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Abstract. The history of the determination of the external gravitational potential of the Earth is 
sketched briefly. A discussion of the prhqciples by which the potential may be derived from the 
observations of changes in the orbits of artificial satellites is followed by outlines of the principal 
theories and by detailed consideration of the formal differences between them that arise from 
differences in the ways that the orbits are described and it is shown that those formulae on which 
most of the numerical results depend are equivalent in the principal theories. The usual methods 
of treatment break down in certain special conditions and the analysis of these cases is also considered 
although they are not of great practical importance in the derivation of the potential; similarly a short 
account is given of the behaviour of a satellite having an orbital angular velocity commensurable 
with the spin angular velocity of the Earth. Methods by which satellites are observed are mentioned 
and the main numerical results on the external potential of the Earth are discussed critically. Finally 
the results are compared with those derived from observations of gravity on the surface of the Earth 
and the application of the results to problems of geodesy, of the physical state of the Earth and of 
the motion of the Moon are described. 

1. Introduction 

The  external  gravi ty field o f  the Ear th  has been the subject  of  intensive s tudy f rom the 

t ime  o f  NEWTON onwards .  NEWTON himself  was the first to a t t empt  to relate the values 

of  gravi ty  as measured  at  the surface o f  the Ear th  to the mot ion  o f  the M o o n  in her  

o rb i t  abou t  the Ear th  and it was he who first a rgued tha t  the Ear th  must  be flattened 

a t  the poles,  a view which when chal lenged by CASSINI led to the series o f  measure-  

ments  o f  geodet ic  arcs beginning with those in L a p l a nd  and Peru and  cont inuing to 

the  great  arc  between Dunke rque  and Barcelona  tha t  establ ished the correctness o f  

NEWTON'S view, that  gave bi r th  to the Metr ic  system and that  r edound  for  ever to  

the  credi t  o f  F rench  science. A l though  NEWTON'S arguments  had  been based in pa r t  

on  considera t ions  o f  the d is t r ibut ion  o f  mat ter  inside the Earth,  CLAIRAVT laid the  

founda t ions  o f  modern  theories o f  the Ear th ' s  field by  showing tha t  the external  

potent ia l ,  the shape o f  the equipotent ia l  surface bound ing  the Ear th  and the value o f  

gravi ty  upon  it, were all re lated in a way that  was independent  o f  the d is t r ibut ion  o f  

ma t t e r  within the Ear th  and this theory  was la ter  extended by  Sir G. DARWIN and  

CALLANDREAU to terms of  the order  o f  the square of  the po la r  f lat tening and at  the 

same t ime DARWIN showed how the flattening could  be related to the m o m e n t  of  iner t ia  

a b o u t  the  po la r  axis. This last  result  has in recent  years assumed considerable  impor-  

tance  because  when it is combined  with the values o f  the  elastic proper t ies  o f  the  

in ter ior  o f  the Ear th  der ived f rom seismic studies, it enables the d is t r ibut ion  o f  densi ty 

as  a funct ion o f  radius  to be est imated.  
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The actual Earth is not bounded by a spheroidal equipotential surface as supposed 
in this theoretical work and for purposes of accurate surveying and map making and 
for more detailed studies of the interior, account must be taken of the irregularities in 
the surface, in gravity and in the potential. Sir G. G. STOKES in a celebrated paper, 
first showed how this might be done and the theory has been greatly extended since 
his time, especially in the years before the first artificial satellites were launched. The 
problem is one of solving LAPLACE'S equation given values of the potential on the 
surface of the Earth. Usually in such boundary value problems, values of the potential 
or of  its derivatives are given on a surface of known form but in the problem of the 
Earth, the shape of the surface is not known, at least not with any precision, apart 
from measurements of potential itself which lie at the basis of spirit levelling. Thus the 
boundary value problem of the Earth's external field is to determine the form of  
the physical surface from measurements of both potential and gravity upon it, a 
problem of some complexity which has certainly not been explored in the same 
depth as the more familiar boundary value problems. There is moreover a great 
observational problem: the data, values of gravity and potential, have so far been 
measured at rather erratically distributed sites, the seas, over three-quarters of the 
Earth's surface, being but sparsely covered because of the technical difficulties of  
making observations upon them. 

A great simplification was effected in these studies when it became possible to 
observe the external potential directly through its effects on the movements of artificial 
satellites. It had indeed been realised before any satellite was launched (BLITZER et al., 
1956) that the variation of potential with latitude, corresponding to the ellipticity of  
the meridian, the polar flattening, that is, would produce changes in the orbit of a 
satellite from which this part of the potential could be inferred*, but such studies were 
only properly initiated when the first Sputnik satellites were observed from England 
by KING-HELE and his collaborators and from Czechoslovakia by BUCHAR and his 
associates and evidence was obtained that the ellipticity could indeed be found in this 
way and that it was notably different from the value inferred from measurements of  
gravity on the surface. It was not long before these results were confirmed and extended 
and within two years of the launching of the first satellite, it was possible to find the 
polar flattening of the Earth with an accuracy some twenty times greater than it was 
possible to attain with surface gravity measurements, while subsequently it has been 
possible to derive other, much smaller components of the field that are of doubtful 
statistical significance in the surface gravity values. 

