T to lie between 1 and 1, w~j are the weights connecting the 
input units to the interneurons, and X is a matrix that specifies the 
connectivities or receptive fields of the networks as illustrated in 
Fig. 2. This matrix is made up of 0s and I s, with 0s where there 
are no connections. The values M of the k map units are calculated 
as follows 

Mk = g 1)j k ~jk (2) 
\ j  / 

where Vjk are the weights connecting the interneurons to the map 
units. 

The network weights are modified or trained such that the 
network preferentially produces activation of the one map unit 
corresponding to the input unit stimulated with the target object. 
The target object is distinguished from non-target objects during 
training by a slightly higher stimulation value to the network at the 
target object position in space. This higher value reflects a choice 
made by the predator to target a single individual from within the 
group. The weight training algorithm used is back-propagation 
(Rumelhart and MeCMland 1986), a hill-climbing algorithm which 
minimises the differences between an observed pattern and a desired 
pattern by moving the weights of the connections (the matrices w 
and v) in a direction that minimises this difference. This process is 
similar to the familiar least-squares procedure used in curve fitting. 
To be more specific, the expected pattern on the map is simply the 
stimulation pattern presented to the input unit excluding the 
non-target prey Therefore for each training input pattern, the back 
propagation algorithm is used to activate the map units 
corresponding only to the positions of target prey in the stimulus 
pattern. Training is performed with six random configurations of 
groups with group sizes ranging from one to seven individuals, with 
8-15 free spaces on the input. During training the network is 
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therefore exposed to 42 different stimulus configurations. Following 
training the network is able to identify the position of the target 
prey when presented with a solitary prey or a group of prey objects 
on the input cells drawn from a testing set up to some given level 
of accuracy. The Mk vector is scaled such that, Zn Mk = 1, and hence 
Mk may be interpreted as a probability distribution over the visual 
field. I stress that the term target prey does not imply the recog- 
nition of a complete prey form by the predator, simply recognition 
of a spatially localised target object which might be some feature 
of the prey (see the Appendix for a full description of the 
simulation). 

The confusion effect 

In order to evaluate the performance of the model at the task of 
prey-fixing during training and testing, a scoring system is employed 
which provides a measure of confusion. One means of measuring 
confusion would be simply to plot the probability of identifying the 
site occupied by the target object Mr, where t is the position of the 
target on the stimulus pattern, and to do this for different numbers 
of prey, ignoring whether the predator successfuly identifies the posi- 
tion of other prey that were not the target. This would be a mea- 
sure of confusion but would not measure the reduced ability of 
predators to encounter prey per se. This is because such a measure 
might belie a high success rate on non-target prey. For example, 
neural mechanisms evolved to target specific prey objects might show 
an improvement in their accuracy at targetting non-specific prey 
objects, as the number of these objects increases. In such a case, 
individual prey would not benefit from grouping unless they were 
consistently the objects of predation in preference to all other indi- 
viduals. A better measure of accuracy is one that measures success 
at both encountering the chosen target object and success at encoun- 
tering objects not selected as the target. In addition to this, one can 
impose a penalty for targeting vacant spaces in the visual field. Such 
a measure will reflect the realised success of the network at identi- 
fying the positions of all individuals within a group. A predator is 
rewarded maximally for correctly identifying a chosen target object, 
slightly less for identifying non-target objects and not punished when 
correctly excluding vacant positions in space. If we assume that: 

a = reward for identifying target prey (= 3) 
b = reward for identifying non-target prey (= 2) 
c = penalty for targeting a non-occupied position (= 1) 
M~ = probability assigned to the true position of the target object 
by the predator 
Mn = probability assigned to the true position of the non-target 
objects by the predator 
My = probability assigned to the true position of the vacant sites 
by the predator 
then we can score the model according to the following expression 

aM~ + ~ bMn 
Accuracy - k C k i  (3) 

a+ ~ cMv 
k#k~,kck~ 

This equation provides a maximum score of 1 for correctly identi- 
fying the position of target prey and eliminating all other sites as 
likely, a smaller score for identifying non-target prey in adddition 
to the target prey and a penalty for targeting empty spaces. This 
penalty is the right hand term in the denominator of Eq. 3. The a 
value in the denominator is a scaling constant. 

