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Many seemingly different problems in machine learning, artificial intelligence, and symbolic 
processing can be viewed as requiring the discovery of a computer program that produces 
some desired output for particular inputs. When viewed in this way, the process of solving 
these problems becomes equivalent to searching a space of possible computer programs for a 
highly fit individual computer program. The recently developed genetic programming para- 
digm described herein provides a way to search the space of possible computer programs for 
a highly fit individual computer program to solve (or approximately solve) a surprising variety 
of different problems from different fields. In genetic programming, populations of computer 
programs are genetically bred using the Darwinian principle of survival of the fittest and using 
a genetic crossover (sexual recombination) operator appropriate for genetically mating com- 
puter programs. Genetic programming is illustrated via an example of machine learning of 
the Boolean 11-multiplexer function and symbolic regression of the econometric exchange 
equation from noisy empirical data. 

Hierarchical automatic function definition enables genetic programming to define potentially 
useful functions automatically and dynamically during a run, much as a human programmer 
writing a complex computer program creates subroutines (procedures, functions) to perform 
groups of steps which must be performed with different instantiations of the dummy variables 
(formal parameters) in more than one place in the main program. Hierarchical automatic func- 
tion definition is illustrated via the machine learning of the Boolean 11-parity function. 

Keywords. Genetic programming, genetic algorithm, crossover, hierarchical automatic func- 
tion definition, symbolic regression, Boolean 11-multiplexer, econometric exchange equation, 
Boolean 11-parity 

I. Introduction and overview 

Computer  programs are among the most complex and 
intricate structures created by human beings. They are 
usually written line by line by applying human knowledge 
and intelligence to the problem at hand. Writing a com- 
puter program is usually difficult. Indeed, one of the 
central questions in computer  science (attributed to 
Arthur Samuel in the 1950s) is 

How can computers learn to solve problems without 
being explicitly programmed? In other words, how can 
computers be made to do what is needed to be done, 
without being told exactly how to do it? 

In the natural world, complex and intricate structures do 
not arise via explicit design and programming or from the 
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application of human intelligence. Instead, complex and 
successful organic structures evolve over a period of time 
as the consequence of  Darwinian natural selection and 
the creative effects of  sexual recombination (genetic cross- 
over) and mutation. Complex structures evolve in nature 
as a consequence of a fitness metric applied by the problem 
environment because structures that are more fit in grap- 
pling with their environment survive and reproduce at a 
higher rate. 

The question arises as to whether an analogue of natural 
selection and genetics can be applied to the problem of 
creating a program that enables a computer to solve a 
problem. That  is, can complex computer programs be 
created, not via human intelligence, but by applying a fit- 
ness measure appropriate to the problem environment? 

Such a process of  genetical breeding of computer pro- 
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grams might start with a primordial ooze consisting of a 
population of hundreds or thousands of randomly created 
computer programs of various randomly determined sizes 
and shapes. In such a process, each program in the popu- 
lation would be observed as it tries to grapple with its 
environment--that is, to solve the problem at hand. A 
value would then be assigned to each program, reflecting 
how fit it is in solving the problem at hand. We might 
then allow a program in the population to survive to a 
later generation of the process with a probability propor- 
tionate to its observed fitness. Additionally, we might also 
select pairs of programs from the population with a prob- 
ability proportionate to their observed fitness and create 
new offspring by recombining subprograms from them at 
random. We would apply the above steps to the popu- 
lation of programs over a number of generations. 

Anyone who has ever written and debugged computer 
programs and has experienced their brittle, highly non- 
linear, and perversely unforgiving nature will probably be 
understandably sceptical about the proposition that the 
biologically motivated process sketched above could 
possibly produce a useful computer program. However, 
in this article we present a number of examples from 
various fields supporting the surprising and counter- 
intuitive notion that computers can indeed be programmed 
by means of natural selection. We will show, via examples, 
that the recently developed genetic programming paradigm 
provides a way to search the space of all possible programs 
to find a function which solves, or approximately solves, a 
problem. 

2. Background on genetic algorithms and genetic 
programming 

John Holland's pioneering book Adaptation in Natural and 
Artificial Systems described how the evolutionary process 
in nature can be applied to artificial systems using the 
genetic algorithm operating on fixed-length character 
strings (Holland, 1975). Holland demonstrated that a 
population of fixed-length character strings (each repre- 
senting a proposed solution to a problem) can be gene- 
tically bred using the Darwinian operation of fitness 
proportionate reproduction and the genetic operation of 
recombination. The recombination operation combines 
parts of two chromosome-like fixed-length character 
strings, each selected on the basis of their fitness, to pro- 
duce new offspring strings. Holland established, among 
other things, that the genetic algorithm is a near optimal 
approach to adaptation in that it maximizes expected over- 
all average payoff when the adaptive process is viewed as a 
multi-armed slot machine problem requiring an optimal 
allocation of future trials given currently available informa- 
tion. The genetic algorithm has proven successful at search- 
ing non-linear multidimensional spaces in order to solve, or 

approximately solve, a wide variety of problems (Goldberg, 
1989; Davis, 1987; 1991; Davidor, 1991; Michalewicz, 
1992). Recent conference proceedings provide an overview 
of current work in the field (Schaffer, 1989; Forrest, 1990; 
Belew and Booker, 1991; Rawlins, 1991; Mayer and 
Wilson, 1991; Schwefel and Maenner, 1991; Langton et 
al., 1992; Whitley, 1992). 

Representation is a key issue in genetic algorithm work 
because genetic algorithms directly manipulate a coded 
chromosomal representation of the problem. The represen- 
tation scheme can therefore severely limit the window by 
which the system observes its world. On the other hand, 
the use of fixed-length character strings has permitted 
Holland and others to construct a significant body of 
theory as to why genetic algorithms work. Much of this 
theoretical analysis depends on the mathematical tract- 
ability of the fixed-length character strings as compared 
with mathematical structures that are more complex and 
comparatively less susceptible to theoretical analysis. The 
need for increasing the complexity of the structures under- 
going adaptation using the genetic algorithm has been 
reflected by considerable work over the years in that direc- 
tion (Smith, 1980; Cramer, 1985; Holland, 1986; Holland 
et al., 1986; Wilson, 1987a,b; Fujiki and Dickinson, 1987; 
Goldberg et al., 1989). 

For many problems in machine learning and artificial 
intelligence, the most natural representation for a solution 
is a computer program (i.e. a hierarchical composition of 
primitive functions and terminals) of indeterminate size 
and shape, as opposed to character strings whose size has 
been determined in advance. It is difficult, unnatural, and 
overly restrictive to attempt to represent hierarchies of 
dynamically varying size and shape with fixed-length char- 
acter strings. 

Genetic programming provides a way to find a computer 
program of unspecified size and shape to solve, or approxi- 
mately solve, a problem. The book Genetic Programming." 
On the Programming of Computers by Means of Natural 
Selection (Koza, 1992a) describes genetic programming in 
detail. A videotape visualization of applications of genetic 
programming can be found in the Genetic Programming: 
The Movie (Koza and Rice, 1992a). See also Koza (1992b). 

3. Overview of genetic programming 

Genetic programming continues the trend of dealing with 
the problem of representation in genetic algorithms by 
increasing the complexity of the structures undergoing 
adaptation. In particular, the individuals in the population 
in genetic programming are hierarchical compositions of 
primitive functions and terminals appropriate to the parti- 
cular problem domain. The set of primitive functions used 
typically includes arithmetic operations, mathematical 
functions, conditional logical operations, and domain- 
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specific functions. The set of  terminals used typically 
includes inputs appropriate to the problem domain and 
various numeric constants. 

The compositions of primitive functions and terminals 
described above correspond directly to the computer pro- 
grams found in programming languages such as LISP 
(where they are called symbolic expressions or S-expres- 
sions). An S-expression can be represented as a rooted, 
point-labelled tree with ordered branches in which the 
root and other internal points of the tree are labelled with 
functions and in which the external points of the tree are 
labelled with terminals. In fact, these compositions corres- 
pond directly to the parse tree that is internally created by 
the compilers of most programming languages. Thus, 
genetic programming views the search for a solution to a 
problem as a search in the space of all possible com- 
positions of functions that can be recursively composed of  
the available primitive functions and terminals. 

Of course, virtually any problem in artificial intelligence, 
symbolic processing, and machine learning can be viewed as 
requiring discovery of a computer program that produces 
some desired output for particular inputs. The process of 
solving these problems can be reformulated as a search 
for a highly fit individual computer program in the space 
of possible computer programs. When viewed in this way, 
the process of solving these problems becomes equivalent 
to searching a space of  possible computer programs for 
the fittest individual computer program. In particular, the 
search space is the space of all possible computer programs 
composed of functions and terminals appropriate to the 
problem domain. Genetic programming provides a way 
to search for this fittest individual computer program. 

In genetic programming, populations of hundreds or 
thousands of  computer programs are genetically bred. 
This breeding is done using the Darwinian principle of sur- 
vival and reproduction of the fittest along with a genetic 
recombination (crossover) operation appropriate for 
mating computer programs. As will be seen, a computer 
program that solves (or approximately solves) a given prob- 
lem may emerge from this combination of Darwinian 
natural selection and genetic operations. 

Genetic programming starts with an initial population of  
randomly generated computer programs composed of func- 
tions and terminals appropriate to the problem domain. 
The functions may be standard arithmetic operations, 
standard programming operations, standard mathemati- 
cal functions, logical functions, or domain-specific func- 
tions. Depending on the particular problem, the computer 
program may be Boolean-valued, integer-valued, real- 
valued, complex-valued, vector-valued, symbolic-valued, 
or multiple-valued. The creation of this initial random 
population is, in effect, a blind random search of the 
search space of the problem. 

Each individual computer program in the population is 
measured in terms of  how well it performs in the particular 

problem environment. This measure is called the fitness 
measure. 

The nature of  the fitness measure varies with the prob- 
lem. For many problems, fitness is naturally measured by 
the error produced by the computer program. The closer 
this error is to zero, the better the computer program. If 
one is trying to find a good randomizer, the fitness of a 
given computer program might be measured via entropy. 
The higher the entropy, the better the randomizer. If one 
is trying to recognize patterns or classify examples, the fit- 
ness of a particular program might be the number of 
examples (instances) it handles correctly. The more 
examples correctly handled, the better. In a problem of 
optimal control, the fitness of a computer program may 
be the amount of time or fuel or money required to bring 
the system to a desired target state. The smaller the 
amount of time or fuel or money, the better. For  some 
problems, fitness may consist of a combination of factors 
such as correctness, parsimony, or efficiency. 

Typically, each computer program in the population is 
run over a number of different fitness cases so that its fit- 
ness is measured as a sum or an average over a variety of 
representative different situations. These fitness cases some- 
times represent a sampling of different values of  an indepen- 
dent variable or a sampling of different initial conditions of 
a system. For  example, the fitness of an individual com- 
puter program in the population may be measured in 
terms of the sum of the squares of the differences between 
the output produced by the program and the correct 
answer to the problem. This sum may be taken over a samp- 
ling of different inputs to the program. The fitness cases 
may be chosen at random or may be structured in some 
way. 

The Computer programs in generation 0 will have exceed- 
ingly poor  fitness. None the less, some individuals in the 
population will turn out to be somewhat fitter than 
others. These differences in performance are then 
exploited. The Darwinian principle of  reproduction and 
survival of the fittest and the genetic operation of sexual 
recombination (crossover) are used to create a new off- 
spring population of individual computer programs from 
the current population of  programs. The reproduction 
operation involves selecting on the basis of fitness (i.e. the 
fitter the program, the more likely it is to be selected), a 
computer program from the current population of pro- 
grams, and allowing it to survive by copying it into the 
new population. 