With the results so far obtained, estimates of the shape of the Earth can be im- 
proved, knowledge of the physical state of the interior of the Earth extended and the 
way prepared for obtaining like knowledge of the Moon, but perhaps of as great 
importance is the notable simplification in the ways of thinking about the Earth's 
field that has come about as the result of being able to measure it directly instead o f  
having to infer it from a difficult boundary value problem. 

* The external potential of other planets may be derived from observations of their natural satellites. 
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The plan o f  this article is that  the general principles by which the field can be 

derived f rom satellite motions are first discussed and then more  detailed accounts are 

given of  the principal theories, some reference being made to circumstances in which 

the theories may  fail. The observations and their reduction and the results obtained 

Fig. 1 a. 
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Geometry of orbit. Plane of orbit relative to equator. C = Centre of mass of Earth. 
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Geometry of orbit. Angles in plane of orbit. C ~ Centre of mass of Earth. 

are then reviewed and finally some consideration is given to the significance and 
application o f  the results. 

The gravity field o f  the Earth is very nearly that  of  a point  mass, the largest 

departures, those due to the polar flattening, being about  one part  in a thousand while 

all others are of  the order o f  one par t  in a million or less, and so the orbits o f  artificial 
satellites about  the Earth are very nearly ellipses executed in a fixed plane with the 
centre of  mass o f  the Earth at one focus. The main part  o f  this article is, in one way 

or another,  concerned with small changes in such orbits or in their orientation in space. 
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It will therefore be useful to conclude this section by definining some parameters of  the 
elliptical orbit and other parameters that will be frequently used in the rest of  the 
paper. 

An elliptical orbit about a centre of  attraction C is shown in Figure la. The 
orientation of the plane of the orbit in space is defined by reference to a fixed plane, 
the equator for satellites of  the Earth. The two planes intersect along the line of  nodes 
and the angle between them is called the inclination, i. I f  CX is some direction fixed 

in space and i f N  a is the ascending node, the one at which the satellite passes from south 
to north across the equator, then the angle between CX and CN~ measured in the 
same direction as the motion of the satellite is called the longitude of  the node and is 
denoted by ~ .  I f  S is the position of the satellite, the angle SCAr, is called the 
argument of  latitude, u, the name coming from the fact that the latitude of the satel- 
lite, fl say, is given by 

sin/~ = cos u sin i. 

Angles in the plane of the orbit are shown in Figure lb. P is the position ofpericentre 
(perigee for the Earth). The angular distance of the satellite from pericentre is called 
the true longitude or true anomaly and will be denoted by v in this article - there is a 

variety of  usage. The angular position of pericentre measured from the ascending node 
is called the longitude ofpericentre and is denoted by ~0. 

The parameters so far defined fix the direction of the satellite in relation to axes 
fixed in space. The remaining parameters concern the shape and size of  the orbit. As 
usual the semi-major axis of  the ellipse will be called a and the eccentricitY, 
[(a 2 - b2)/a2], will be called e. The semi-latus rectum, a (1 - e2), is usually denoted 

by p in celestial mechanics. 
By KEPLEr'S third law, the mean angular velocity of  the satellite in its orbit, n, 

is given by 
n2a 2 = /2 

where the law of force is - / 2 / r  2. 
The mean anomaly, M, is defined as nt. 
The external potential of the Earth will be written in the form 

GM 1 - J,P,, (cos 0) - P~ (cos 0) (C,m cos m2 + S,m sin m) 0 
r i "  

n t~ m 

where r is the radius vector from the centre of  the Earth, 

0 is the co-latitude, equal to �89 ~ - fi 
2 is the longitude 
R is a radius giving the scale factor for distance. It  is commonly taken to be 

the equatorial radius of the Earth (6378 kin) and will be so understood when 
numerical values are given for the J coefficients but for  some purposes it is 
more convenient to use the mean radius (6371 km). 
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M is the mass of the Earth and G the constant of gravitation, the product, GM 
being written as/z. 

(Recommendations of Commission 7 of the International Astronomical Union). 
P,, (cos 0) is a LEGENDRE polynomial; 

l d ,  2 l~- 
= - ) 

and P2 (cos 0) = �89 (3 cos 2 0 - 1) for example; P2(cos 0) is an associated LEOENDRE 

polynomial: 
.• 

2-1)  . 

There are other definitions of Pro(z) that differ by a normalising factor (see Appendix). 

2. General Principles 

Since the external gravitational potential of the Earth satisfies LAt?LACE'S equation, 
V2 V = 0, in the mass-free region outside the Earth, it has the following properties: 
(1) it is an harmonic function and so can be continued uniquely from one region to an 
adjacent one; (2) it is uniquely determined by the boundary values on the surface of 
the Earth; (3) outside the sphere of convergence that encloses all the matter of the 
Earth it may be developed as a convergent series of spherical harmonics with terms 
proportional to the inverse powers of the geocentric radius vector. 