The model is trained to an accuracy score of over 0.75 for each 
of the connectivities patterns (a, b and c) on each of the 42 stimu- 
lus configurations using the back propagation algorithm. To test 
for prey confusion each of the networks (a, b and c) is presented 
with a further six random configurations of two, three, four, five, 
six and seven objects on the input cells where one of these is a tar- 
get object. The models are required to locate the most probable 
positions for target objects in increasingly large groups. Note that 
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Fig. 3 Prey distribution before and after compaction. A nominal 
shoal of four individuals with one target prey (solid) and three 
non-target or distractors (open), occupies a widely spaced, diffuse 
distribution which then closes-in to form a dense, compacted dis- 
tribution. Both of these distributions are presented to the network 
to test for the effect of compaction on levels of confusion 

the specific values assigned to a, b and c are not important, unlike 
the order of their relative magnitudes which is. 

Prey oddity 

Following the standard training procedure outlined above and in 
the appendix, to test for an effect of "oddity" the target prey is 
made dissimilar to the other members of  the group. This is done 
by presenting the target prey as an input to the network with a sub- 
stantially higher signal value than those of the non-target prey. In 
other words, when the target prey is conspicuous R~(target)- 
Ri(non-target) > 0 and Ri(target)-Ri(non-target) ~ > 0 , when 
the target prey is inconspicuous. The exact nature of this oddity is 
not specified and hence it may reflect size, morphological irregu- 
larity or colour. The networks are scored at each of the five different 
group sizes where the target prey is either conspicuous or incon- 
spicuous. 

Compaction 

To test whether closing-in behaviour can yield advantages to prey 
by increasing predator confusion, the networks are scored with four 
similar prey objects located on the edges of the input array (diffuse) 
and then with the same number of prey compacted in the centre of 
the input array. Each network is tested for three diffuse prey dis- 
tributions and three compacted distributions calculating accuracy 
scores for each. Figure 3 provides one figurative example of a test 
configuration before and following compaction. 

Results 

Effects of aggregation 

Predators with all three varieties of wiring schemes 
demonstrate an increasing inability to accurately tar- 
get prey objects as the group size increases (Fig. 4a-c). 
Paired prey objects are more successfully targeted 
than prey aggregations in excess of two members 
(P< 0.05 in each case, Mann-Whitney U-test: Fig. 4). 
The advantages accruing to prey through a tendency to 
aggregate increase with diminishing returns as groups 
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become larger. With the given network architectures, 
predator performance falls at a decelerating rate to an 
asymptotic level of  accuracy corresponding to approx- 
imately random targeting for all three wiring schemes. 
Wiring scheme a is significantly more accurate at tar- 
geting small groups of prey (2, 3 and 4, P < 0.05 Mann- 
Whitney U-test: Fig. 4) than wiring schemes b and c. 

Effects of oddity 

If the target prey are made conspicuous in relation to 
other group members predator accuracy is significantly 
improved (Fig. 4) at all group sizes. 

Oddity versus group size 

For wiring schemes a and b in large groups (n = 4) prey 
oddity reduces the concealing advantage of gregarious- 
ness by a greater proportion than in smaller groups 
(n = 2). In other words the probability per group mem- 
ber of predation of an odd individual increases as groups 
become larger (P < 0.05, Mann-Whitney U-test: 2a, b). 

Effects of compaction 

Closing-in behaviour only significantly reduces target- 
ing accuracy in the case where the network employs 
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Fig. 4a-c Confusion response curves: the targeting accuracy of a 
predator presented with groups of increasing numbers of prey. 
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wiring schemes a and b 

0 

p, 
¢.3 
< 

0 . 8 -  
8 

0 . 6 -  

0 . 4 -  

0.2- 

O - m  

T 
J. 