The genetic process of  sexual reproduction between two 
parental computer programs is used to create new off- 
spring computer programs from two parental programs 
selected on the basis of fitness. The parental programs are 
typically of different sizes and shapes. The offspring pro- 
grams are composed of subexpressions (subtrees, subpro- 
grams, subroutines, building blocks) from their parents. 
These offspring programs are typically of  different sizes 
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and shapes than their parents. Intuitively, if two computer 
programs are somewhat effective in solving a problem, then 
some of their parts probably have some merit. By recom- 
bining randomly chosen parts of somewhat effective 
programs, we may produce new computer programs that 
are even fitter in solving the problem. For example, con- 
sider the following computer program (LISP symbolic 
expression): 

(+('0.234Z) (-X0.789)), 

which we would ordinarily write as 

0.234Z + X - 0.789. 

This program takes two inputs (X and Z) and produces a 
floating-point output. In the prefix notation used, the multi- 
plication function * is first applied to the terminals 0.234 
and Z to produce an intermediate result. Then, the subtrac- 
tion function - is applied to the terminals X and 0.789 to 
produce a second intermediate result. Finally, the addition 
function + is applied to the two intermediate results to pro- 
duce the overall result. 

Also, consider a second program: 

(* (*ZY) (+Y(*0.314Z))), 

which is equivalent to 

ZY(Y + 0.314Z). 

In Fig. 1, these two programs are depicted as rooted, point- 
labelled trees with ordered branches. Internal points (i.e. 
nodes) of the tree correspond to functions (i.e. opera- 
tions) and external points (i.e. leaves, endpoints) corre- 
spond to terminals (i.e. input data). The numbers beside 
the function and terminal points of the tree appear for refer- 
ence only. The crossover operation creates new offspring by 
exchanging subtrees (i.e. sublists, subroutines, subproce- 
dures) between the two parents. 

Assume that the points of both trees are numbered in a 
depth-first way starting at the left. Suppose that the point 
number 2 (out of 7 points of the first parent) is randomly 
selected as the crossover point for the first parent and 
that the point number 5 (out of 9 points of the second 
parent) is randomly selected as the crossover point of the 

0.234Z 

K o z a  

Y + 0.314Z 

Fig. 2. Two crossover fragments 

second parent. The crossover points in the trees above are 
therefore the * in the first parent and + in the second 
parent. The two crossover fragments are the two sub-trees 
shown in Fig. 2. These two crossover fragments corres- 
pond to the underlined subprograms (sublists) in the two 
parental computer programs. The two offspring resulting 
from crossover are 

(+(+Y(*0.314Z)) (-X0.789)) 

and 

(* (*ZY)(*0.234Z)). 

The two offspring are shown in Fig. 3. 
Thus, crossover creates new computer programs using 

parts of existing parental programs. Because entire sub- 
trees are swapped, this crossover operation always pro- 
duces syntactically and semantically valid programs as 
offspring regardless of the choice of the two crossover 
points. Because programs are selected to participate in the 
crossover operation with a probability proportional to 
fitness, crossover allocates future trials to areas of the 
search space represented by programs containing parts 
from promising programs. 

After the operations of reproduction and crossover are 
performed on the current population, the population of off- 
spring (i.e. the new generation) replaces the old population 
(i.e. the old generation). Each individual in the new popu- 
lation of computer programs is then measured for fitness, 
and the process is repeated over many generations. 

At each stage of this highly parallel, locally controlled, 

0.234Z + X - 0.789 ZY(Y + 0.314Z) 

1 

Y + 0.314Z + X - 0.789 0.234Z2Y 

Fig. 1. Two parental computer programs Fig. 3. Two offspring 
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decentralized process, the state of the process will consist 
only of the current population of individuals. The force 
driving this process consists only of the observed fitness 
of the individuals in the current population in grappling 
with the problem environment. 

As will be seen, this algorithm will produce populations 
of computer programs which, over many generations, 
tend to exhibit increasing average fitness in dealing with 
their environment. In addition, these populations of 
computer programs can rapidly and effectively adapt to 
changes in the environment. Typically, the best individual 
that appeared in any generation of a run (i.e. the best-so- 
far individual) is designated as the result produced by 
genetic programming. 

The hierarchical character of the computer programs 
that are produced is an important feature of genetic 
programming. The results of genetic programming are 
inherently hierarchical. In many cases the results produced 
by genetic programming are default hierarchies, prioritized 
hierarchies of tasks, or hierarchies in which one behaviour 
subsumes or suppresses another. 

The dynamic variability of the computer programs that 
are developed along the way to a solution is also an impor- 
tant feature of genetic programming. It would be difficult 
and unnatural to try to specify or restrict the size and 
shape of the eventual solution in advance. Moreover, 
advance specification or restriction of the size and shape 
of the solution to a problem narrows the window by 
which the system views the world and might well preclude 
finding the solution to the problem at all. 

Another important feature of genetic programming is the 
absence or relatively minor role of preprocessing of inputs 
and postprocessing of outputs. The inputs, intermediate 
results, and outputs are typically expressed directly in 
terms of the natural terminology of the problem domain. 
The computer programs produced by genetic program- 
ming consist of functions that are natural for the problem 
domain. 

Finally, the structures undergoing adaptation in genetic 
programming are active. They are not passive chromo- 
somal encodings of the solution to the problem. Instead, 
given a computer on which to run, the structures in genetic 
programming are active program structures that are cap- 
able of being executed in their current form. 

In summary, genetic programming breeds computer pro- 
grams to solve problems by executing the following three 
steps: 

1. Generate an initial population of random computer 
programs composed of the primitive functions and 
terminals of the problem. 

2. Iteratively perform the following substeps until the 
termination criterion for the run has been satisfied: 
(a) Execute each program in the population so that a 

fitness measure indicating how well the program 

solves the problem can be computed for the 
program. 

(b) Create a new population of programs by selecting 
program(s) in the population with a probability 
based on fitness (i.e. the fitter the program, the 
more likely it is to be selected) and then applying 
the following primary operations: 
(i) Reproduction: Copy an existing program to 

the new population. 
(ii) Crossover: Create two new offspring pro- 

grams for the new population by genetically 
recombining randomly chosen parts of two 
existing programs. 

3. The single best computer program in the population 
produced during the run is designated as the result 
of the run of genetic programming. This result may 
be a solution (or approximate solution) to the problem. 

Figure 4 is a flowchart for genetic programming. The 
index i refers to an individual in the population of size M. 
The variable GEN is the number of the current 
generation. The box labelled 'evaluate fitness of each indivi- 
dual in the population' typically consumes the vast majority 
of computer resources. 

In the remainder of this article, we illustrate genetic 
programming with several examples chosen to illustrate 
various different categories of problems, namely: 

�9 symbolic regression of a Boolean-valued function; 
�9 symbolic regression of noisy numeric-valued empirical 

data; 
�9 a multidimensional control problem; 
�9 a classification problem; 
�9 a robotics problem; 
�9 a problem employing hierarchical automatic function 

definition. 

4. Symbolic regression-ll-multiplexer 

The problem of symbolic function identification (symbolic 
regression) requires developing a composition of terminals 
and functions that can return the correct value of the func- 
tion after seeing a finite sampling of combinations of the 
independent variable associated with the correct value of 
the dependent variable. The problem of machine learning 
of a Boolean function is a special case of symbolic regres- 
sion in which the independent variables are Boolean- 
valued, the functions being composed are Boolean func- 
tions, and the dependent variable is Boolean-valued. 

The problem of learning the Boolean l 1-multiplexer 
function will serve to show the interplay in genetic pro- 
gramming of 

�9 the genetic variation inevitably created in the initial 
random generation; 
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Fig. 4. Flowchart for genetic programming 

�9 the small improvements for some individuals in the 
population via localized hill-climbing from generation 
to generation; 

�9 the way particular individuals become specialized and 
able to handle correctly certain subcases of the prob- 
lem (case-splitting); 

�9 the creating role of crossover in recombining valuable 
parts of  more fit parents; 

�9 how the nurturing of a large population of alternative 
solutions to the problem (rather than a single point in 
the solution space) helps avoid false peaks in the search 
for the solution to the problem; 

�9 that it is not necessary to determine in advance the size 
and shape of the ultimate solution or the intermediate 
results that may contribute to the solution. 

The input to the Boolean N-multiplexer function consists 
of k address bits ai and 2 k data bits di, where N = k + 2 k. 

1 Output 

Fig. 5. Boolean l l-multiplexer 

That is, the input consists of the k + 2 k bits 

ak-1 , . . . ,  al, a0, d2k_l, �9 �9 �9 dl, do. 

The value of the Boolean multiplexer function is the 
Boolean value (0 or 1) of the particular data bit that is 
singled out by the k address bits of  the multiplexer. For 
example, for the Boolean 11-multiplexer (where k = 3), if 
the three address bits a2alao are 110, the multiplexer 
singles out data bit number 6 (i.e. d6) to be the output of 
the multiplexer. Figure 5 shows a Boolean 11-multiplexer 
with an input of 11001000000 and the corresponding 
output of 1. 

There are five major steps in preparing to use genetic pro- 
gramming, namely determining: 

1. the set of  terminals; 
2. the set of primitive functions; 
3. the fitness measure; 
4. the parameters for controlling the run; 
5. the method for designating a result and the criterion 

for terminating a run. 

The first major step in preparing to use genetic program- 
ming is the identification of  the set of terminals that 
will be available for constructing the computer programs 
(S-expressions) that will try to solve the problem. This 
choice is especially straightforward for this problem. The 
terminal set for this problem consists of the 11 inputs to 
the Boolean 11-multiplexer. Thus, the terminal set Y- for 
this problem consists of 

~'- = {A0, AI, A2, DO, D 1 , . . . ,  D7}. 

The second major step in preparing to use genetic pro- 
gramming is the identification of a sufficient set of primi- 
tive functions that will be available for constructing the 
computer programs (S-expressions) that solve the prob- 
lem. Thus, the function set ~ for this problem is 

= {AND, OR, NOT, IF} 

taking 2, 2, 1, and 3 arguments, respectively. 
The IF function is the common LISP function that per- 

forms the IF-THEN-ELSE operation. That is, the IF func- 
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tion returns the results of evaluating its third argument (the 
'else' clause) if its first argument is NIL (false) and other- 
wise returns the results of  evaluating its second argument 
(the 'then' clause). The above function set o~ is known to 
be sufficient to realize any Boolean function. 

Since genetic programming operates on an initial popu- 
lation of  randomly generated compositions of the available 
functions and terminals (and later performs genetic opera- 
tions, such as crossover, on these individuals), each primi- 
tive function in the function set should be well defined for 
any combination of arguments from the range of values 
returned by every primitive function that it may encounter 
and the value of every terminal that it may encounter. The 
above function set f f  of primitive functions satisfies the 
closure property. 

The search space for this problem is the set of all LISP 
S-expressions that can be recursively composed of the 
primitive functions from the function set f f  and terminals 
from the terminal set f .  Another way to look at the 
search space is that the Boolean multiplexer function with 
k § 2 k arguments is a particular one of 2 k+2k possible 
Boolean functions of k + 2 k arguments. For  example, 
when k = 3, then k + 2 k = 11 and this search space is of  

211 size 2 . That is, the search space is of size 22~ which is 
a p p r o x i m a t e l y  10 616 . 

The third major step in preparing to use genetic program- 
ming is the identification of the fitness measure for evaluat- 
ing the goodness of an individual S-expression in the 
population. Fitness is often evaluated over a number of fit- 
ness cases--just as computer programs are typically 
debugged by examining their output over a number of 
test cases. The set of fitness cases must be representative 
of the problem as a whole. The reader may find it helpful 
to think of these fitness cases as the 'environment' in 
which the genetic population of computer programs must 
adapt. There are 211 = 2048 possible combinations of the 
11 arguments aoalazdodldzd3d4dsd6d 7 along with the 
associated correct value of the 11-multiplexer function. 
For  this particular problem, we use the entire set of 2048 
combinations of arguments as the fitness cases for evaluat- 
ing fitness (although we could, of course, use sampling). 

We begin by defining raw fitness in the simplest way that 
comes to mind using the natural terminology of the prob- 
lem. The raw fitness of a LISP S-expression in this problem 
is simply the number of fitness cases (taken over all 2048 
fitness cases) where the Boolean value returned by the 
S-expression for a given combination of arguments is the 
correct Boolean value. Thus, the raw fitness of an S-expres- 
sion can range over 2049 different values between 0 and 
2048. A raw fitness of 2048 denotes a 100% correct indivi- 
dual S-expression. 