If  the shape of the Earth were known and either gravity or potential were known 
at all points of the surface, then LAPLACE'S equation could be solved throughout all 
the exterior space. Spherical harmonics could not be used to construct the solution 
because the Earth's surface, on which the boundary values are given, is not a sphere 
and numerical methods would have to be employed in the neighbourhood of the 
surface. Spherical harmonics can only be used when either gravity or potential is 
given at all points of a sphere enclosing all matter and if the potential on such a sphere 
enclosing the Earth can be calculated from the values on the physical surface of the 
Earth, then the field beyond that sphere can be developed in spherical harmonics. 
Such, in principal is the procedure for determining the external potential as a bound- 
ary value problem. 

In fact the procedure is not at present practicable because the shape of the 
Earth's surface is not known independently of the potential on it (as found by geodetic 
spirit levelling) and therefore geodesists have been led to study a boundary value 
problem not met with elsewhere in potential theory, although there are analogous 
problems in fluid dynamics. That problem is to determine the form of the surface 
from measured surface values of both potential and gravity - it will be recalled that 
if both potential and gravity are given on a known surface, the boundary value problem 
is overdetermined. The question was first discussed by STOKES (1849) who considered 
an equipotential surface on which gravity was known; subsequently methods have 
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been given for solving the more general case (MOLODENSKY, 1948, LEVALLOIS, 1957) 
and although the problem and its solution have not been fully studied, it is believed 
that the problem is correctly set and that a unique solution exists (ARNOLD, 1959). 
Presumably if that is so, LAPLACE'S equation may be solved outside the surface. 

The determination of the potential from observations of artificial satellites involves, 
by contrast, a direct measurement of the potential at points along the track of  the 
satellite. Since the acceleration of the satellite is equal to the negative gradient of the 
potential, measurements of  the acceleration should enable the potential to be 
determined. Such a direct procedure is for two reasons, not generally practical. First, 
the acceleration is predominantly due to the potential - GM/r corresponding to a 
spherically symmetrical Earth of mass M, and the components of interest, those 
corresponding to the polar flattening of the Earth and other smaller departures from 
spherical symmetry, do not exceed one thousandth of  the dominant term in the 
potential, in the face of which it would be difficult to determine them accurately. 
Secondly there are relatively large, rather irregular, accelerations due to air resistance 
which again mask the accelerations that it is desired to find. Furthermore, the direct 
measurement of acceleration would require a network of observatories with accurately 
known positions. It is true that such a network is now being built up but the dynamical 
studies of artificial satellites that so far have produced the bulk of information have 
not depended on it and the direct measurement of acceleration is not practical except 
in certain special cases. 

Because the potential of the Earth is dominated by the part - GM/r, the orbit 
of  a satellite is very nearly a Keplerian ellipse with one focus at the centre of mass of  
the Earth and the additional terms in the potential give rise to small departures from 
the ellipse. Certain of these departures increase steadily with time or vary with a period 
of many weeks and can therefore be measured accurately by simple observations 
continued over a long time, and the components of the potential that produce these 
departures can be determined very accurately. Other components give rise to departures 
that vary with a period of a day or less and they cannot be found accurately from simple 
observations. It will now be shown that the development of the potential in spherical 
harmonics is a natural one to adopt in the analysis of satellite orbits because the 
symmetry properties of the harmonics correspond to the distinct classes of perturba- 
tion of the orbit. 

Let the potential be written in the form given at the end of Section 1. 
The non-dimensional coefficients, J, ,  C,m and S,m, describe the departures of the 

potential from spherical symmetry. J2 is related to the moments of inertia of  the 

Earth: C - �89 (A + B) 

J 2  "= M R  2 

where C is the moment about the polar axis and A and B are moments about perpen- 
dicular axes in the equatorial plane. 

The terms of the series are symmetrical about the polar axis of the Earth if they 
are independent of  the longitude and are proportional to the LEGENDRE coefficients 
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P,(cos  0), while otherwise there is no axial symmetry. Of the axi-symmetric terms, 

those with even order LE~ENDRE coefficients are symmetrical about the equator and 
those with coefficients of  odd order are anti-symmetric about the equator. 

J is about 10 -3 and all other coefficients are about 10 -6 or less. 
Now consider a satellite in an orbit about the Earth. 
At any point in the orbit the force acting on the satellite may be resolved into 

rectangular components, S, T and W, of which S is directed to the centre of  the 
Earth, T is perpendicular to S and in the plane of the orbit and W is perpendicular to 

the other two. (Figure 2). Then in general the parameters that describe the orbit are 
not constants because the orbit is not a constant ellipse and the rates of  change of  the 
parameters may be shown to be related to the components S, T and W as follows (see, 
for example, SMART, 1953, p. 221 and below in this Section) 

2[ 
d = n ( l _ e 2 )  ~ Sesinv + a rT  A 

(1 -- e2) } IS sin v + T (cos E + cos v)], 
na 

di 1 
dt ha2( 1 _ e2)~ Wr cos u, 

1 
- W r  s in  p ,  

na2(1 - e2) ~ s in  i 

= "" - S c o s v + T  1 + / ) 2  sinv . 
nae L 

These equations are a form of LAGRANGE'S planetary equations, the derivation of 
which is given later in this section. 

