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Abstract. A formula for the effective population 
size for the finite island model of subdivided popu- 
lations is derived. The formula indicates that the 
effective size can be substantially greater than the 
actual number of individuals in the entire popula- 
tion when the migration rate among subpopulations 
is small. It is shown that the mean nucleotide diver- 
sity, coalescence time, and heterozygosity for 
genes sampled from the entire population can be 
predicted fairly well from the theory for randomly 
mating populations if the effective population size 
for the finite island model is used. 
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Introduction 

Nucleotide diversity and coalescence time (see Nei 
1987 for the definitions of these quantities) play an 
important role in the study of molecular population 
genetics, Recently, Tajima (1989) and Takahata 
(1991) developed gene genealogy theories for the 
finite island model  of  subdivided populat ions 
(Maruyama 1970) and studied the expected values 
of nucleotide diversity and coalescence time of ran- 
domly chosen genes. The mathematical theories de- 
veloped by these authors (see also Takahata 1988; 
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Notohara 1990; Takahata and Slatkin 1990) are 
quite complicated, and it is not always easy to com- 
pute nucleotide diversity and coalescence time for 
different sets of population parameters. However,  
there is another approach for computing these 
quantities for subdivided populations. That is, if we 
can derive an equation for the effective population 
size (Ne) of a subdivided population, the expecta- 
tions of nucleotide diversity (~r) and coalescence 
time (T) may be given by 

~r = 4Neix (1) 

(2) 

where tx is the mutation rate per nucleotide site per 
generation, and n is the number of genes sampled 
from the entire population. Equations (1) and (2) are 
known to hold in randomly mating populations 
(Kimura 1969; Watterson 1975; Kingman 1982; 
Tajima 1983). Furthermore, if we know ATe, the ex- 
pected heterozygosity (H) may also be given by 

H = 4Nev/(1 + 4Ne v) (3) 

where v is the mutation rate per locus. 
The purpose of this paper is to derive an equation 

for Ne for the finite island model and to examine the 
accuracy of ~, T, and H values obtained by this 
approach. 
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Effective Population Size 

In the following we consider the finite island model 
in which a population is subdivided into s subpop- 
ulations of effective size N and migration occurs 
from one subpopulation to another with a probabil- 
ity of m/(s - 1) per generation. (See Takahata and 
Nei 1984.) If this model is used, there are two dif- 
ferent ways of deriving the formula for the effective 
size (Ne) for the entire population. One is to con- 
sider the drift variance of the mean gene frequency 
of the entire population, and the other is to use the 
theory of gene genealogy. Wright (1943, p. 133) 
used the former approach to derive an equation for 
N e, although he did not clearly define the model of 
population structure he used. Wright's formula is 
given by 

s N  
Ne - 1 - Fg (4) 

where F i is the fixation index later redefined as Fsr  
(Wright 1951). Essentially the same formula can be 
derived from equation (4) of Maruyama (1972) if we 
note 1 - F r  = (1 - Fs) (1 - Fsz), where F r  and F s 
are the fixation indices for the entire population and 
the subpopulations, respectively. 

In Maruyama's (1970) finite island model the in- 
finite-allele model of neutral mutation (Kimura and 
Crow 1964) is used to study the extent of genetic 
polymorphism. In this model F i in equation (4) 
should be replaced by GST, which is an extension of 
Fsz  to the case of multiple alleles (Nei 1975). Taka- 
hata (1983) and Takahata and Nei (1984) derived a 
steady-state equation for Gsz for the finite island 
model. Their formula includes a term for the con- 
tribution due to mutation, but this term should be 
eliminated in the present case, because the effective 
size is related to the variance of gene frequency 
change per generation and has nothing to do with 
mutation. It then becomes 

1 
GsT = ( s )2 (5) 

1 + 4Nm ~ - 1  

The same equation has been derived by Crow and 
Aoki (1984). Therefore, if we replace F i by this Gsz, 
equation (4) becomes 

(_s = 1)2. ] 
Ne = s N  1 + 4Nms2 j (6) 

Note that Gsr reaches the steady-state value even if 
there is no mutation and s is finite (Nei et al. 1977). 