It is useful to define a fitness measure called standardized 
fitness where a smaller value is better and a zero value is 
best. Since a bigger value of raw fitness is better for this 
problem, standardized fitness is different from raw fitness 

for this problem. In particular, standardized fitness equals 
the maximum possible value of raw fitness rmax (i.e. 2048) 
minus the observed raw fitness. The standardized fitness 
can also be viewed as the sum, taken over all 2048 fitness 
cases, of the Hamming distances (errors) between the 
Boolean value returned by the S-expression for a given 
combination of arguments and the correct Boolean value. 
The Hamming distance is zero if the Boolean value 
returned by the S-expression agrees with the correct 
Boolean value and is one if it disagrees. Thus, the sum of 
the Hamming distances is equivalent to the number of 
mismatches. 

The fourth major step in using genetic programming is 
selecting the values of certain parameters. The two major 
parameters that are used to control the process are the 
population size M and the maximum number of gen- 
erations Ngen to be run. Ngen is 51 throughout this article. 
Our choice of 4000 as the population size for this problem 
reflects an estimate on our part as to the likely complexity 
of this problem and the practical limitations of available 
computer memory. 

In addition, genetic programming is controlled by a 
number of additional secondary parameters. Our choice 
of values for the various secondary parameters that control 
the runs of genetic programming are the same default 
values as we have used on numerous other problems 
(Koza 1992a). Specifically, each new generation is created 
from the preceding generation by applying the fitness pro- 
portionate reproduction operation to 10% of the popu- 
lation and by applying the crossover operation to 90% of 
the population (with both parents selected with a prob- 
ability proportionate to fitness). In selecting crossover 
points, 90% were internal (function) points of the tree 
and 10% were external (terminal) points of the tree. For  
the practical reason of  avoiding the expenditure of large 
amounts of computer time on an occasional oversized pro- 
gram, the depth of  initial random programs was limited to 6 
and the depth of programs created by crossover was limited 
to 17. The individuals in the initial random generation were 
generated so as to obtain a wide variety of  different sizes 
and shapes among the S-expressions. Fitness is 'adjusted' 
to emphasize small differences near zero. Spousal selection 
was also fitness proportionate. Details of the selection of 
these secondary parameters can be found in Koza 
(1992a). We believe that sufficient information is provided 
herein and in Koza (1992a) to allow replication of the 
experimental results reported herein, within the limits 
inherent in a probabilistic algorithm. Common LISP soft- 
ware for genetic programming is listed in Koza (1992a). 

Finally, the fifth major step in preparing to use genetic 
programming is the selection of the criterion for terminat- 
ing a run and the selection of  the method for designating 
a result. In this problem we have a way to recognize a solu- 
tion when we find it. When the raw fitness is 2048 (i.e. the 
standardized fitness is zero), we have a 100% correct 



94 Koza 

solution to this problem. Thus, we terminate a run after a 
specified maximum number of generations Ngen (e.g. 51) 
or earlier if we find an individual with a raw fitness of 
2048. For all the problems in this article, we will terminate 
a given run after 51 generations and we designate the best 
single individual in the population at the time of ter- 
mination as the result of genetic programming. 

We now illustrate genetic programming by discussing 
one particular run of the Boolean 11-multiplexer in detail. 
The process begins with the generation of the initial 
random population (i.e. generation 0). 

Predictably, the initial random population includes a 
variety of highly unfit individuals. Many individual 
S-expressions in this initial random population are merely 
constants, such as the contradictory (AND A0 (NOT 
A0)). Other individuals are passive and merely pass an 
input through as the output, such as (NOT (NOT A1)). 
Other individuals are inefficient, such as (OR 97  D7). 
Some of these initial random individuals base their deci- 
sion on precisely the wrong arguments, such as (IF DO 
A0 A2). This individual uses the data bit DO to decide 
what output to take. Many of the initial random indi- 
viduals are partially blind in that they do not incorporate 
all 11 arguments that are known to be necessary to solve 
the problem. Some S-expressions are just nonsense, such as 

(IF (IF (IF 9 2  92  D2) D2 92) D2 D2). 

None the less, even in this highly unfit initial random 
population, some individuals are somewhat more fit than 
others. For this particular run, the individuals in the initial 
random population had values of standardized fitness rang- 
ing from 768 mismatches (i.e. 1280 matches) to 1280 mis- 
matches (i.e. 768 matches). 

The worst individual in the population for the initial 
random generation was 

(OR (NOT A1) (NOT (IF (AND 12  10) 07  93))). 

This individual had a standardized fitness of 1280 (i.e. raw 
fitness of only 768). 

As it happens, a total of 23 individuals out of the 4000 in 
this initial random population tied with the highest score of 
1280 matches on generation 0. One of these 23 high-scoring 
individuals was the S-expression 

(IF A0 D1 D2). 

This individual scores 1280 matches by scoring 512 matches 
for the one quarter (i.e. 512) of the 2048 fitness cases for 
which A2 and A1 are both NIL and by scoring an addi- 
tional 768 matches on 50% of the remaining three quarters 
(i.e. 1536) of the fitness cases. 

This individual has obvious shortcomings. Notably, it is 
partially blind in that it uses only 3 of the 11 necessary 
terminals of the problem. As a consequence of this fact 
alone, this individual cannot possibly be a correct solution 
to the problem. This individual none the less does some 

things right. For example, it uses 1 of the 3 address bits 
(A0) as the basis for its action. It could easily have done 
this wrong and used 1 of the 8 data bits. In addition, this 
individual uses only data bits (D1 and D2) as its output. 
It could have done this wrong and used address bits. More- 
over, if A0 (which is the low-order binary bit of the 3-bit 
address) is T (True), this individual selects 1 of the 3 odd- 
numbered data bits (D1) as its output. Moreover, if A0 is 
NIL, this individual selects 1 of the 3 even-numbered data 
bits (D2) as its output. In other words, this individual 
correctly links the parity of the low-order address bit A0 
with the parity of the data bit it selects as its output. This 
individual is far from perfect, but it is far from being with- 
out merit. It is more fit than 3977 of the 4000 individuals in 
the population. 

The average standardized fitness for all 4000 individuals 
in the population for generation 0 is 985.4. This value of 
average standardized fitness for the initial random popu- 
lation forms the baseline and serves as a useful benchmark 
for monitoring later improvements in the average standard- 
ized fitness of the population. 

The hits histogram is a useful monitoring tool based on 
the auxiliary hits measure. This histogram provides a way 
of viewing the population as a whole for a particular gen- 
eration. The horizontal axis of the hits histogram is the 
number of hits (i.e. matches, for this problem) and the 
vertical axis is the number of individuals in the population 
scoring that number of hits. Fifty different levels of fitness 
are represented in the hits histogram for the population at 
generation 0 of this problem. In order to make this histo- 
gram legible for this problem, we have divided the hori- 
zontal axis into buckets of size 64. For example, 1553 
individuals out of 4000 (i.e. about 39%) had between 
1152 and 1215 matches (hits). This well-populated range 
includes the mode of the distribution which occurs at 
1152 matches (hits). There are 1490 individuals with 1152 
matches (hits). Figure 6 shows the hits histogram of the 
population for generation 0 of this run of this problem. 

The Darwinian reproduction operation and the genetic 
crossover operation are then applied to parents selected 
from the current population with probabilities proportion- 
ate to fitness to breed a new population. When these 
operations are completed, the new population (i.e. the 
new generation) replaces the old population. 

The initial random generation is an exercise in blind 
random search. In going from generation 0 to generation 
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Fig. 6. Hits histogram for generation 0 
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1, genetic programming works with the inevitable genetic 
variation existing in an initial random population. The 
search is a parallel search of the search space because 
there are 4000 individual points involved. 

Although the vast majority of the new offspring are again 
highly unfit, some of them tend to be somewhat more fit 
than others. Moreover, over a period of time and many gen- 
erations, some of them tend to be slightly more fit than 
those existing in the earlier generation. In this run, the aver- 
age standardized fitness of the population immediately 
begins improving (i.e. decreasing) from the baseline value 
of 985.4 for generation 0 to about 891.9 for generation 1. 
We typically see this kind of generally improving trend 
in average standardized fitness from generation to gen- 
eration. As it happens, in this particular run of this particu- 
lar problem, the average standardized fitness improves (i.e. 
decreases) monotonically between generation 2 and gen- 
eration 9 and assumes values of 845, 823, 763, 731, 651, 
558, 459, and 382, respectively. We usually see a generally 
improving trend in average standardized fitness from gen- 
eration to generation, but not necessarily a monotonic 
improvement. 

In addition, we similarly usually see a generally improv- 
ing trend in the standardized fitness of the best single indi- 
vidual in the population from generation to generation. As 
it happens, in this particular run of this particular problem, 
the standardized fitness of the best single individual in 
the population improves (i.e. decreases) monotonically 
between generation 2 and generation 9. In particular, it 
assumes values of 640, 576, 384, 384, 256, 256, 128, and 0 
(i.e. a perfect score), respectively. 

On the other hand, the standardized fitness of the worst 
single individual in the population fluctuates consider- 
ably. For this particular run, the standardized fitness of 
the worst individual starts at 1280, fluctuates considerably 
between generations 1 and 9, and then deteriorates 
(increases) to 1792 by generation 9. 

Figure 7 shows the standardized fitness (i.e. mismatches) 
for generations 0 through 9 of this run for the best 

single individual in the population, the worst single 
individual in the population, and the average for the 
population. 

In generation 1, the raw fitness for the best single indi- 
vidual in the population rises to 1408 matches (i.e. stan- 
dardized fitness of 640). Only one individual in the 
population attained this high score of 1408 in generation 
1, namely 

(IF A0 (IF A2 D7 D3) DO). 

Note that this individual performs better than the best indi- 
vidual from generation 0 for two reasons. First, this indi- 
vidual considers two of the three address bits (A0 and 
A2) in deciding which data bit to choose as output, 
whereas the best individual in generation 0 considered 
only 1 of the 3 address bits (A0). Second, this best indi- 
vidual from generation 1 incorporates 3 of the 8 data bits 
as its output, whereas the best individual in generation 0 
incorporated only 2 of the 8 potential data bits as output. 
Although still far from perfect, the best individual from 
generation 1 is less blind and more complex than the 
best individual of the previous generation. This best-of- 
generation individual consists of 7 points, whereas the best- 
of-generation individual from generation 0 consisted of 
only 4 points. Note that these 21 individuals are not just 
copies of the best-of-generation individual from gen- 
eration 1. Instead, they represent a number of different pro- 
grams with the same fitness, but different structure and 
behaviour. 

In generation 2, the best raw fitness remained at 1408; 
however, the number of individuals in the population 
sharing this high score rose from 1 to 21. The high point of 
the hits histogram advanced from 1152 for generation 0 to 
1280 for generation 2. There are 1620 individuals with 1280 
hits. 

In generation 3, one individual in the population attained 
a new high score of 1472 matches (i.e. standardized fitness 
of 576). This individual has 16 points and is 

0 . . . 2048 

0 3 6 9 
Generation 

Fig. 7. Standardized fitness of worst-of-generation individual, aver- 
age standardized fitness of population, and standardized fitness of 
best-of-generation individual for generations 0 through 9 

(IF A2 (IF A0 D7 D4) 

(AND (IF (IF A2 (NOT D5) A0) D3 D2) D2)). 

Generation 3 shows further advances in fitness for the 
population as a whole. The number of individuals with 
1280 hits (the high point for generation 2) has risen to 
2158 for generation 3. Moreover, the centre of gravity of 
the fitness histogram has shifted significantly from left to 
right. In particular, the number of individuals with 1280 
hits or better has risen from 1679 in generation 2 to 2719 
in generation 3. 

In generations 4 and 5, the best single individual has 1664 
hits. This score is attained by only one individual in genera- 
tion 4, but by 13 individuals in generation 5. One of these 13 
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individuals is 

(IF A0 (IF A2 D7 D3) 

(IF A2 D4 (IF A1 D2 (IF A2 D7 DO)))). 