It will be seen that the sign of ~ is the same as the sign of W sin u. Suppose first 
that the potential is symmetrical about the equator so that W is directed always either 

towards or away from the equator so that it has one sign in the northern hemisphere 
and the opposite sign in the southern hemisphere. Sin u likewise has one sign in the 
northern hemisphere (positive) and the other sign in the southern hemisphere and so 
the sign of ~ is always the same; on the average, therefore, the nodes move continu- 
ously in the one direction altt~ough at a variable speed because the product Wr sin u 
will vary with the position of the satellite in the orbit. It  can easily be seen that the 

motion of perigee due to W is also on the average in the one direction if W is derived 
from a potential symmetrical about the equator. If, on the other hand, the potential 
is anti-symmetric about  the equator, the product Wr sin u has different signs in the two 
hemispheres and there is no net change of ~ over a long period. The change over one 

* b is the semi-minor axis of the orbit. 
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revolution of the satellite is however not necessarily zero because the magnitude of 
Wr sin u will in general be different in the two hemispheres. In the case of a satellite 
about the ellipsoidal Earth, perigee has a steady motion on account of the polar 
flattening and so conditions repeat after one revolution of perigee; in consequence an 
anti-symmetric component of the potential produces a component in the motion 
of  the nodes, and also of perigee, with a period equal to the period of rotation of 
perigee. Such terms are known as long period terms and the steady motions are called 
secular. 

Polar axis 
T 

Fig. 2. 

Satellite 

Resolution of forces into orthogonal components. 

So far the rotation of the Earth has been ignored and this is equivalent to sup- 
posing that the potential is independent of longitude. It can be seen that the effect of 
a term in the potential that depends on longitude will have a period of one day and in 
general will give rise to no secular or long periodic change in the orbit. 

It will now be clear why spherical harmonics are so convenient for describing the 
potential, for their symmetry properties correspond exactly to the division of the 
potential according to the type of change, secular, long-periodic or short-periodic, in 

node and perigee. 
In the remainder of this section some general results on the dynamics of orbits will 

be set out in preparation for the more detailed discussion of methods of solving the 
equations of motion to be presented in subsequent sections, and the problem of des- 
cribing a changing orbit will also be considered. 
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In Cartesian co-ordinates, the equations of  motion of a particle in a field of  

potential V are 

OV 

~n 

a v  

~y 

o r  

~V 

~z 

i~ = - grad II. 

One integral of  these equations is the familiar integral of  energy. Form the secular 

product of  both sides with t :  

t -  ~ = - t .  grad V. 

Suppose only that V is constant in time so that 

Then 

d V O V ~? V c31/ 
d~- = 2 ~ x  + Yffy + 2 ~ z  = ~.grad V. 

d 2 l d V  

~ ( i  ) =  2 dt 

or denoting the kinetic energy by T, 

The only condition is that 

T + V = constant.  

dV 
- -  = f .  grad V 
dt 

grad V but if the potential of  the Earth depends on longitude, this condition is not 

satisfied in inertial co-ordinates and so in general the energy is not an integral in. 
variant. 

The other integrals that may be invariant are those of  angular momentum. To 
obtain them form the vector product of  each side of  the equation of motion with r: 

r A i ~ = - r ^ g radV.  
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Now 

so that 

and therefore 

A. H. COOK 

#jxi - ~ x i  = ~ (~jxi - ~x~) 

r ^ = ^ 
~t 

0 
(r ^ i:) = -- r ^ gradV. 

I t  follows that the component of  angular momentum in any direction is constant if the 
component  of  r ^ grad V in that direction is zero and that the total angular 
momentum is constant if grad V is parallel to r. 

The only solution of LAPLACE'S equation that vanishes at great distances and the 
gradient of  which is parallel to r is 1/r and so it is only for this potential that the total 

and all resolved components of  the angular momentum are constant. 
I f  the potential is symmetrical about an axis, as is nearly the case for the Earth, 

then grad Vis in the plane of a meridian, r ^ grad Vis perpendicular to the meridional 
plane, it has no component parallel to the axis of  symmetry and the component of  
angular momentum parallel to the axis of  symmetry is a constant of  the motion. This 

is nearly true for the Earth. 
These results may be obtained from a slightly different point of  view by using 

spherical polar co-ordinates, r, 0, )~. The equations of motion are 

- -  rO 2 -- v sin 2 0 " ~ 2  = _ _ _  

~V 

Or ' 

rO + 2?0 - r~ 2 sin 0 cos 0 --- - - -  
OV 

r~O' 