T 
J. 

0 
0 ~C 

0 . 8 "  

O.6" 

0 . 4 -  

0 . 2 -  

0 - m  

b 
-r 
.L 

f 

O 

O 
O 

I 
0.5 

0.4 

0.3 

0.2 

0.1 

0 

Diffuse 

T 
/ 

m ~ 1" m 

Compacted 
Fig. 5a-c Reduction in targeting accuracy following group com- 
paction for three randomly generated diffuse and compacted prey 
distributions. Only the wiring scheme b shows a reduction in accu- 
racy following compaction through predator confusion 



426 

overlapping visual fields (P < 0.05, Mann-Whitney 
U-test: Fig. 5b). Neither the fully connected (Fig. 5c) 
nor the discrete visual field (Fig. 5a) wiring schemes 
show a significant reduction in accuracy following com- 
paction. One should note that for Fig. 5c the com- 
pacted and diffuse aggregations are spatially congruent 
with respect to the wiring. 

Discussion 

Aggregation by prey species is most often accounted 
for in terms of foraging gains and predator evasion. 
With the exception of the confusion effect, evasive 
strategies are behaviours that result in a diminished risk 
of mortality to select individuals in a group (e.g. mar- 
ginal predation). Milinski (1977a, b) found that three- 
spined sticklebacks preferred straying Daphnia to 
aggregations, while Landeau and Terborgh (1986) have 
provided experimental support for the confusion effect 
by demonstrating reduced predation for all identical 
members of a group and increased predation follow- 
ing the introduction of an "odd" individual. An exper- 
imental demonstration of the neural principles 
underlying confusion is hard to achieve and hence this 
paper has sought to address this difficulty by provid- 
ing computational evidence in support of "confusion" 
in an abstract connectionist system (see Appendix). 
Futhermore, it is suggested that gregariousness be 
viewed as a form of exploitation (Dawkins and Krebs 
1979) where prey exploit the perceptual biases and con- 
straints of predators in order to evade detection. 

It has been assumed that a successful predator is 
one that accurately targets the position of its victim, 
where targeting is taken as prerequisite for an effective 
encounter. It is shown that if any predator had an 
unlimited ability for information processing, groups 
would not provide a safe haven through the confusion 
effect, for the confusion effect requires that constraints 
are explicitly invoked on the part of a predator to 
account for its inability to attend to multiple targets. 
To take a neurophysiological example, during visual 
perception we know that the retina must compress 
information through a limited number of ganglion cells 
(Laughlin 1990), a corresponding network would be 
given a finite number of units in which to store a large 
amount of information to capture this property. In this 
model following training on target prey, multiple prey 
are perceived as a collection of objects that compete 
for representation on cells from which spatial infor- 
mation can be extracted (topographic map). The larger 
the group, the more information required to pass 
through the same number of fixed channels to this map. 
Consequently targeting accuracy drops as more prey 
enter into the receptive field of a given unit, eventually 
reaching asymptotic performance above pure chance 

(Fig. 4). This effect is likely to be very common. An 
example might be found in an ambush predator such 
as a pike feeding on a shoal of minnows. One would 
expect a reduction in targeting accuracy as more min- 
nows crowd the visual field. This is because a large 
number of prey will increasingly stimulate common 
receptive fields. 

The shape of the confusion response curve demon- 
strates that the confusion effect is able to provide an 
immediate advantage to gregariousness (Fig. 4). 
Groups of three or more prey are better at evading pre- 
dation than pairs of individuals. Hence this mechanism 
provides an explanation for the incipient stages of 
grouping behaviour. It is not clear that few individu- 
als will provide a commensurate advantage via increa- 
sed vigilance or dilution. Wiring scheme c is most 
effective at reducing confusion when shoal numbers are 
low. This is because for small numbers of prey, the stim- 
ulation is most likely to fall on separate receptive fields. 
Figure 4 also suggests that there are diminishing returns 
with increasing group size beyond which additional 
individuals provide little advantage to the existing 
members of the group. I should stress here that the pre- 
cise numbers in this upper group size will depend on 
the details of the predators visual system. For the sake 
of analysis this model has been restricted to an arti- 
ficially small number of units. For most predators there 
are thousands of cells involved in visual perception and 
consequently they allow for targeting of many more 
prey. More exactly, the number of patterns that can be 
stored in the artificial network scales linearly with the 
number of units. Hence prey should form aggregations 
that correspond in some way in their numbers, to the 
number of cells involved in targeting found in their 
respective predators. However, the shape of the confu- 
sion response curves should remain as they are here. 