Note that this individual uses all three address bits (A2, A1, 
and A0) in deciding upon the output. It also uses 5 of the 8 
data bits. By generation 4, the high point of the histogram 
has moved to 1408 with 1559 individuals. In generation 6, 4 
individuals attain a score of 1792 hits. The high point of the 
histogram has moved to 1536 hits. In generation 7, 70 indi- 
viduals attain this score of 1792 hits. 

In generation 8, there are four best-of-generation indi- 
viduals. They all attain a score of 1920 hits. The mode 
(high point) of the histogram has moved to 1664, and 
1672 individuals share this value. Moreover, an additional 
887 individuals score 1792. 

In generation 9, one individual emerges with a 100% per- 
fect score of 2048 hits. That individual is 

(IF A0 (IF A2 (IF A1 D7 (IF A0 D5 DO)) 

(IF A0 (IF A1 (IF A2 D7 D3) D1) 

DO)) 
(IF A2 (IF A1 D6 D4) 

(IF A2 D4 

(IF A1 D2 (IF A2 D7 DO))))) 

Figure 8 shows the 100% correct individual from gen- 
eration 9. This 100% correct individual from generation 9 
is a hierarchical structure consisting of 37 points (i.e. 12 
functions and 25 terminals). 

Note that the size and shape of this solution emerged 
from genetic programming. This particular size and this 
particular hierarchical structure was not specified in 
advance. Instead, it evolved as a result of reproduction, 
crossover, and the relentless pressure of fitness. In gen- 
eration 0, the best single individual in the population had 
12 points. The number of points in the best single indi- 
vidual in the population varied from generation to gen- 
eration. It was 4 in generation 0, while it was 37 for 
generation 9. 

Fig. 8. 100% correct individual from generation 9 

Generation 3 
3000, 

= 2000 ~ 

10002 

0 1024 Hits 
Generation 5 

3000- 

2000; 
1000 i I 

. _ ~ l  E l  
0 "  �9 . . i  . . . =  . .  i . - i . . .  

0 1024 Hits 
Generation 7 3000- 

= ~ 2000 ~ 

1000 ~ 

0'" *,,,,,,,,,,,,,*, 
0 1024 Hits 

Generation 9 3000- 

2000" ! 
g 

1000~ 
0'  . . . . . . . . . . . . . . . .  

0 1024 

2048 

2048 

2048 

, , . i ; !  
Hits 2048 

Fig. 9. Hits h&tograms for generations 3, 5, 7, and 9 for the 
11-multiplexer 

This 100% correct individual can be simplified to 

(IF A0 (IF A2 (IF A1 D7 D5) (IF A1 D3 D1)) 

(IF A2 (IF A1 D6 D4) (IF A1 D2 DO))). 

When so rewritten, it can be seen that this individual 
correctly performs the l 1-multiplexer function by first 
examining address bits A0, A2, and A1 and then choosing 
the appropriate 1 of the 8 possible data bits. 

Figure 9 shows the hits histograms for generations 3, 5, 7, 
and 9 of this run. As one progresses from generation to gen- 
eration, note the left-to-right 'slinky' undulating movement 
of the centre of mass of the histogram and the high point of 
the histogram. This movement reflects the improvement of 
the population as a whole as well as the best single indi- 
vidual in the population. There is a single 100% correct 
individual with 2048 hits at generation 9; however, because 
of the scale of the vertical axis of this histogram, it is not 
visible in a population of size 4000. 

Further insight can be gained by studying the genea- 
logical audit trail consisting of a complete record of the 
details of each genetic operation that is performed at 
each generation. The creative role of crossover and case- 
splitting is illustrated by an examination of the genealogical 
audit trail for the 100% correct individual emerging at gen- 
eration 9. 

The 100% correct individual emerging at generation 9 is 
the child resulting from the most common genetic operation 
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Fig. 10. First parent (scoring 1792 hits)from generation 8for 100% 
correct individual in generation 9 

used in the process, namely crossover. The first parent from 
generation 8 had rank location of 58 in the population (with 
a rank of 0 being the very best) and scored 1792 hits (out of 
2048). The second parent from generation 8 had rank 
location 1 and scored 1920 hits. Note that it is entirely 
typical that the individuals selected to participate in cross- 
over have relatively high rank locations in the population 
since crossover is performed among individuals in a 
mating pool created proportional to fitness. 

The first parent from generation 8 (scoring 1792) was 

(IF A0 (IF a 2  D7 D3) 

(IF A2 (IF A1 D6 D4) 

(IF A2 D4 

(IF A1 D2 (IF A2 D7 DO))))). 

Figure 10 shows this first parent from generation 8. Note 
that this first parent starts by examining address bit A0. 
If A0 is T, the underlined portion then examines address 
bit A2. It then, partially blindly, makes the output equal 
D7 or D3 without even considering address bit A1. More- 
over, the underlined portion of this individual does not 
even contain data bits D1 and D5. 

On the other hand, when A0 is NIL, this first parent is 
100% correct. In that event, it examines A2 and, if A2 is 
T, it then examines A1 and makes the output equal to D6 
or D4 according to whether A1 is T or NIL. Moreover, if 
A2 is NIL, it twice retests A2 (unnecessarily, but harm- 
lessly) and then correctly makes the output equal to (IF 
A1 D2 DO). Note that the 100% correct portion of this 
first parent, namely, the sub-expression 

(IF A2 (IF A1 D6 D4) 

(IF A2 D4 (IF A1 D2 (IF A2 D7 DO)))) 

is itself a 6-multiplexer. This embedded 6-multiplexer tests 
A2 and A1 and correctly selects amongst D6, D4, D2, 
and DO. This fact becomes clearer if we simplify this sub- 
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expression by removing the two extraneous tests and 
removing the D7 (which is unreachable). This sub- 
expression simplifies to the following: 

(IF A2 (IF A1 D6 D4) 

(IF a l  D2 DO)) 

In other words, this imperfect first parent handles part of 
its environment correctly and part of its environment 
incorrectly. In particular, this first parent handles the 
even-numbered data bits correctly and is partially correct 
in handling the odd-numbered data bits. 

The tree representing this first parent has 22 points. The 
crossover point chosen at random at the end of generation 8 
was point 3 and corresponds to the second occurrence of 
the function IF. That is, the crossover fragment consists 
of the incorrect underlined sub-expression 

(IF A2 D7 D3). 

The second parent from generation 8 (scoring 1920 hits) 
w a s  

(IF A0 (IF A0 

(IF A2 (IF A1 D7 (IF A0 D5 DO)) 

(IF A0 (IF a l  (IF A2 D7 

D3) 

D1) 

DO)) 

(IF A1 D6 D4)) 

(IF A2 D4 

(IF A1 D2 

(IF A0 D7 (IF A2 D4 DO))))) 

Figure 11 shows the second parent from generation 8. 

Fig. 11. Second parent (scoring 1920 hits)from generation 8 for 
100% correct individual in generation 9 
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Fig. 12. Simplified 100% correct individual from generation 9 shown 
as a hierarchy o f  two 6-multiplexers 

The tree representing this second parent has 40 points. The 
crossover point chosen at random for this second parent 
was point 5. This point corresponds to the third occurrence 
of the function IF. That is, the crossover fragment consists 
of the underlined sub-expression of this second parent. 

This sub-expression of this second parent 100% correctly 
handles the case when A0 is T (i.e. the odd-numbered 
addresses). This sub-expression makes the output equal to 
D7 when the address bits are 111, to D5 when the address 
bits are 101, to D3 when the address bits are 011; and to 
D 1 when the address bits are 001. 

Note that the 100% correct portion of this second parent, 
namely the sub-expression 

(IF A2 (IF A1 D7 (IF A0 D5 DO)) 

(IF A0 (IF A1 (IF A2 D7 D3) D1) DO)) 

is itself a 6-multiplexer. This embedded 6-multiplexer in the 
second parent tests A2 and A1 and correctly selects 
amongst D7, D5, D3, and D1 (i.e. the odd-numbered 
data bits). This fact becomes clearer if we simplify this 
sub-expression of this second parent to the following: 

(IF A2 (IF A1 D7 D5) 

(IF A1 D3 D1)) 

In other words, this imperfect second parent handles part 
of its environment correctly and part of its environment 
incorrectly. This second parent does not do very well 
when A0 is NIL (i.e. the even-numbered data bits). This 
second parent correctly handles the odd-numbered data 
bits and incorrectly handles the even-numbered data bits. 

Even though neither parent is perfect, these two imper- 

Fig. 13. Simplified 100% correct individual from generation 9 shown 
as a hierarchy o f  two 6-multiplexers 
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fect parents contain complementary portions which, when 
mated together, produce a 100% correct offspring indi- 
vidual. In effect, the creative effect of the crossover 
operation blends the two cases of the implicitly 'case-split' 
environment into a single 100% correct solution. 

Figure 12 shows this case splitting by showing the 100% 
correct offspring from generation 9 as two 6-multiplexers: 
Fig. 13 also shows this simplified version of the 100% 
correct individual from generation 9. 

Of course, not all crossovers between individuals are 
useful and productive. In fact, a large number of the indi- 
viduals produced by the genetic operations are useless. 
But the existence of a population of alternative solutions 
to a problem provides the ingredients with which genetic 
recombination (crossover) can produce some improved 
individuals. The relentless pressure of natural selection 
based on fitness then causes these improved individuals to 
be preserved and to proliferate. Moreover, genetic vari- 
ation and the existence of a population of alternative 
solutions to a problem make it unlikely that the entire 
population will become trapped on local maxima. 

Interestingly, the same crossover that produced the 
100% correct individual also produced a runt scoring 
only 256 hits. In this particular crossover, the two cross- 
over fragments not used in the 100% correct individual 
combined to produce an unusually unfit individual. This 
is one of the reasons why there is considerable variability 
from generation to generation in the worst single indi- 
vidual in the population. 

As one traces the ancestry of the 100% correct individual 
created in generation 9 deeper back into the genealogical 
audit tree (i.e. towards earlier generations), one encounters 
parents scoring generally fewer and fewer hits. That is, one 
encounters more S-expressions that perform irrelevant, 
counterproductive, partially blind, and incorrect work. 
But if we look at the sequence of hits in the forward direc- 
tion, we see localized hill-climbing in the search space 
occurring in parallel throughout the population as the 
creative operation of crossover recombines complemen- 
tary, co-adapted portions of parents to produce improved 
offspring. 

The solution to the 11-multiplexer problem in this run 
was a hierarchy consisting of two 6-multiplexers. In a run 
where we applied genetic programming to the simpler 
Boolean 6-multiplexer, we obtained the following 100% 
correct solution: 

(IF (AND A0 A1) D3 (IF A0 D1 (IF A1 D2 DO))). 

This solution to the 6-multiplexer is also a hierarchy. It is a 
hierarchy that correctly handles the particular fitness cases 
where (AND A0 A1) is true and then correctly handles the 
remaining cases where (AND A0 A1) is false. 

Default hierarchies often emerge from genetic program- 
ming. A default hierarchy incorporates partially correct 
sub-rules into a perfect overall procedure by allowing the 
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partially correct (default) sub-rules to handle the majority 
of the environment and by then dealing in a different way 
with certain specific exceptional cases in the environment. 
The S-expression above is also a default hierarchy in 
which the output defaults to 

(IF A0 D1 (IF A1 D2 DO)) 

three quarters of the time. However, in the specific excep- 
tional fitness case where both address bits (A0 and A1) 
are both T, the output is the data bit D3. 

Default hierarchies are considered desirable in induction 
problems (Holland, 1986, Holland et al., 1986, Wilson, 
1988) because they are often parsimonious and they are a 
human-like way of dealing with situations. 

5. Symbolic regression-empirical data 

An important problem area in virtually every area of 
science is finding the relationship underlying empirically 
observed values of the variables measuring a system. In 
practice, the observed data may be noisy and there may 
be no known way to express the relationships involved in 
a precise way. 

The learning of the Boolean multiplexer function is an 
example of the general problem of symbolic function iden- 
tification (symbolic regression). In this section, we discuss 
symbolic regression as applied to real-valued functions 
over real-valued domains. 