1 d 
rsin 0" (r2 sinz 0" 2) = r sin O" a)o 

Now suppose that the potential is independent of  2. Then ~ V/~2 is zero and r z sin 2 0. J. 

is constant. 
Now the components of the vector r are (r, 0, 0) and those of ~ are (?, rO, r)~ sin 0) 

and therefore the angular momentum vector, r ^ t, has components (0, r2J. sin 0, 
r20). Taking the z-axis to be that for which sin 0 -= 0, the z-component of angular 

momentum is 
(r z J. sin 0).  sin 0, 

and so is constant. 
The magnitude of the angular momentum is r 2 (32 sin 2 0 + 02) ~ and is constant 
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only if sin 0 is constant in addition to ,~ being constant. But if  sin 0 is constant, 0 is, 

zero and we may transform to new co-ordinates in which 0 = zr/2. In this new system, 
the angular momentum is r22 and so is a constant. Again, the total angular momentum 
is constant only if the potential is a function of  r alone. 

The orbit of a particle moving in a potential proportional to 1/r is an ellipse with 

one focus at the centre of  attraction and for such an orbit the energy and the total 
angular momentum are constants. Since the orbits of  particles about the Earth must 
be very nearly Keplerian ellipses, it is natural to look for a method of  solution of  the 

Fig. 3. Polar co-ordinates in plane of orbit. 

equations of  motion that makes use of  the fact that energy and angular momentum 
are very nearly constants. The Hamiltonian formulation of the equations of  motion 
provides such a method. Before showing how it may be applied to almost elliptical 
orbits, some results for the elliptical orbit must be stated. 

Taking polar co-ordinates in the orbital plane with the centre at the centre o f  
attraction (Figure 3), the equations of  motion are 

~ -  rO 2 = ~ V  tz 
~F F 2 

r20 ----- const = c 1 . 

The last equation is the equation of  angular momentum. It also says that the rate at 

which area is swept out by the radius vector of  the Particle is a constant (�89 cl). But 
the mean rate at which area is covered is 4zr ab/T,  where a is the semi-major axis, b is 
the semi-minor axis, and T is the period of revolution. Writing n for the mean orbital 
angular velocity, (mean motion) and remembering that b = a (1 - e2) ~, where e is 
the eccentricity, it follows that 

na 2 ( 1 - e 2 )  ~ = q .  
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The solution of the two equations of  motion is 

1 + e cos (0 - co) 

where co is the angular distance of perigee from the zero of 0. The semi-latus rectum 
of the ellipse represented by this equation is c~/t~ and so 

c 2 = #a (1 - e2). 

Thus 
# = F~2a 3 . 

Now the total energy of the system is ~/2a that is, �89 2, a n d  is a constant. Two of 
the invariants of  the elliptical orbit are therefore 

1~/2a and {#a (1 - e2)} ~ . 

The third follows from the fact that the projection of the angular momentum on to 
the equatorial plane is to be a constant. 

Hence 
{#a (1 - e2)}~cos i = const. 

In the Hamiltonian formulation of dynamics, the configuration of the system is 
described by generalised co-ordinates and corresponding generalised momenta,  
usually denoted by qr and Pr respectively. The Hamiltonian F is the function T - V 
and the equations of motion take the canonical form 

0F OF 
0 r = - - ,  p r = - - - -  

Opt Oqr 

If, for example, the G are the Cartesian co-ordinates, x, y, z, 

T = �89 + ;92 + 22) 
= ~ m (p~ + p2 , + p~); 

e = ~ m (p~ + p~, + p~) - V 

and both qr and Pr change with time. 
It  has been seen however that there are three quantities, two angular momenta  

and the energy, that are constant in the elliptical motion and it is therefore natural 
to seek a set of  co-ordinates corresponding to these momentum variables. The means 
of doing so are provided by the Hamilton-Jacobi partial differential equation. 

Suppose that qr and Pr are a set of conjugate canonical variables and that Qr and 
Pr are another conjugate set. Then it may be shown that the condition for the Q ,  
Pr variables to be a canonical set is that 

~(Pr dQ~ Pr dqr) 
r 
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should be a perfect differential, dS (PLUMMER, 1960). The transformation from the 
one set to the other is then effected by equations such as 

OS OS 
P ' -  o Q , '  Pr = - -  

Such transformations are known as c o n t a c t  t r a n s f o r m a t i o n s .  

In general, S will be a function of  time as well as of  the other variables and in that 
case 

OK OK 
Pr = 8Q,.' Qr - 8P,. 

where 

Now K will be zero if 

8 S  
K = F +  - - .  

Ot 

F/" 8S'~ ~S 
+ = ~  , 

and then P, and Qr will be constants, denoted by e, and fi, respectively. 
Thus we have the two systems of parameters in terms of  which the dynamical 

system may be described, namely % and 

and q~ and 

OS 

fir = 8 ~  ' 

OS 
p r = k  - . 