To derive a formula for N e by using the gene 
genealogy theory, we consider the case where two 
genes (n = 2) are randomly chosen from s subpop- 
ulations of effective size N. In this case the two 
genes may be drawn either from two different sub- 
populations or from the same subpopulation. The 
probability of occurrence of the former event is 1 - 
1/s, whereas the probability of occurrence of the 
latter event is 1/s. Let T b and Tw. be the mean co- 
alescence time of two randomly chosen genes when 
they are drawn from different subpopulations and 
that when they are drawn from the same subpopu- 
lation, respectively. (In the gene-genealogy theory 
the genealogical relationships of genes are exam- 
ined retrospectively, and the coalescence time is 
the time at which two or more genes sampled from 
the present population trace back to a common an- 
cestral gene in the past when time is measured in 
generations.) The mean coalescence of two genes 
randomly chosen from the entire population is then 
given by T = Tw/S + (s - 1) TJs.  Slatkin (1991) 
(see also Hey 1991) worked out the formula for Tfor 
the case of n = 2. It is given by 

( s -  1) 2] 
T = 2sN 1 + -41Vm--~J (7) 

If we compare this equation with equation (2) for 
the case of n = 2, we obtain an equation for N e ,  

which is identical with equation (6). 
Equation (6) indicates that when N m  is large, Ne 

is practically sN, as expected, but that ATe can be 
much greater than the total population size (sN) if 
4Nm is smaller than 1. 

Genetic Diversity and Coalescence Time 

Nucleotide Diversity 

Nucleotide diversity (~r) is defined as the average 
number of nucleotide differences per site for all 
pairwise comparisons of the genes sampled from 
the same population. Tajima (1989) examined the 
expected value (H 1) of the number of nucleotide 
differences per DNA sequence for the case of two 
subpopulations (s = 2). In our approach, //1 is 
given by 4Nev, where Ne is defined by (6) and v is 
the mutation rate per sequence. Obviously, v = 
mTIz, where mT is the total number of nucleotides 
examined per sequence. Tajima considered the case 
of 4Nv = 1 with various values of 4Nm.  According 
to his computation, the/ /1 values [S(2) in his nota- 
tion] were 52.000, 7.000, 2.500, 2.050, and 2.005 for 
4Nm = 0.001, 0.1, 1, 10, and 100, respectively. (See 
Table 1 in Tajima's paper.) In our approach, the 
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Table 1. The mean  and s tandard  deviat ion (±)  of  the s imulated coalescence t ime for the island model  with s subpopula t ions  a 

2 N m  0.001 0.01 0.1 1.0 5 10 

n = 2  
s = 2 62.7 + 106 6.96 --- 11.4 1.13 + 1.46 0,56 -+ 0.58 0.51 -+ 0.51 0.51 -+ 0.50 

(63.0 + 63.0) (6.75 + 6.75) (1.13 + 1.13) (0.56 --- 0.56) (0.51 -+ 0.51) (0.51 -+ 0.51) 
s = 4 141 -+ 182 15.1 --- 19.4 1.93 + 2.29 0.64 -+ 0.65 0.53 -+ 0.53 0.50 + 0.50 

(141 -+ 141) (14.6 --- 14.6) (1.19 - 1,19) (0.64 -+ 0.64) (0.53 + 0.53) (0.51 -+ 0.51) 
s = 8 194 -+ 216 19.4 --- 22.2 2.37 - 2.61 0.69 -+ 0.71 0.54 - 0.54 0.52 -+ 0.50 

(192 -+ 192) (19.6 --- 19.6) (2,41 -4- 2.41) (0.69 - 0.69) (0.54 + 0.54) (0.52 -+ 0.52) 
s = 16 220 + 236 22.8 --- 24.0 2.69 -+ 2,82 0.72 -+ 0.72 0.55 + 0.55 0.53 + 0.53 

(220 -+ 220) (22.5 --- 22.5) (2.70 -+ 2.70) (0.72 + 0.72) (0.54 + 0.54) (0.52 + 0.52) 
s = 32 233 -+ 240 24.1 ± 24.4 2.90 -+ 2.93 0.74 -+ 0.75 0.54 -+ 0.54 0.52 +- 0.54 

(235 -+ 235) (24.0 -± 24.0) (2.85 -+ 2.85) (0.73 -+ 0.73) (0.55 + 0.55) (0.52 -+ 0.52) 
n = 3  

s = 2 92.7 -+ 121 10.1 --- 12.4 1.60 -+ 1.55- 0.75 -+ 0.60 0.68 +- 0.54 0.67 -+ 0.53 
(84.0 -+ 66.4) (9.00 --- 7.12) (1.50 --- 1.19) (0.75 -+ 0.59) (0.68 -+ 0.54) (0.68 -+ 0.53) 

s = 4 203 -+ 196 20.3 ± 19.5 2.66 -+ 2.36 0.86 -+ 0.69 0.69 -+ 0.54 0.69 -+ 0.54 
(188 + 149) (19.4 ± 15.4) (2.54 + 2.01) (0.85 -+ 0.68) (0.70 + 0.56) (0.69 -+ 0.54) 