In conventional linear regression, one is given a set of 
values of various independent variable(s) and the corre- 
sponding values for the dependent variable(s). The goal is 
to discover a set of numerical coefficients for a linear com- 
bination of the independent variable(s) which minimizes 
some measure of error (such as the square root of the 
sum of the squares of the differences) between the given 
values and computed values of the dependent variable(s). 
Similarly, in quadratic regression, the goal is to discover a 
set of numerical coefficients for a quadratic expression 
which similarly minimizes error. 

Of course, it is left to the researcher to decide whether to 
do a linear regression, a quadratic regression, or a higher- 
order polynomial regression, or whether to try to fit the 
data points to some non-polynomial family of functions 
(e.g. sines and cosines of various periodicities, etc.). But, 
often, the issue is deciding what type of function most 
appropriately fits the data, not merely computing the 
numerical coefficients after the type of function for the 
model has already been chosen. In other words, the real 
problem is often both the discovery of the correct func- 
tional form that fits the data and the discovery of the appro- 
priate numeric coefficients that go with that functional 
form. We call the problem of finding, in symbolic form, a 
function that fits a given finite sample of data, by the 
name symbolic regression. It is 'data to function' regression. 

The problem of discovering empirical relationships from 
actual observed data is illustrated by the well-known non- 
linear econometric exchange equation 

M V  p -  
Q 

This equation states the relationship between the gross 
national product Q of an economy, the price level P, the 
money supply M, and the velocity of money V. 

Suppose that our goal is to find the econometric model 
expressing the relationship between quarterly values of 
the price level P and the quarterly values of the three 
other quantities appearing in the equation. That is, our 
goal is to rediscover the relationship 

M V  p -  
Q 

from the actual observed noisy time series data. Moreover, 
suppose that certain additional economic data are also 
available which are irrelevant to this relationship, but not 
pre-identified as being irrelevant. Many economists believe 
that inflation (which is the change in the price level) can be 
controlled by the central bank via adjustments in the money 
supply M. Specifically, the 'correct' exchange equation for 
the United States in the postwar period is the non-linear 
relationship 

GD - (1.6527 * M2) 
GNP82 

where 1.6527 is the actual long-term historic postwar value 
of the M2 velocity of money in the United States (Hallman 
et al. 1989). Interest rates are not a relevant variable in this 
well-known relationship. 

In particular, suppose we are given the 120 actual 
quarterly values from 1959:1 (i.e. the first quarter of 1959) 
to 1988:4 of the following four econometric time series. 

�9 Inflation or price level P (the dependent variable here) 
is represented by the Gross National Product Deflator 
(normalized to 1.0) for 1982 (conventionally called 
GD). 

�9 The gross national product of the economy Q (one of 
the independent variables) is represented by the 
annual rate for the United States Gross National Pro- 
duct in billions of 1982 dollars (conventionally called 
GNP82). 

�9 The money supply M (another of the independent 
variables) is represented by the monthly values of the 
seasonally adjusted money stock M2 in billions of 
dollars, averaged for each quarter (conventionally 
called M2). 

�9 Interest rates (an independent variable that happens to 
be irrelevant to the calculation here) are represented by 
the monthly interest rate yields of 3-month Treasury 
bills, averaged for each quarter (conventionally 
called FYGM3). 
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The four time series used here were obtained from the CITI- 
BASE data base of machine-readable econometric time 
series (Citibank, 1989). 

As a point of reference, the sum of the squared errors 
between the actual gross national product deflator GD 
from 1959:1 to 1988:4 and the fitted GD series calculated 
from the above model over the entire 30-year period involv- 
ing 120 quarters (1959:1 to 1988:4) is very small, namely 
0.077193. The correlation R 2 was 0.993320. 

These 120 combinations of the above three independent 
variables (M2), and the associated value of the dependent 
variables (GD, GNP82, and FYGM3) are the set from 
which we will draw the fitness cases that will be used to 
evaluate the fitness of any proposed S-expression. 

The goal is to find a function, in symbolic form, that is a 
good fit or perfect fit to the numerical data points. The solu- 
tion to this problem of finding a function in symbolic form 
that fits a given sample of data can be viewed as a search for 
a mathematical expression (S-expression) from a space of 
possible S-expressions that can be composed from a set of 
available functions and arguments. 

The appearance of numeric constants (such as the con- 
stant 1.6527 in the above correct equation) is typical of rela- 
tions among empirical data from the real world. Thus, we 
must deal with the problem of discovering coefficients and 
constant values while doing symbolic regression. 

Constants can be created in genetic programming by 
adding an ephemeral random constant ~ to the terminal 
set. During the creation of generation 0, whenever the 
ephemeral random constant ~ is chosen for an endpoint 
of the tree, a random number of an appropriate type in a 
specified range is generated and attached to the tree at 
that point. For example, in the real-valued symbolic regres- 
sion problem at hand, the ephemeral random constants are 
of floating-point type and their range is between -1.000 
and +1.000. 

This random generation is done anew each time when an 
ephemeral ~ terminal is encountered, so that the initial 
random population contains a variety of different random 
constants of the specified type. Once generated and 
inserted into the S-expressions of the initial random popu- 
lation, these constants remain fixed thereafter. However, 
after the initial random generation, the numerous different 
random constants will be moved around from tree to tree 
by the crossover operation. In many instances, these con- 
stants will be combined via the arithmetic operations in 
the function set of the problem. 

This 'moving around' and 'combining' of the random 
constants is not at all haphazard, but, instead, is driven 
by the overall goal of achieving ever better levels of fit- 
ness. For example, a symbolic expression that is a reason- 
ably good fit to a target function may become a better fit 
if a particular constant is, for example, decreased slightly. 
A slight decrease can be achieved in several different 
ways. For example, there may be a multiplication by 0.90, 

a division by 1.10, a subtraction of 0.08, or an addition of 
-0.004. If  a decrease of precisely 0.09 in a particular con- 
stant would produce a perfect fit, a decrease of 0.07 will 
usually fit better than a decrease of only 0.05. Thus, the 
relentless pressure of the fitness function in the natural 
selection process determines both the direction and magni- 
tude of the adjustments of the original numerical constants. 
It is thus possible to genetically evolve numeric constants as 
required to perform a required symbolic regression on 
numeric data. 

We first divide the 30-year, 120-quarter period into a 20- 
year, 80-quarter in-sample period running from 1959:1 to 
1978:4 and a 10-year 40-quarter out-of-sample period run- 
ning from 1979:1 to 1988:4. This allows us to use the first 
two-thirds of the data to create the model and to then use 
the last third of the data to test the model. 

The first major step in using genetic programming is to 
identify the set of terminals. The terminal set for this prob- 
lem is 

T = {GNP82, FM2, FYGM3, ~}.  

The terminals GNP82, FM2, and FGYM3 correspond to 
the independent variables of the model and provide access 
to the values of the time series. In effect, these terminals 
are functions of the unstated, implicit time variable which 
ranges over the various quarters. 

The second major step in using genetic programming is to 
identify a set of functions. The set of functions chosen for 
this problem is 

F = {+, - ,  *, %, EXP, RLOG} 

taking 2, 2, 2, 2, 1, and 1 arguments, respectively. 
It is necessary to ensure closure by protecting against the 

possibility of division by zero and the possibility of creating 
extremely large or small floating-point values. Accordingly, 
the protected division function % ordinarily returns the 
quotient; however, if division by zero is attempted, it 
returns 1.0. The one-argument exponential function EXP 
ordinarily returns the result of raising e to the power indi- 
cated by its one argument. If  the result of evaluating EXP 
or any of the four arithmetic functions would be greater 
than 101~ or less than 10 -l~ then the nominal value 101~ 
or l0 -1~ respectively, is returned. The protected logarithm 
function RLOG returns 0 for an argument of 0 and other- 
wise returns the logarithm of the absolute value of the 
argument. 

Notice that we are not told a priori whether the unknown 
functional relationship between the given observed data 
(the three independent variables) and the target function 
(the dependent variable, GD) is linear, polynomial, 
exponential, logarithmic, non-linear, or otherwise. The 
unknown functional relationship could be any combi- 
nation of the functions in the function set. Notice also 
that we are also not given the known constant value V for 
the velocity of money. And, notice that we are not told 
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that the 3-month Treasury bill yields (FYGM3) contained 
in the terminal set and the addition, subtraction, exponen- 
tial, and logarithm functions are all irrelevant to finding the 
econometric model for the dependent variable GD of this 
problem. 

The third major step in using genetic programming is 
identification of  the fitness function for evaluating how 
good a given computer program is at solving the problem 
at hand. 

The fitness of  an S-expression is the sum, taken over the 
80 in-sample quarters, of squares of differences between the 
value of the price level produced by S-expression and 
the target value of  the price level given by the GD time 
series. Population size was 500 here. 

The initial random population (generation 0) was, pre- 
dictably, highly unfit. In one run, the sum of squared 
errors between the single best S-expression in the popu- 
lation and the actual GD time series was 1.55. The corre- 
lation R 2 was 0.49. 

As before, after the initial random population was 
created, each successive new generation in the population 
was created by applying the operations of fitness propor- 
tionate reproduction and genetic recombination (cross- 
over). 

In generation 1, the sum of  the squared errors for the new 
best single individual in the population improved to 0.50. 

In generation 3, the sum of  the squared errors for the new 
best single individual in the population improved to 0.05. 
This is approximately a 3t-to-1 improvement over the 
initial random generation. The value of R 2 improved to 
0.98. In addition, by generation 3, the best single individual 
in the population came within 1% of the actual GD time 
series for 44 of the 80 in-sample points. 

In generation 6, the sum of  the squared errors for the new 
best single individual in the population improved to 0.027. 
This is approximately a 2-to-1 improvement over gen- 
eration 3. The value of  R 2 improved to 0.99. 

In generation 7, the sum of  the squared errors for the new 
best single individual in the population improved to 0.013. 
This is approximately a 2-to-1 improvement over gen- 
eration 6. 

In generation 15, the sum of  the squared errors for the 
new best single individual in the population improved to 
0.011. This is an additional improvement over generation 
7 and represents approximately a 141-to-1 improvement 
over generation 0. The correlation R 2 was 0.99. 

In one run, the best single individual had a sum of 
squared errors of only 0.009272 over the in-sample period. 
Figure 14 graphically depicts this best-of-run individual. 

This best-of-run individual is equivalent to 

GD - (1.634 * M2) 
GNP82 

Notice the sub-tree (* -0.402 0 -0.583) on the left of this 
best-of-run individual. This sub-expression evaluates to 
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Fig. 14. Best-of-run individual for exchange equation problem 

-+-0.234. The numeric constants -0 .402 0 and -0.583 were 
created in generation 0 by the constant creation process. 
These two constants are combined into a new constant 
(+0.234), which, in conjunction with other such con- 
stants, eventually produces the overall 1.634 constant as 
the velocity of money. 

Although genetic programming has succeeded in finding 
an expression that fits the given data rather well, there is 
always a concern that a fitting technique may be overfitting 
(i.e. memorizing) the data. If  a fitting technique overfits the 
data, the model produced has no ability to generalize to 
new combinations of the independent variables and there- 
fore has little or no predictive or explanatory value. We 
can validate the model produced from the 80-quarter 
in-sample period with the data from the 40-quarter out-of- 
sample period. 

Table 1. Comparison of in-sample and out-of-sample periods 

Data range 1-120 1-80 81-120 

R 2 0.993 480 0.997 949 0.990 614 
Sum of squared error 0.075 388 0.009 272 0.066 116 
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Fig. 15. Gross national product deflator and fitted series computed 
from genetically produced model 

Table 1 shows the sum of the squared errors and R 2 for 
the entire 120-quarter period, the 80-quarter in-sample 
period, and the 40-quarter out-of-sample period. 

Figure 15 shows both the gross national product deflator 
GD from 1959:1 to 1988:4 and the fitted GD series cal- 
culated from the above genetically produced model for 
1959:1 to 1988:4. The actual GD series is shown as a line 
with dotted points. The fitted GD series calculated from 
the above model is an ordinary line. 