It is worth labouring the point that confusion tends 
towards an asymptotic level of accuracy. The existing 
experimental literature has not yet presented groups 
sufficiently large to reveal the existence of this ceiling 
or the decelerating shape of this function. For example, 
in a hypothetical plot of confusion against swarm den- 
sity, Milinski (1977a, p. 21 Fig, 11) postulates that con- 
fusion should increase exponentially with swarm 
density. The neural network spells out why this can not 
be the case: if there are a finite number of input chan- 
nels, once all of these channels are stimulated, increas- 
ing the number of prey will not affect targeting accuracy. 
In other words the confusion effect is a function of prey 
number and recognition cell number, not prey number 
alone. This last point is demonstrated in an experiment 
on human subjects (Milinski 1990) in which subjects 
were required to pinpoint dots in artificial two-dimen- 
sional swarms. These swarms varied in their densities 
and it was only in the highest densities (8 dots/cm 2) 
that confusion set in. At the low and medium densities 
performance was not hampered by confusion. 
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Prey oddity reduces the burden on sensory chan- 
nels by increasing the differences in the incoming sig- 
nals and therefore provides extra information through 
intensity. Oddity (stimulus intensity in this model) may 
therefore be thought of as a signalling dimension in 
addition to position. Such a result is similar to those 
of Ohguchi (1981) who placed similar or differently 
coloured waterfleas in a "confusion machine". This 
machine shunted a pair of waterfleas in cross-currents 
between a system of test-tubes visible to a stickleback 
predator. The stickleback showed a diminished 
approach rate when the waterfleas were of the same 
colour and an enhanced response when they were of 
different colours. Oddity can therefore maintain tar- 
geting accuracy above the level found in an equiva- 
lently sized phenotypically homogeneous group. This 
finding is indirectly corroborated by the work of Ranta 
et al. (1992) who have shown how sticklebacks prefer- 
entially join schools which match their own size, a phe- 
nomenon they refer to as "assortative schooling". That 
is not the whole story, however. The results of this paper 
suggest that an additional component of assortative 
schooling should be the preference by odd individuals 
for smaller groups. This is because the relative costs of 
conspicuousness are lower for an "odd" individual in 
a small group, than they are for an "odd" individual 
in a large group (Figs. 4a and b). This result is not 
found in the fully connected wiring scheme (Fig. 4c). 
This may be because information is always distributed 
over the entire map and hence the intensity of this sig- 
nal is diminished. 

Compaction produces this same effect by increas- 
ing the correlation between the discrete stimuli, 
augmenting the number of prey which appear in 
overlapping visual fields. Schooling fish such as gup- 
pies (Seghers 1974), or minnows (Magurran and 
Pitcher 1987) demonstrate a compaction response when 
presented by a predatory species. The confusion effect 
differs from the "selfish herd" hypothesis (Hamilton 
1971) in that each individual stands to gain from com- 
paction, and not primarily those at the centre of the 
huddle. Increased confusion following compaction is 
not found for wiring scheme 5c because there is no spa- 
tial information inherent in the connectivities (it does 
not preserve spatial information). In Fig. 5a by reduc- 
ing the overlap between receptive fields, the ratio of 
information to available channels is similarly negligi- 
bly effected following compaction. Only the wiring of 
Fig. 5b shows compaction to be a beneficial strategy 
in evading predators. 