Oqr 

Since the at, fir are constants, the problem posed has been solved provided S can be 
found. 
If  F does not contain t explicitly, a situation often met with in celestial mechanics, 

and 

S = - % t  + S' 

f ~s'~ 
Ftq-  g ; )  = %" 

This is the HAMILTON-JAKOBI differential equation in the form it takes when the 
Hamiltonian does not contain the time explicitly. The solutions for the constants and 
the equations of  transformation are then: 

8 S '  8 S '  

8 S '  8 S '  
t -  f t ,  = - - ,  p ,  = - -  



368 A.H. COOK 

If, now a Hamiltonian Fo is known for which a set of canonical constants can be 
found by solving the Hamiltonian-Jacobi equation, and if the Hamiltonian F of a 
perturbed system can be written in terms of these constants, then in the perturbed 
motion, the constants will change at rates that are given by 

OK OK 

where 
K = F - F  o 

and OS 
F o +  ~ - = 0 .  

In practice, the HAMILTON-JACOBI equation must be solved by separation of the 
variables in such a way that S is the sum of components each a function of one 
co-ordinate alone, for this corresponds to decomposition of momentum into three 
perpendicular components. 

The form of the potential for which such separation is possible in spherical polar 
co-ordinates will now be derived. In this system, 

assuming unit mass, 

and 

F --- �89 (~2 + r202 + r 2 sin 2 0 [2) _ V (r, 0, 2), 

PO = r 2 0  , 

p;. = r 2 sin 2 0 ,~, 

1 ( 2  1 2  1 2) V(r ,O ,  2) 
F = ~ pr + r~PO + i.2sin20Pz - 

T h e  HAMILTON-JACOBI equation is therefore 

(0s? • ?s? 
Or] "JI-?'2~00] +r2sin20\OJ.J -- 2 V = c o n s t .  

Now suppose that S = Sr + So + S~ 

where Sr is a function of r only, and similarly for the other terms. Accordingly 

1 ,2 1 s~  ~ 
S'~ 2 + ~ S o  + ~  - 2 V = c o n s t = 2 ~ l  

sin 2 0 

It follows that S[ can only be a function of r and 0 whereas it is required to be a 
function of 2 alone. It must therefore be a constant: 

and so 

or 

S~ ~ ~3 

r 2 sin z 0 S; 2 + s in  z 0 S0 z --  2 V r  2 sin 20 = 2ear 2 sin 2 0 - ~ ,  

rZS'~ 2 + S'o z - 2 V r  2 = 2~r 2 - c~3/sin 2 0. 
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This equation can be separated if 
1 

V = r5 [ f ( r )  + g(O)], 

for t h e n  r2Sr 2 + 2f(r) = 2o:lr 2 -~ O:~, 

and ~2 
S~ z + 2g(f )  = ~ sin 2 O" 

If  V is to be a solution of  LAPLACE'S equation, the only possible functions are 

f ( r )  = p r ,  

g(O) = k P1 (cos 0), 
and then 

_ o:2 2 
S, 2 2# 2o:1 + - - ,  

/" F 

S'o 2 + 2 k P ,  (cos 0) + o:32 - o:22 . 
sin g 0 

It will be seen that  once again the conclusion is that  constants of  the motion can exist 
only if the potential is of  the form 1/r, for the harmonic P1 (cos 0) merely corresponds 
to a co-ordinate displacement along the axis of  symmetry, as in fact the earlier dis- 
cussion also shows. 

Separability in another co-ordinate system will be discussed later (Section 3.4). 
I f  k = O, (S~) ~ = ~ ,  

(S;)Z = o:2 _ o:2/sinZ O, 

and 
2p o:2 2 

(S;) 2 = 2o:, + - -  - , 
r r 

and so ~ o 

f (  2/z o:))_l f (  ) d,- o: /sin2 0 �89 + o: X. S = 2~ t + + - 
F 

ro 0 

The solutions for the constants fir are then: 

r 

0S _ 2p o:2'~-~. 
t - / t l  - Oel 2 e l  + r ~ )  o r ,  

ro 
r 

f (  ; (  2 - -  - -  0 0{3 ~-~-d0 aS o:2 2# o:22\�89 e22 s i ~ J  ' 
fi2 3o:2 7 2e, + r r 2) d r +  o:2 - 

ro 0 

- f13 - -  __ f ~ fo:z -+dO 
(~O:3 J s i n 2 0 \  2 S1 0 

0 
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The geometrical  and dynamical  significance of  the constants will now be developed.  
Let  r0 be the radius vector  at perigee. Then t - fil is zero at perigee, so/71 is the 

t ime of  passage through perigee. 
N o w  since 

aS 

Or '  

52 2# ~2 
. . . .  2 + 2cq, 

V P 

and hence ~ m a y  be written as 
2e,  (r - r l )  (r - r2)/r 2 . 

But ~ is zero at perigee and apogee when r = a (1 - e) and a (1 + e) respectively, so 
tha t  

Thus 
# = - 2ae 1 or 

and 
a a  = { /~a  ( 1  - e 2 ) }  ~ . 

N o w  let c~3/~ 2 = cos i. 
Then 

o r  

r ,  = a(1 - e),  r 2 = a(1 + e). 