Figure 16 shows the residuals from the fitted GD series 
calculated from the above genetically produced model for 
1959:1 to 1988:4. 

We can further increase confidence that this genetically 
evolved model is not overfitting the data by dividing the 
same 30-year period into a different set of in-sample and 
out-of-sample periods. When we divide the 30-year, 120- 
quarter period into a 10-year, 40-quarter out-of-sample 
period running from 1959:1 to 1968:4 and a 20-year, 80- 
quarter in-sample period running from 1969:1 to 1988:4, 
we obtain a virtually identical model. See Koza (1992a). 

6. Hierarchical automatic function 
definition-ll-parity function 

A key goal in machine learning and artificial intelligence is 
to facilitate the solution of a problem by automatically 
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Fig. 16. Residuals between the gross national product deflator and 
fitted series computed from genetically produced model 

and dynamically decomposing the problem into simpler 
subproblems. 

A human programmer writing a computer program to 
solve a problem often creates a subroutine (procedure, 
function) enabling a common calculation to be performed 
without tediously rewriting the code for that calculation. 
For example, a programmer who needed to write a pro- 
gram for Boolean parity functions of several different 
high orders might find it convenient first to write a sub- 
routine for some lower-order parity function. The code 
for this low-order parity function would be called at differ- 
ent places and with different combinations of arguments 
from the main program and the results then combined in 
the main program to produce the desired higher-order 
parity function. Specifically, a programmer using the 
LISP programming language might first write a function 
definition for the odd-2-parity function xor (exclusive-or) 
as follows: 

(defun xor (argO argl) 

(values (or (and argo (not argl)) 

(and (not argO) argl)))). 

This function definition (called a 'defun' in LISP) does 
four things. First, it assigns a name, xor, to the function 
being defined thereby permitting subsequent reference to 
it. Second, it identifies the argument list of the function 
being defined, namely the list (argO argl) containing two 
dummy variables (formal parameters) called argO and 
argl. Third, it contains a body which performs the work 
of the function. Fourth, it identifies the value to be 
returned by the function. In this example, the single value 
to be returned is emphasized via an explicit invocation of 
the 'values' function. This particular function definition 
has two dummy arguments, returns only a single value, 
has no side effects, and refers only to the two local 
dummy variables (i.e. it does not refer to any of the 
actual variables of the overall problem contained in the 
'main' program). However, in general, defined functions 
may have any number of arguments (including no argu- 
ments), may return multiple values (or no values), may or 
may not perform side effects, and may or may not expli- 
citly refer to the actual (global) variables of the main 
program. 

Once the function xor is defined, it may then be 
repeatedly called with different instantiations of its 
arguments from more than one place in the main pro- 
gram. For example, a programmer who needed the 
even-4-parity at some point in the main program might 
write 

(xor (xor dO dl) (not (xor d2 d3))). 

Function definitions exploit the underlying regularities 
and symmetries of a problem by obviating the need to 
rewrite lines of essentially similar code. A function 
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definition is especially efficient when it is repeatedly called 
with different instantiations of its arguments. However, 
the importance of function definition goes well beyond 
efficiency. The process of defining and calling a function, 
in effect, decomposes the problem into a hierarchy of sub- 
problems. 

The ability to extract a reusable subroutine is potentially 
very useful in many domains. Consider the problem of dis- 
covery of a neural network to recognize patterns presented 
as an array of pixels. Suppose the solution of a pattern 
recognition problem requires discovery of a particular fea- 
ture (e.g. a line end) within the 3 x 3 pixel region in the 
upper left corner of an 8 x 8 array of  pixels and also 
requires discovery of that same feature within a 3 x 3 
pixel region in the lower left corner of the overall array. 
Existing neural net paradigms can successfully discover 
the useful feature among the nine pixels Pll, P12, P13, P21, 
P22, P23, P31, P32, P33 in the upper left corner of an 8 x 8 
array of pixels and can independently rediscover the same 
useful feature among the nine pixels P6~, P62, P63, P16, P71, 
P72, P73, P81, P82, P83 in the lower left corner of the overall 
array. But existing neural net paradigms do not provide a 
way to discover the common feature just once, to generalize 
the feature so that it is not rigidly expressed in terms of  par- 
ticular pixels but is parametrized by its position, and then to 
reuse the generalized feature detector to recognize occur- 
rences of the feature in different 3 x 3 pixel regions within 
the array. That is, existing paradigms do not provide a 
way to discover a function of nine dummy variables just 
once and to call that function twice (once with P11,. . . ,  P33 
as arguments and once with P61,... ,P83 as arguments). 
Such an ability would amount  to discovering a nine-input 
subassembly of neurons with appropriate weights, making 
a copy of the entire subassembly, implanting the copy else- 
where in the overall neural net, and then connecting nine 
different pixels as inputs to the subassembly in its new 
location in the overall neural net. 

Hierarchical automatic function definition can be imple- 
mented within the context of genetic programming by 
establishing a constrained syntactic structure for the indi- 
vidual S-expressions in the population (Koza, 1992a). 
Each individual S-expression in the population contains 
one (or more) function-defining branches and one (or 
more) 'main' result-producing branches. The result- 
producing branch may call the defined functions. One 
defined function may hierarchically refer to another 
already-defined function (and potentially even itself), 
although such hierarchical or recursive references will not 
be used in this article. 

6.1. Learning the even-parity function without hierarchical 
automatic function definition 

In order to establish the facilitating benefits of hierarchical 
automatic function definition in genetic programming, we 

first solve some benchmark problems without using hier- 
archical automatic function definition. 

The Boolean even-parity function of k Boolean argu- 
ments returns T (true) if an even number of its arguments 
are T, and otherwise returns NIL (false). 

In applying genetic programming to the even-parity 
function of k arguments, the terminal set T consists of the 
k Boolean arguments DO, D 1, D2, . . .  involved in the prob- 
lem, so that 

T = {DO, D1, D2, ...}. 

The function set F for all the examples herein consists of 
the following computationally complete set of four two- 
argument primitive Boolean functions: 

F = {AND, OR, NAND, NOR}. 

The Boolean even-parity functions appear to be the most 
difficult Boolean functions to find via a blind random gen- 
erative search of S-expressions using the above function set 
F and the terminal set T. For  example, even though there 
are only 256 different Boolean functions with three argu- 
ments and one output, the Boolean even-3-parity function 
is so difficult to find via a blind random generative search 
that we did not encounter it at all after randomly generat- 
ing 10 000 000 S-expressions using this function set F and 
terminal set T. In addition, the even-parity function 
appears to be the most difficult to learn using genetic pro- 
gramming using the function set F and terminal set T 
above (Koza, 1992a). 

In applying genetic programming to the problem of  
learning the Boolean even-parity function of k arguments, 
the 2 k combinations of the k Boolean arguments constitute 
an exhaustive set of fitness cases for learning this function. 
The standardized fitness of  an S-expression is the sum, over 
these 2 k fitness cases, of the Hamming distance (error) 
between the value returned by the S-expression and the 
correct value of the Boolean function. Standardized fitness 
ranges between 0 and 2~; a value closer to zero is better. The 
raw fitness is equal to the number of fitness cases for which 
the S-expression is correct (i.e. 2 k minus standardized fit- 
ness); a higher value is better. 

We first consider how genetic programming would 
solve the problems of learning the even-3-parity function 
(three-argument Boolean rule 105), the even-4-parity 
function (four-argument Boolean rule 38505), and the 
even-5-parity function (five-argument Boolean rule 
1 771476585). In identifying these k-argument Boolean 
functions in this way, we are employing a numbering 
scheme wherein the value of the function for the 2 k combi- 
nations of its k Boolean arguments are concatenated into a 
2k-bit binary number and then converted to the equivalent 
decimal number. For  example, the 23 : 8 values of the 
even-3-parity function are 0, 1, 1, 0, 1, 0, 0, and 1 (going 
from the fitness case consisting of  three true arguments to 
the fitness case consisting of three false arguments). Since 
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011010012 = 10510 , the even-3-parity function is referred to 
as three-argument Boolean rule 105. 

The terminal set T for the even-3-parity problem consists 
of 

T = {DO, D1, D2}. 

In one run of genetic programming using a population 
size of 4000 (the value of M used consistently in this sec- 
tion, except as otherwise noted), genetic programming dis- 
covered the following S-expression containing 45 points 
(i.e. 22 functions and 23 terminals) with a perfect value of 
raw fitness of 8 (out of a possible value of 23 = 8) in gen- 
eration 5: 

(AND (OR (OR DO (NOR 92  D1)) 02)  (AND (NAND 

(NOR (NOR DO 92) (AND (AND D1 D1) D1)) 

(NAND (OR (AND D0 D1) 92)  DO)) (OR (NAND 

(AND DO D2) (OR (NOR DO (OR 02  D0)) D1)) 

(NAND (NAND D1 (NAND DO D1)) D2)))). 

We then considered the even-4-parity function. In one 
run, genetic programming discovered a program contain- 
ing 149 points with a perfect value of raw fitness of 16 
(out of 24 = 16) in generation 24. 

Figure 17 presents two curves, called the performance 
curves, relating to the even-3-parity function over a series 
of runs. The curves are based on 66 runs with a population 
size M of 4000 and a maximum number of generations to be 
run G of 51. The rising curve in Fig. 17 shows, by gen- 
eration, the experimentally observed cumulative prob- 
ability of success, P(M,i ) ,  of solving the problem by 
generation i (i.e. finding at least one S-expression in the 
population which produces the correct value for all 
23=- 8 fitness cases). As can be seen, the experimentally 
observed value of the cumulative probability of success, 
P(M, i), is 91% by generation 9 and 100% by generation 
21 over the 66 runs. The second curve in Fig. 17 shows, 
by generation, the number of individuals that must be pro- 
cessed, I (M,  i, z), to yield, with probability z, a solution to 
the problem by generation i. I (M,  i, z) is derived from the 
experimentally observed values of P(M, i). Specifically, 
I (M,  i, z) is the product of the population size M, the gen- 
eration number i, and the number of independent runs R(z) 
necessary to yield a solution to the problem with prob- 
ability z by generation i. In turn, the number of runs R(z) 
is given by 

V l o g ( l - - z )  1 
R(z) = [log (1 - P(M, i)) ' 

where the square brackets indicates the ceiling function for 
rounding up to the next highest integer. The probability z 
will be 99% herein. 

As can be seen, the I (M,  i, z) curve reaches a minimum 
value at generation 9 (highlighted by the light dotted 
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Fig. 17. Performance curves for even-3-parity function showing that 
it is sufficient to process 80 000 individuals to yield a solution with 
99% probability with genetic programming 

vertical line). For a value of P(M, i) of 91%, the number 
of independent runs R(z) necessary to yield a solution to 
the problem with a 99% probability by generation i is 2. 
The two summary numbers (i.e. 9 and 80 000) in the oval 
indicate that if this problem is run through to generation 
9 (the initial random generation being counted as gen- 
eration 0), processing a total of 80000 individuals (i.e. 
4000 x 10 generations x 2 runs) is sufficient to yield a 
solution to this problem with 99% probability. This 
number 80 000 is a measure of the computational effort 
necessary to yield a solution to this problem with 99% 
probability. 

Figure 18 shows similar performance curves for the even- 
4-parity function based on 60 runs. The experimentally 
observed cumulative probability of success, P(M, i), is 
35% by generation 28 and 45% by generation 50. The 
I (M,  i,z) curve reaches a minimum value at generation 
28. For a value of P(M, i) of 35%, the number of runs 
R(z) is 11. The two numbers in the oval indicate that if 
this problem is run through to generation 28, processing a 
total of 1 276000 (i.e. 4000 x 29 generations x 11 runs) 
individuals is sufficient to yield a solution to this problem 
with 99% probability. Thus, according to this measure of 
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Fig. 18. Performance curves for even-4-parity function showing that 
it is sufficient to process 1276 000 individuals to yield a solution with 
99% probability with genetic programming 
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computational effort, the even-4-parity problem is about 16 
times harder to solve than the even-3-parity problem. 