Groups will only be prevented from growing in- 
exorably if individuals experience other costs associ- 
ated with gregariousness that reduce the net benefits 
(Anderson and Wicklund 1978). If there are costs asso- 
ciated with large groups, existing members are expected 
to close ranks and deny access to aspiring group mem- 
bers. This effect was found by Pulliam and Caraco 

(1984) who document the attempts made by dominant 
juncos to evict subordinate birds from a group when 
resources are threatened. 

I have argued that groups provide a means of exploit- 
ing some perceptual bottlenecks of a predator implying 
that prey species are ahead in the evolutionary arms 
race. Predators are quite likely to have evolved coun- 
termeasures in response to their favoured prey forming 
groups. There are two options available to "confused" 
predators: surmount the bottleneck with increased cog- 
nitive sophistication or disrupting the group to expose 
the individual. The first of these is difficult to establish, 
it would require neurobiological data on closely related 
groups that preferably differ only in the distributions of 
their respective prey species. The hypothesis tested 
would be that predators which are required to secon- 
darily predate gregarious prey should manifest neuro- 
biological adaptations specific to this task. The second 
option is commonly observed in a number of groups: 
piscine predators feeding on shoaling fish are able to 
disrupt the structure of schools thereby gaining access 
to isolated individuals (Major 1978), yellowtail preda- 
tors cooperate to isolate parts of  a school of jack mack- 
erel (Schmidt and Strand 1982), and in an example 
involving quadrupeds, lionesses cooperate to isolate and 
hunt down grazing zebras from their herds (Schaller 
1972). 

These observations do not exclude alternative expla- 
nations such as marginal predation. The distinguishing 
features of the confusion effect and its biological con- 
sequences as demonstrated by this model should be 
stressed; these are: 

1. Gains through reduced predation for all mem- 
bers of a group. It is numbers of individuals rather than 
the relative position within the group which influences 
predator targeting accuracy. 

2. A decelerating drop to an asymptotic level of 
predator accuracy as group size increases. As numbers 
increase groups will cease to provide a concealing 
advantage to existing members, this precise value will 
depend on the sophistication of the predators nervous 
system. If there are costs to living in groups, the con- 
fusion effect can predict an optimum group size which 
is a product of confusion benefits with group costs such 
as interference. 

3. Increased gains following compaction. Reducing 
the free space between individuals increases the infor- 
mation burden placed on a predators sensory channels. 
This is not the same as dropping below the resolving 
power of the retina. The centripetal instinct should 
evolve as a means of evading detection and not merely 
as a means of evading marginal predation. 

4. The confusion effect is most effective when mem- 
bers of the group are all alike. Conspicuous individu- 
als that appear "odd" with respect to the other 
members of the group do not gain from joining a group. 
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Hence selection should favour 'assortative schooling' 
(Ranta et al. 1992). 

5. Odd individuals suffer proportionately higher 
predation in large groups than they do in small groups. 
We might therefore expect heterospecific aggregations 
with divergent phenotypes to be more common in small 
groups than in large groups. 

6. Since the principal agency of the confusion effect 
is numbers and spacing, it should operate with 
inert/sedentary target species. This suggests that 
individual species which seek to encourage approach, 
such as plants with their pollinator's, should space out 
so as to exploit the perceptual preferences of the 
pollinators. 

If the results of these a models are held to apply in 
some way to the principles governing nervous activity 
in animals, the confusion effect offers a substantive 
explanation for aggregative behaviour. It is quite likely 
that motion introduces another dimension into preda- 
tor confusion and the wealth of empirical observations 
support this assertion (Pitcher and Parish 1993). It is 
assumed that unpredictable movement by group mem- 
bers will serve to increase confusion but this property 
of groups has not been examined here. This paper has 
sought to demonstrate confusion in the simplest case, 
that of a static assemblage. 