s = 8 264 ± 233 26.9 -~ 23.7 3.22 -+ 2.71 0.93 -+ 0.73 0.73 ± 0.56 0.70 -+ 0.55 
(256-+ 202) (26.2 ± 20.7) (3.22 -+ 2.54) (0.92 -+ 0.73) (0.72 -+ 0.57) (0.69 + 0.55) 

s = 16 290 +- 239  30.5 m 25.6 3.60 -+ 2.94 0.96 + 0.75 0.73 + 0.60 0.70 -+ 0.56 
(294 -+ 232) (30.0 ± 23.7) (3.60 ± 2.84) (0.96 ± 0.76) (0.73 ± 0.57) (0.70 -+ 0.55) 

s = 32 316 -+ 257 32.1 ± 25.9 3.81 + 3.07 0.98 -+ 0.77 0.73 - 0.58 0.70 -+ 0.54 
(314 -+ 248) (32.0 ± 25.3) (3.80 -+ 3.00) (0.98 -+ 0.77) (0.73 + 0.58) (0.70 +- 0.55) 

n =  10 
s = 2 127 -+ 129 13.4 +-- 12.7 2.15 -+ 1.62 1.01 -+ 0.60 0.92 -+ 0.54 0.91 -+ 0.55 

(113 +- 67.8) (12.2 ± 7.26) (2.03 ± 1.21) (1.01 -+ 0.61) (0.92 -+ 0.55) (0.91 + 0.54) 
s = 4 254 + 196 26.6 -+ 20.9 3.41 - 2.46 1.13 -+ 0.70 0.94 + 0.57 0.91 -+ 0.55 

(254 -+ 152) (26.2 ± 15.7) (3.43 - 2.05) (1.15 -+ 0.67) (0.95 -+ 0.57) (0.93 + 0.55) 
s = 8 350 -+ 234 35.5 -+ 23.6 4.31 -+ 2.86 1.23 -+ 0.76 0.95 -+ 0.58 0.94 -+ 0.56 

(345 ± 207) (35.4 -+ 21.1) (4.34 ± 2.60) (1.25 -+ 0.74) (0.97 ± 0.57) (0.93 -+ 0.56) 
s = 16 400 +- 251 40.4 ± 24.7 4.91 -+ 3.02 1.28 -+ 0.78 0.96 -+ 0.58 0.94 -+ 0.57 

(396 ± 237) (40.5 - 24.2) (4.86 ± 2.90) (1.30 -+ 0.77) (0.98 -+ 0.59) (0.94 + 0.56) 
s = 32 435 -+ 263 43.0 ± 26.0 5.22 ± 3.14 1.30 -+ 0.78 0.97 -+ 0.59 0.93 -+ 0.56 

(423 -+ 253) (43.1 -+ 25.8) (5.12 -+ 3.06) (1.32 ± 0.79) (0.98 ± 0.59) (0.94 -+ 0.56) 

a The  coalescence  t ime is measu red  in units  of  4Ns generat ions,  n is the number  of  genes  sampled randomly f rom s subpopula t ions .  
The  n u m b e r  of  replications for each set of  parameter  values was 5,000. m: migration rate per  generat ion.  N :  number  of  breeding 
individuals in each subpopulat ion.  The  values  in the  paren theses  are the mean  and s tandard deviat ion of  coalescence t ime that  were 
obtained f rom equat ion (8) and  equat ion (9), respectively.  

effective population size for the entire population (s 
= 2) is Ne = 2NIl + 1/(16Nm)], and H1 = 8Nv[1 
+ 1/(16Nm)] = 2 + 1/(8Nm), since 4Nv = 1. Thus, 
Tajima's results are in complete agreement with the 
1tl values obtained by the effective size approach. 

It should be noted, however, that the effective 
size approach does not necessarily give the correct 
values for the expected number of segregating sites 
[S(n)] except for the case of sample size (n) equal to 
2, for which S(n) = H1. This approach gives the 
correct results for n > 2 only when 4Nm >1 10. It 
should also be noted that for this approach to work 
for HI the genes must be randomly chosen from the 
entire population. 

Coalescence Time 

Takahata (1991) derived an approximate formula for 
the mean coalescence time. The formula requires 

specification of the number (r) of subpopulations in 
which at least one gene is sampled. In the present 
approach genes are sampled at random from the 
entire population, and the mean coalescence time is 
given by 

T=4sN[1 (S -- 1)2] (1 -- (8) 

Takahata's formula becomes essentially the same 
as the above when his r is equal to s and n is large 
(say n > 20). 