We are unable to extend directly this comparison of 
the computational effort necessary to solve the even-parity 
problem with increasing numbers of arguments with our 
chosen population size of 4000. When the even-5-parity 
function was run with a population size of 4000 and each 
run arbitrarily stopped at our chosen maximum number 
G = 51 of generations to be run, no solution was found 
after 20 runs. (Solutions might well have been found if we 
had continued the run, but we did not do this.) Even after 
increasing the population size of 8000 (with G = 51), we 
did not get a solution until our eighth run. This solution 
contained 347 points. 

Notice that the structural complexity (i.e. the total 
number of function points and terminal points in the 
S-expression) of the solutions produced in these three cited 
runs dramatically increased with an increasing number 
of arguments (i.e. structural complexity was 45, 149, 
and 347, respectively, above for the 3-, 4-, and 5-parity 
functions). 

The population size of 4000 is undoubtedly not optimal 
for any particular parity problem and is certainly not opti- 
mal for all sizes of parity problems. Nonetheless, it is clear 
that learning the even-parity functions with increasing 
numbers of arguments requires dramatically increasing 
computational effort and that the structural complexity of 
the solutions become increasingly large. 

6.2. Hierarchical automatic function definition 

The inevitable increase in computational effort and struc- 
tural complexity for solving parity problems of order 
greater than 4 could be controlled if we could discover 
the underlying regularities and symmetries of this problem 
and then hierarchically decompose the problem into more 
tractable sub-problems. Specifically, we need to discover a 
function parametrized by dummy variables that would be 
helpful in decomposing and solving the problem. 

A human programmer writing code for the even-3-parity 
or even-4-parity functions would probably choose to call 
upon either the odd-2-parity function (also known as the 
exclusive- or function XOR) or the even-2-parity function 
(also known as the equivalence function EQV). For the 
even-5-parity function and parity functions with addi- 
tional arguments, our programmer would probably also 
want to call upon either the even-3-parity (3-argument 
Boolean rule 105) or the odd-3-parity (3-argument 
Boolean rule 150). These lower-order parity functions 
would greatly facilitate writing code for the higher-order 
parity functions. None of these low-order parity functions 
is, of course, in our original set F of available primitive 
Boolean functions. 

The potentially helpful role of dynamically evolving 
useful 'building blocks' in genetic programming has been 

recognized for some time (Koza, 1990). However, when 
we talk about 'hierarchical automatic function definition' 
in this article, we are not contemplating merely defining a 
function in terms of a sub-expression composed of particu- 
lar fixed terminals (i.e. actual variables) of the problem. 
Instead, we are contemplating defining functions para- 
metrized by dummy variables (formal parameters). Speci- 
fically, if the exclusive-or function XOR were being 
automatically defined during a run, it would be a version 
of XOR parametrized by two dummy variables (perhaps 
called ARGO and ARG1), not a mere call to XOR with par- 
ticular fixed actual variables of the problem (e.g. DO and 
D1). When this parametrized version of the XOR function 
is called, its two dummy variables ARGO and ARG1 would 
be instantiated with two specific values, which would either 
be the values of two terminals (i.e. actual variables of the 
problem) or the values of two expressions (each composed 
ultimately of terminals). For example, the exclusive-or 
function XOR might be called via (XOR DO D1) on one 
occasion and via (XOR D2 D3) on another occasion. On 
yet another occasion, XOR might be called via 

(XOR (AND D1 D2) (OR DO D2)), 

where the two arguments to XOR are the values returned 
by the expressions (AND D1 D2) and (OR DO D2), respec- 
tively. Each of these expressions is ultimately composed of 
the actual variables (i.e. terminals) of the problem. 

Moreover, when we talk about 'automatic' and 'dynamic' 
function definition, the goal is to evolve dynamically a dual 
structure containing both function-defining branches and 
result-producing (i.e. value-returning) branches by means 
of natural selection and genetic operations. We expect 
that genetic programming will dynamically evolve poten- 
tially useful function definitions during the run and also 
dynamically evolve an appropriate result-producing 
'main' program that calls these automatically defined 
functions. 

Note that many existing paradigms for machine learning 
and artificial intelligence do define functional subunits 
automatically and dynamically during runs (the specific 
terminology, of course, being specific to the particular para- 
digm). For example, when a set of weights is discovered 
enabling a particular neuron in a neural network to per- 
form some subtask, that learning process can be viewed 
as a process of defining a function (i.e. a function taking 
the values of the specific inputs to that neuron as argu- 
ments and returning an output signal, perhaps a 0 or 1). 
Note, however, that the function thus defined can be 
called only once from only one particular place within the 
neural network. It is called only in the specific part of the 
neural net (i.e. the neuron) where it was created and it is 
called only with the original, fixed set of inputs to that 
specific neuron. Note also that existing paradigms for 
neural networks do not provide a way to re-use the set of 
weights discovered in that part of the network in other 
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parts of the network where a similar subtask must be per- 
formed on a different set of inputs. The recent work of 
Gruau (1992) on recursive solutions to Boolean functions 
is a notable exception. 

Hierarchical automatic function definition can be 
implemented within the context of genetic programming 
by establishing a constrained syntactic structure (Koza, 
1992a, Chapter 19) for the individual S-expressions in the 
population in which each individual contains one or more 
function-defining branches and one or more 'main' result- 
producing branches which may call the defined functions. 

The number of result-producing branches is determined 
by the nature of the problem. Since Boolean parity func- 
tions return only a single Boolean value, there would be 
only one 'main' result-producing branch to the S-expres- 
sion in the constrained syntactic structure required. 

We usually do not know a priori the optimal number of 
functions that will be useful for a given problem or the 
optimal number of arguments for each such function; 
however, considerations of computer resources (time, 
virtual memory usage, CONSing, garbage collection, and 
memory fragmentation) necessitate that choices be made. 
Additional computer resources are required for each addi- 
tional function definition. There is a considerable increase 
in the computer resources required to support the ever- 
larger S-expressions associated with each larger number 
of arguments. There will usually be no advantage to 
having defined functions that take more arguments than 
there are terminals in the problem. When Boolean func- 
tions are involved, there is no advantage to evolving 
one-argument function definitions (since the only four 
one-argument Boolean functions are either in our function 
set already or constant-valued functions). 

Thus, for the Boolean even-4-parity problem, it would 
seem reasonable to permit one two-argument function defi- 
nition and one three-argument function definition within 
each S-expression. Thus, each individual S-expression in 
the population would have three branches. The first (left- 

most) branch permits a two-argument function definition 
(defining a function called ADF0); the second (middle) 
branch permits a three-argument function definition 
(defining a function called ADF1); and the third (right- 
most) branch is the result-producing branch. The first two 
branches are function-defining branches which may or 
may not be called upon by the result-producing branch. 

Figure 19 shows an abstraction of the overall structure 
of an S-expression with two function-defining branches and 
one result-producing branch. There are 11 'types' of points 
in each individual S-expression in the population for this 
problem. The first eight types are an invariant part of 
each individual S-expression. 

The 11 types are as follows: 

1. the root (which will always be the place-holding 
PROGN function); 

2. the top point DEFUN of the function-defining 
branch for ADF0; 

3. the name ADF0 of the function defined by this first 
function-defining branch; 

4. the argument list (ARGO ARGI) of ADF0; 
5. the top point DEFUN of the function-defining 

branch for ADF1; 
6. the name ADF1 of the function defined by this 

second function-defining branch; 
7. the argument list (ARGO ARG1 ARG2) of ADF1; 
8. the top point VALUES of the result-producing 

branch for the individual S-expression as a whole; 
9. the body of ADF0; 

10. the body of ADF1; 
11. the body of the 'main' result-producing branch. 

Syntactic rules of construction govern points of types 9, 10, 
and 11. 

For points of type 9, the body of ADF0 is a composition 
of functions from the given function set F and terminals 
from the terminal set A2 of two dummy variables, namely 
A2 = {ARGO, ARGI}. 

m 

Fig. 19. Abstraction of  the overall structure of  an S-expression with two function-defining branches and the one result-producing branch 
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For the points of type 10, the body of ADF1 is a compo- 
sition of functions from the original given function set F 
along with ADF0 and terminals from the set A3 of three 
dummy variables, namely A3 = {ARGO, ARG1, ARG2}. 
Thus, the body of ADF1 is capable of calling upon ADF0. 

For the points of type 11, the body of the result- 
producing branch is a composition of terminals (i.e. actual 
variables of the problem) from the terminal set T, namely 
T = {DO, D1, D2, D3}, as well as functions from the set 
F3. F3 contains the four original functions from the func- 
tion set F as well as the two-argument function ADF0 
defined by the first branch and the three-argument func- 
tion ADF 1 defined by the second branch. That is, the func- 
tion set F3 is 

F3 = {AND, OR, NAND, NOR, ADF0, ADF1}, 

taking two, two, two, two, two, and three arguments, 
respectively. Thus, the result-producing branch is capable 
of calling the two defined functions ADF0 and ADF1. 

When the overall S-expression in Fig. 19 is evaluated, the 
PROGN evaluates each branch; however, the value(s) 
returned by the PROGN consists only of the value(s) 
returned by the VALUES function in the final result- 
producing branch. 

Note that one might consider including the terminals 
from the terminal set T (i.e. the actual variables of the prob- 
lem) in the function-defining branches; however, we do not 
do so here. 

In what follows, genetic programming will be allowed to 
evolve two function definitions in the function-defining 
branches of each S-expression and then, at its discretion, 
to call one, two, or none of these defined functions in the 
result-producing branch. We do not specify what functions 
will be defined in the two function-defining branches. We 
do not specify whether the defined functions will actually 
be used. As we have already seen it is possible to solve 
this problem without any function definition by evolving 
the correct program in the result-producing branch. We 
do not favour one function-defining branch over the 
other. We do not require that a function-defining branch 
use all of its available dummy variables. The structure of 
all three branches is determined by the combined effect, 
over many generations, by the selective pressure exerted 
by the fitness measure and by the effects of the operations 
of Darwinian fitness proportionate reproduction and 
crossover. 

Since a constrained syntactic structure is involved, we 
must create the initial random generation so that every indi- 
vidual S-expression in the population has the syntactic 
structure specified by the syntactic rules of construction 
presented above. Specifically, every individual S-expres- 
sion must have the invariant structure represented by the 
eight points of types 1 through 8. Specifically, the bodies 
of ADF0 (type 9), ADF1 (type 10), and the result- 
producing branch (type 11) must be composed of the func- 

tions and terminals specified by the above syntactic rules of 
construction. 

Moreover, since a constrained syntactic structure is 
involved, we must perform structure-preserving crossover 
so as to ensure the syntactic validity of all offspring as the 
run proceeds from generation to generation. Structure- 
preserving crossover is implemented by first allowing the 
selection of the crossover point in the first parent to be 
any point from the body of ADF0 (type 9), ADF1 (type 
10), or the result-producing branch (type 11). However, 
once the crossover point in the first parent has been 
selected, the crossover point of the second parent must be 
of the same type (i.e. types 9, 10, or 11). This restriction 
on the selection of the crossover point of the second 
parent assures syntactic validity of the offspring. 

6.3. Even-4-parity function 

Each S-expression in the population for solving the even-4- 
parity function has one result-producing branch and two 
function-defining branches, each permitting the definition 
of one function of three dummy variables. 

In one run of the even-4-parity function, the following 
100%-correct solution containing 45 points (not counting 
the invariant points of types 1 through 8) with a perfect 
value of 16 for raw fitness appeared on generation 4: 

(PROGN (DEFUN ADF0 (ARGO ARG1 ARG2) 

(NOR (NOR ARG2 ARGO) 

(AND ARGO ARG2))) 

(DEFUN ADF1 (ARGO ARG1 ARG2) 

(NAND (ADF0 ARG2 ARG2 ARGO) 

(NAND (ADF0 ARG2 ARG1 ARG2) 

(ADF0 (OR ARG2 ARG1) 

(NOR ARGO ARG1) 

(ADF0 ARG1 ARGO 

ARG2))))) 

(VALUES 

(ADF0 (ADF1 D1 D3 DO) 

(NOR (OR D2 D3) (AND D3 D3)) 

(ADF0 D3 D3 D2)))). 