~ ,  = - # / 2 a  

- f12 = f t  (r) + sin-1 (sin 0/sin i) 

fi3 = 2 - s in-  1 (tan 0/tan i) j 

sin 0 = sin i sin {fl  (r) + f12} "~ 

tan 0 = sin i sin (2 + fi3)- 

The  last equat ion shows that  the orbit  lies in a plane making  an angle i with the 

equatorial  plane and that  f13 is the longitude of  the node. 
The equat ion for sin 0 shows that  f l  (r) - f12 is the angle between the radius vector  

and the line of  nodes, and since f l  (r) vanishes at perigee, flz is the angle ~0 between node 
and perigee. 

Thus the constants ill, f12 and ]?3 have been identified with elements of  the elliptic 
orbit  and it is easy to see that  ~1 is the total  energy, e2 the total  angular  m o m e n t u m  
and ~3 the angular  m o m e n t u m  about  the polar  axis. 

The  complete  set is then 

% = - # / 2 a  

% = {/m(1 - e2)} ~ 

e3 = { # a ( l  - e2)}~cosi 

f l l  ~ " C  

f12 ~ - - 0 )  

is the t ime of  passage through perigee. 
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It is now seen that not only do the longitudes of  the node and perigee have an 

observational importance in that they can readily be observed and secular changes in 

them can be determined with high accuracy, but in addition they are of  particular 
importance in the dynamics of  the elliptical orbit. 

�9 Instead of the quantity z it is sometimes more convenient to use the mean anomaly 

M = n (t - 0 .  The resulting set of  constants is due to DELAUNY 

l = M L = (pa) ~ 
g = c o  G = { # a ( 1 - e 2 ) }  ~ 

h =  ~ H = { # a ( 1 - e Z ) }  } c o s i .  

Lastly when the eccentricity is very small so that perigee cannot be defined, or when 
the inclination is very small and the node cannot be defined, the following elements 
are useful: 

l + g + h  L 
g + h  G - L  

h H - G .  

In the general problem of the orbit of  a satellite about the actual Earth, the potential 
differs slightly from - GM/r and the elements which are constants for the 1/r potential 
vary slightly in the actual case. The actual Hamiltonian may be written as 

where F = F o + F 1 
F o = T + p / r ,  

and F~ is the part  of  the Hamiltonian representing the difference of the actual potential 
f rom lz/r. 

Then since 
~Fo ~Fo 

- g =  O, - 0 = O, etc., 
OG ~g 

the equations of  motion are 

~F~ 3F 1 
- G - and so on. 

~G ' ~g 

This general procedure was followed by DELAUNY in his theory of the Moon and 
BROUWER (1959) has used it in his theory of  satellite motion. In common with all 
methods that start from the exact elliptical orbit, it has the disadvantage that the 
perturbations that have to be calculated are not very small and it would be more 
convenient if an exact solution could be found closer to the actual orbit. It  has been 
seen that in spherical polar co-ordinates, there is no other potential that leads to 
such a solution if it is to satisfy LAPLACE'S equation but by dropping that requirement 
GARFINKEL (1959) has obtained an exact solution closer to the observed orbits. 
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The Hamiltonian equations of motion may be transformed into equations that 
give the rates of change of the elements (a, e, e, g~, co, i) of the elliptical orbit. These 

elements are not a canonical set of variables but have the advantage that they are 
more nearly the quantities that are observed. The equations for the rates of change 
are due to LAGRANGE and have been extensively used in the study of artificial satellites. 
They of course express the departures from an orbit obtained with a 1/r potential 
and therefore involve the difference of the actual potential from this form, expressed 
as a function of the elliptical elements, just as the difference must be expressed as a 
function of the canonical constants when the Hamiltonian equations of motion are 

used. 
Suppose the solution to be expressed in elements e~ of the elliptical orbit. These 

elements are functions of  the canonical constants, (c~,, fl,). 
Hence 

= ~-~ &~ V~&~. 
~' l_s~r ~, + L ~ f i , .  

r r 

Expressing this in terms of the function 

K = H - H  o , 

r 

But K is also a function of the ej: 

r j 

'gi ~ 8j} 

J 

where {ei, e~} is known as a Poisson bracket: 

r 

The equations for the rates of change of an elliptic orbit are known as Lagrange's 
equations and may be derived in a variety of ways (e.g. PLUMMER, 1960, p. 146 f .  
SMART, 1953, p. 55 ft.). Here it will be shown how they follow simply from the 

Hamiltonian equations. 
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W i t h  the  c a n o n i c a l  set 

L = ( p a )  ~ 

G = { # a ( 1  - e2)} ~ , 

H = {/m (1 - e2)} ~ cos  i ,  

L = M ;  

g = a k ,  

h = ~ ;  

a n d  a p o t e n t i a l  

we have ,  fo r  example ,  

But  

a n d  so 

A l s o  

a n d  t h e r e f o r e  

It/r + R, 

OR 

OH 

H = G c o s  i ,  

O 1 O 

8 / t  G sin i ~ "  