To check the accuracy of equation (8), we con- 
ducted a computer simulation. The method of com- 
puter simulation was similar to that of Takahata 
(1991) except that all genes were sampled from the 
entire population. The results of the simulation, 
which are presented in Table 1, show that the above 
formula is very accurate when n = 2. For n = 3 or 
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10, however, it gives a slight underestimate of the 
mean coalescence time when s is small and 2Nm <- 
0.1. When s is equal to 8 or larger and 2Nm >t 0.01, 
the agreement between the simulation results and 
the predictions from equation (8) is excellent for 
any value of n. 

Table 1 also gives the standard deviations (st) of 
coalescence time obtained from the computer sim- 
ulation and those obtained from Tajima's (1983) for- 
mula for the case of a randomly mating population. 
The latter formula is given by 

S =4 e[ ii 1 "~211/2 
(i- 1)J j (9) 

Table 1 indicates that in a randomly mating popu- 
lation the standard deviation is identical with the 
mean when n = 2, as expected from comparison of 
equations (2) and (9), but is slightly smaller than the 
latter for n i> 3. The results from our computer 
simulation indicate that equation (9) is applicable 
even to subdivided populations as long as 2Nm is 
1.0 or larger. When 2Nm is less than 0.1, however, 
it gives an underestimate of the standard deviation 
for subdivided populations, particularly when s is 
small. Nevertheless, equation (9) is useful for ob- 
taining an approximate value of the standard devi- 
ation of coalescence time when s is large. 

Heterozygosity 

Nei (1975) and Takahata (1983) studied the ex- 
pected heterozygosity (Hr) for the total population 
when the population is subdivided following the fi- 
nite island model. According to Takahata (1983), 
the expected homozygosity (Jr), which is defined as 
1 - Hr, is given by 

(S- 1)2V ]-1 
Jr  = 1 + 4Usv + sm -+ -(s ~ ])v] (10) 

If we assume m > >  v, the above equation reduces 
to 

{ (s- 1) 2] 1-1 
JT = 1 +  4Ns 1 +  4-A~m~.~vJ (11) 

approximately. Therefore, if we use N e defined in 
equation (6), J~r is given by (1 + 4Nev)-  1, and H r  -= 
1 - J r  is given by equation (3). This indicates that 
equation (3) applies even to a subdivided popula- 
tion. However,  when the condition m > >  v does 

not apply, H r  in (3) tends to give an overestimate of 
the true value. 

D i s c u s s i o n  

The concept of effective population size, which was 
first developed by Wright (1931), has been very use- 
ful for simplifying mathematical treatments in pop- 
ulation genetics. In the present paper we have 
shown that this is exactly the case with expected 
nucleotide diversity, coalescence time, and het- 
erozygosity for the finite island model. There is no 
need to use complicated formulas previously pro- 
posed as long as those quantities are concerned. 
Maruyama's (1972) complicated formulation of the 
distribution of gene frequencies in a geographically 
structured population can also be simplified tremen- 
dously if we use the N e approach. The finite island 
model has been used for studying various properties 
of genetic polymorphism in subdivided populations. 
Yet, Wright's formula [equation (4)] has never been 
used as far as we know. This is probably because it 
was not clear what value of F i should be used in his 
formula. 

As mentioned earlier, equation (6) shows that the 
effective population size of a subdivided population 
can be much larger than the total population size 
when the migration rate among subpopulations is 
very small. This is intuitively obvious because the 
genetic variability among subpopulations is ex- 
pected to increase continuously with time if there is 
no migration. However, it should be emphasized 
that our formulation of Ne depends on the assump- 
tion that the population structure remains the same 
for a long evolutionary time. In many natural pop- 
ulations this assumption may not hold. In some spe- 
cies such as Escherichia coli and Drosophila, sub- 
populations of  a species are often subject  to 
extinction and rapid multiplication. In this case the 
effective population size can be much smaller than 
the actual size (sN) (Nei 1976; Maruyama and 
Kimura 1980). 

Nevertheless, there are cases in which structured 
populations remain more or less the same for a long 
period of time. Good examples are macaque spe- 
cies, which are subdivided into many matrilineally 
isolated troops. In these species intertroop nucle- 
otide diversity for mitochondrial DNA (mtDNA) is 
much higher than intratroop diversity (Hayasaka et 
al. 1988; D.J. Melnik, personal communication). 
The coalescence time of mtDNA types is also much 
longer than that for other mammalian species (e.g., 
humans). Our mathematical formulas developed in 
this paper should be useful for analyzing data ob- 
tained from these species. They will also be useful 
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for resolving the current controversy over the evo- 
lution of Homo sapiens from H. erectus. (See Ta- 
kahata 1991, 1993.) 
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