The first branch of this best-of-run S-expression is a 
function definition establishing the defined function 
ADF0 as the two-argument exclusive-or (XOR) function. 
The definition of ADF0 ignores one of the available 
dummy variables, namely ARG1. The second branch of 
the S-expression calls upon the defined function ADF0 
(i.e. XOR) to define ADF1. This second branch appears 
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Fig. 20. Hierarchy (lattice) of  function definitions 

to use all three available dummy variables; however, 
it reduces to the two-argument equivalence function 
EQV. The result-producing (i.e. third) branch of this 
S-expression uses all four terminals and both ADF0 and 
ADF1 to solve the even-4-parity problem. This branch 
reduces to 

(ADF0 (ADF1 Dt DO) (ADF0 D3 D2)). 

which is equivalent to 

(XOR (EQV D1 DO) (XOR D3 D2)). 

That is, genetic programming decomposed the even-4- 
parity problem into two different parity problems of 
lower order (i.e. XOR and EQV). 

Figure 20 shows the hierarchy (lattice) of function defini- 
tions used in this solution to the even-4-parity problem. 
Note also that the second of the two functions in this 
decomposition (i.e. EQV) was defined in terms of the first 
(i.e. XOR). 

Note that we did not specify that the exclusive-or XOR 
function would be defined in ADF0, as opposed to, say, 
the equivalence function, the if-then function, or any 
other Boolean function. Similarly, we did not specify 
what would be evolved in ADF1. Genetic programming 
created the two-argument defined functions ADF0 and 
ADF1 on its own to help solve this problem. Having 
done this, genetic programming then used ADF0 and 
ADF1 in an appropriate way in the result-producing 
branch to solve the problem. Notice that the 45 points 
above are considerably fewer than the 149 points con- 
tained in the S-expression cited earlier for the even-4- 
parity problem. 

Figure 21 presents the performance curves based on 23 
runs for the even-4-parity with hierarchical automatic 
function definition. The cumulative probability of success 
P ( M ,  i) is 91% by generation 10 and 100% by generation 
50. The two numbers in the oval indicate that if this prob- 
lem is run through to generation 10, processing a total of 
88000 individuals (i.e. 4000 • 11 generations • 2 runs) 
is sufficient to yield a solution to this problem with 99% 
probability. 

Fig. 21. Performance curves for the even-4-parity problem show that 
it is sufficient to process 88 000 individuals to yield a solution with 
hierarchical automatic function definition 

6.4. Even 5-parity function 

Each program in the population for solving the even-5- 
parity function (and all higher-order parity functions 
herein) has one result-producing branch and two 
function-defining branches, each permitting the definition 
of one function of four dummy variables. 

In one run of the even-5-parity problem, the 100%- 
correct solution contains 160 points and emerged on 
generation 12. The first branch is equivalent to the 
four-argument Boolean rule 50 115 which is an even-2- 
parity function that ignores two of the four available 
dummy variables. The second branch is equivalent to 
the four-argument Boolean rule 38 250, which is equivalent 
to 

(OR (AND (NOT ARG2) (XOR ARG3 ARGO)) 

(AND ARG2 (XOR ARG3 (XOR ARG1 

ARGO)))). 

Notice that this rule is not a parity function of any kind. 
The result-producing (i.e. third) branch calls on defined 
functions ADF0 and ADF1 and solves the problem. 

The even 5-parity problem can be similarly solved with 
99% probability with genetic programming using hier- 
archical automatic function definition by processing a 
total of 144 000 individuals. 

6.5. Parity functions with 7 to 10 arguments 

The even 6-, and 7-parity problems can be similarly solved 
with 99% probability with genetic programming using hier- 
archical automatic function definition by processing a total 
of 864 000, and 1 440 000 individuals, respectively. 

The 8-, 9-, and 10-parity problems can be similarly solved 
using hierarchical automatic function definition. Each 
problem was solved within the first four runs. We did not 
perform sufficient additional runs to compute a perfor- 
mance curve for these higher-order parity problems. 
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6.6. Even-ll-parity function 

In one run of the even-l 1-parity function, the following 
best-of-generation individual containing 220 points and 
attaining a perfect value of raw fitness of 2048 appeared 
in generation 21: 

(PROGN (DEFUN ADF0 (ARGO ARG1 ARG2 ARG3) 

(NAND (NOR (NAND (OR ARG2 ARG1) 

(NAND ARG1 ARG2)) (NOR (OR ARG1 

ARGO) (NAND ARG3 ARG1))) (NAND 

(NAND (NAND (NAND ARG1 ARG2) 

ARG1) (OR ARG3 ARG2)) (NOR (NAND 

ARG2 ARG3) (OR ARG1 ARG3))))) 

(DEFUN ADF1 (ARGO ARG1 ARG2 ARG3) 

(ADF0 (NAND (OR ARG3 (OR ARGO 

ARGO)) (AND (NOR ARG1 ARG1) 

(ADF0 ARG1 ARG1 ARG3 ARG3))) 

(NAND (NAND (ADF0 ARG2 ARG1 

ARGO ARG3) (ADF0 ARG2 ARG3 ARG3 

ARG2)) (ADF0 (NAND ARG3 ARGO) 

(NOR ARGO ARG1) (AND ARG3 ARG3) 

(NAND ARG3 ARGO))) (ADF0 (NAND 

(OR ARGO ARGO) (ADF0 ARG3 ARG1 

ARG2 ARGO)) (ADF0 (NOR ARGO 

ARGO) (NAND ARGO ARG3) (OR ARG3 

ARG2) (ADF0 ARG1 ARG3 ARGO 

ARGO)) (NOR (ADF0 ARG2 ARG1 ARG2 

ARGO) (NAND ARG3 ARG3)) (AND 

(AND ARG2 ARG1) (NOR ARG1 ARG2))) 

(AND (NAND (OR ARG3 ARG2) (NAND 

ARG3 ARG3)) (OR (NAND ARG3 ARG3) 

(AND ARGO ARGO))))) 

(VALUES 

(OR (ADF1 D1 DO (ADF0 (ADF1 (OR 

(NAND D1 D7) D1) (ADF0 D1 D6 D2 D6) 

(ADF1 D6 D6 D4 D7) (NAND D6 D4)) 

(ADF1 (ADF0 D9 D3 D2 D6) (OR D10 

D1) (ADF1 D3 D4 D6 D7) (ADF0 D10 D8 

D9 D5)) (ADF0 (NOR D6 D9) (NAND D1 
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D10) (ADF0 D10 D5 D3 D5) (NOR D8 

D2)) (OR D6 (NOR D1 DG))) D1) (NOR 

(NAND Dl D10) (ADF0 (OR (ADF0 D6 

D2 D8 D4) (OR D4 D7)) (NOR D10 D6) 

(NOR D1 D2) (ADF1 D3 D7 D7 DG)))))). 

The first branch of this S-expression defined the four- 
argument defined function ADF0 (four-argument Boolean 
rule 50 115) which ignored two of its four arguments. ADF0 
is equivalent to the even-2-parity function, namely 

(EQV ARG1 ARG2). 

The second branch defined a four-argument defined func- 
tion ADF1 which is equivalent to the even-4-parity func- 
tion. Substituting the definitions of the defined functions 
ADF0 and ADF1, the result-producing (i.e. third) branch 
becomes: 

(OR (EVEN-4-PARITY 

D1 

DO 

(EVEN-2-PARITY 

(EVEN-4-PARITY 

(EVEN-2-PARITY D3 D2) 

(OR D10 D1) 

(EVEN-4-PARITY D3 D4 D6 D7) 

(EVEN-2-PARITY D8 D9)) 

(EVEN-2-PARITY (NAND D1 D10) 

(EVEN-2-PARITY D5 D3))) 

DU 

(NOR (NAND D1 D10) 

(EVEN-2-PARITY (NOR D10 D6) 

(NOR D1 D2)))) 

which is equivalent to the target even-11-parity function. 
Note that the even-2-parity function (ADF0) appears six 
times in this solution and that the even-4-parity function 
(ADF1) appears three times. Note that this entire solution 
for the even-11-parity function contains only 220 points 
(compared with 347 points for the solution to the mere 
even-5-parity without hierarchical automatic function 
definition). 

Figure 22 shows the simplified version of the result- 
producing branch of this best-of-run individual for the 
even-ll-parity problem. As can be seen, the even-ll- 
parity problem was decomposed into a composition of 
even-2-parity functions and even-4-parity functions. 
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Fig. 22. The best-of-run individual from generation 21 of one run of the even-l l-parity problem is a composition of even-2-parity and even-4- 
parity functions 

We found the above solution to the even- 11-parity prob- 
lem on our first completed run. The search space of 11- 
argument Boolean functions returning one value is of size 
22~ ~ 10616. The even-11-parity problem was solved by 
decomposing into parity functions of lower orders. 

6.7. Summary o f  hierarchical automatic function definition 

Thus, the problem of learning various higher order even- 
parity functions can be solved with the technique of hier- 
archical automatic function definition in the context of 
genetic programming. Moreover, as can be seen in Table 
2, the technique of hierarchical automatic function defi- 
nition facilitates the solution of these problems. That is, 
when problems are decomposed into a hierarchy of func- 
tion definitions and calls, many fewer individuals must be 
processed in order to yield a solution to the problem. More- 
over, the solutions discovered are comparatively smaller in 
terms of their structural complexity. 

Automatic function definition has also been applied to 
the problem of discovery of impulse response functions 
(Koza et al., 1993). 

7. Additional examples of genetic programming 

Genetic programming can be applied in many additional 

Table 2. Number of individuals I( M, i, z) required to be processed to 
yield a solution to various even-parity problems with 99% prob- 
abili ty- with and without hierarchical automatic function definition 

Without hierarchical With hierarchical 
Size of automatic function automatic function 
parity function definition definition 

3 80000 
4 1276000 88000 
5 144000 
6 864 000 
7 1 440 000 

problem domains, including the following: 

�9 evolution of a subsumption architecture for control- 
ling a robot to follow walls or move boxes (Koza, 
1992d; Koza and Rice, 1992b); 

�9 discovering inverse kinematic equations to control the 
movement of a robot arm to a designated target point; 

�9 emergent behaviour (e.g. discovering a computer pro- 
gram which, when executed by all the ants in an ant 
colony, enables the ants to locate food, pick it up, 
carry it to the nest, and drop pheromones along the 
way so as to recruit other ants into cooperative 
behaviour); 

�9 symbolic integration, symbolic differentiation, and 
symbolic solution of general functional equations 
(including differential equations with initial conditions); 

�9 planning (e.g. navigating an artificial ant along a trail, 
developing a robotic action sequence that can stack an 
arbitrary initial configuration of blocks into a specified 
order); 

�9 generation of highlentropy sequences of random 
numbers; 

�9 induction of decision trees for classification; 
�9 optimization problems (e.g. finding an optimal food 

foraging strategy for a lizard); 
�9 sequence induction (e.g. inducing a recursive compu- 

tational procedure for generating sequences such as 
the Fibonacci sequence); 

�9 automatic programming of cellular automata; 
�9 finding minimax strategies for games (e.g. differential 

pursuer-evader games, discrete games in extensive 
form) by both evolution and co-evolution; 

�9 automatic programming (e.g. discovering a compu- 
tational procedure for solving pairs of linear 
equations, solving quadratic equations for complex 
roots, and discovering trigonometric identities); 

�9 simultaneous architectural design and training of 
neural networks (Koza and Rice, 1991). 

Additional information and examples can be found in Koza 
(1992a). 
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8. Conclusions 

We have shown that many seemingly different problems in 
machine learning and artificial intelligence can be viewed as 
requiring the discovery of a computer  program that pro- 
duces some desired output for particular inputs. We have 
also shown that the recently developed genetic program- 
ming paradigm described herein provides a way to search 
for a highly fit individual computer program. The tech- 
nique of hierarchical automatic function definition can 
facilitate the solution of problems. 
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