While artificial neural networks scarcely resemble 
networks of biological neurons, it is possible that they 
share some basic features by virtue of their connectiv- 
ity and dynamical rules (Churchland and Sejnowski 
1994). Small artificial networks might therefore 
capture some essential properties of neural processing. 
Recent studies adopting such an approach include 
those of Hinton and Shallice (1991) who using 
networks of the sort employed in this paper explore the 
possible basis of "deep dyslexia". Similarly Smolensky 
(1986) has employed networks which demonstrate 
features of procedural memory. Grossberg (1984) has 
employed a variety of simple networks in order to 
understand disorders such as Parkinson's disease and 
schizophrenia, while Enquist and Arak (1993) have 
employed three-layer networks to reveal perceptual 
preferences thought common to evolving perceptual 
systems. These examples are intended to justify the use 
of models that opt out of physiological verisimilitude. 
The confusion effect has remained little more than 
a black-box explanation for a set of behavioural 
observations. This paper has sought to ground 
these observation in a simple theory of nervous 
action. 
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Appendix 

The network models employed in all the simulations in 
this paper are N - M - N  encoders. There are N inputs 
and outputs (N = 16) and Mhidden  units (M = 4). The 
connections between the layers of the network are 
established by the connectivity matrices illustrated in 
Fig. 2. The network is trained to perform a specific 
input-output mapping, namely, activate a single unit 
on the topographic map corresponding to only the tar- 
get unit stimulated in the input pattern. Such a map- 
ping is implemented by configuring the weight values 
of the network using the back propogation algorithm. 
The use of such an algorithm is one means of finding 
acceptable weight values. An evolutionary algorithm of 
the type employed by (Enquist and Arak 1993) would 
do just as well. 

We select an input pattern Ri (see below for more 
details of this part) and propogate the signal forward 
through the network onto the hidden units Tj 

Tj= g (~RiwijXij) 

and then onto the output units Mk 

( E T j  ~jk)  M k  = g Fjk . 
\ j  / 

We then compute the difference between the computed 
outputs Mk and the desired output Dk (which is iden- 
tical to the map except only a single unit is activated 
corresponding to the target units) as a least squares 
error measure: 

E-~12 E[Ok--g(~g(~iil/vijXijtlgjkXjk~ln N 2 
k L \ j  \ i  / /A 

We can then differentiate this function with respect to 
the weight matrix Vjk and thereby move the weights in 
a downhill direction in the direction of a minimum. 
The change in the weights is therefore given by: 

AVjk TM - -  0~ 0 E  = 0¢E(Dk _ Mk)g' l~jkJ~jjk 
Ol~jk \ j / 

The change in the input units to hidden unit weights 
are found by differentiating the error measure with 
respect to the weight matrix wii: 

0E _ o¢ DE 0Vjk  
AYjk = --  0{, 0Wjk 0I~j k 0|~J k 

Mk)N(ETjVj~jktV j (~i i ~ i  E ( D  ' ' = 1~ k--  k kg  iWij i 
\ j  / 

where ~ is a learning rate constant set equal to 0.1. 
The input values presented to the input units are 

0.6 for the target object, 0.5 for the remaining objects 
are 0.0 for all empty spaces. Each input pattern receives 
50 replicates of training on 6 randomly generated 
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c o n f i g u r a t i o n s  for  g r o u p  sizes o f  one  to  seven m e m -  
bers.  T h a t  is, the  a l g o r i t h m  cycles  t h r o u g h  the  six 
c o n f i g u r a t i o n s  for  e ach  g r o u p s i z e  in tu rn ,  m o v i n g  on  
to  the  nex t  l a rge r  g r o u p  size un t i l  r e a c h i n g  seven a n d  
then  r e t u r n i n g  to  g r o u p s  o f  one  m e m b e r .  Th is  cycle  is 
c o n t i n u e d  50 t imes  so t ha t  each  s t imu lus  c o n f i g u r a t i o n  
wil l  have been  e x s p o s e d  to  t r a i n i n g  a t o t a l  o f  50 t imes  
bu t  never  in c o n t i n u o u s  succes ion .  
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