G = na 2(1 - e2) ~, 

A g a i n ,  

a n d  

so t h a t  

N e x t  since 

= 

1 OR 

na2(1  - e2)~sin i 8i " 

H 
cos  i = --  

G 

d i  
sin i 

d t  

1 . H . 1 8 R  H 8 R  
- H +  G -  + , 

G G 5 G 0 g~ G 2 0a) 

d i  cos i OR 1 8R 

dt na 2 ( 1 - e 2 )  ~ s i n i 0 a k  a n  2 ( 1 - e 2 )  ~ s m , o g ~  

( p ) k ,  L =  a 

Thus  

d L  

d a  - �89 

da 
d =  . L =  

dL 

da OR 2 OR 

dL OM na 8M 
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For O, we have (1 - e2) ~- = G/L and therefore 

e0 1 G .  
L 

(1 - e2) -~ L L L 

1 (1 2 ~ OR 1 OR 
= L  - e ) - ~  LOco' 

o r  

= _ _ _ _  
1 -- e 2 ~R (1 -- e2) ~ OR 

_ _  - - .  . 

na2e OM na2e Oco 

The remaining equations are more readily derived by using the Poisson brackets. 

Thus 

(b = ~ {co, ei} --0R 
0e i 

i 

and the only non-zero Poisson brackets are 

and 

Hence 

{co, e} = (1 - e2) ~/epa 

{co, i} = - cos i/{ tta (1 - e2)} ~ sin i 

(1 - e2) ~ OR cot i 
(b=  

na2e 

~R 

de na 2(1 - e2) ~ Oi 

Lastly, in a similar way, 

1 - e 2 OR 2 3R 
�9 o 

naZe ~e na ~a 

Although the Hamiltonian methods give the deepest insight into the dynamics of the 
motion of a satellite, it is not necessary to use them in order to derive an orbit and it is 
possible to proceed to integrate the equations of motion in suitable co-ordinate systems 
as they stand. KING-HELE (1958) has used spherical polar co-ordinates and as will be 
seen (Section 3.1), his method has some similarity to the lunar theory of DE PONTE- 
COULANT, who however used cylindrical co-ordinates�9 The most effective lunar theory 
is that of HILL and BROWN who used a set of Cartesian co-ordinates rotating with the 
Sun and this also has been applied to the problem of artificial satellites (BROUWER, 

1958). 
It is convenient to point out here why the theories of the Moon, although very 

similar to those of artificial satellites, cannot be applied directly to that problem. In 
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the first place, the main disturbing function in the theory of the Moon is the attraction 
of the Sun and a principal problem is to determine the constant term in the Moon's 
semi-major axis arising therefrom. There is no similar problem in artificial satellite 
theory where the major part of the disturbing function is due to the ellipticity of the 
figure of the Earth and the effect of the Sun (and of  the Moon) is very small. The 
second difference is that in the lunar problem the inclination and eccentricity of the 
orbit are both small whereas those of the orbits of  artificial satellites cover a wide 
range of values, including some that are singular. For both these reasons rather 
different approximations have to be used in the theories. Another difference of some 
interest is that the lunar problem, being a three-body problem never admits an exact 
solution, whereas the artificial satellite problem can, in certain cases, be solved exactly 
in terms of analytical functions. 

It has already been emphasised that if the Hamiltonian equations of motion are 
formulated in spherical polar co-ordinates, then the only solution of LAPLACE'S 
equation that allows the HAMILTON-JACOBI equation to be solved by separation of the 
variables and a set of canonical constants to be derived, is the potential I~/r, and the 
principal additional term in the potential, 

R 2 
- - e l  J 2  - -  P 2  ( c o s / 9 )  

F 3 

has to be treated as a perturbation. But if oblate confocal spheroidal co-ordinates are 
used, then VIyT~ (1959) has shown that the HAMILTON-JAcoBI equation is separable 
for a potential that can incorporate the whole of the Pz(cos 0) term, The solution is 
obtained in elliptic functions and in the particular case of an equatorial orbit it is fairly 
straightforward to obtain the exact solution, (KING-HELE, 1958). 

The overall result of theories of the motion of artificial satellite is that the node and 
perigee change steadily, that long and short periodic fluctuations are superimposed on 
the steady changes, that the steady, or secular, rates of change may be written in the 
form 

~s = a2J~ + a4J4 q- a6J6 + ... + a22 J2 ; 
dOs = b2J2 + b4J4 + b6J6 + ... "}- b22J~ ; 

and that the long period changes may be written as similar series. 
The coefficients, a,, b, ... in these series are functions of the elements of the orbit, 

in particular of the inclination of the orbit to the equator, and it follows that if 
observations can be made on orbits with many different values of inclination, it should 
be possible to estimate numerical values for at least some of the parameters J,.  This 
is the basis of  almost all the studies of the Earth's external gravity field that have been 
made using observations of  the orbits of artificial satellites. 

However the gravitational attraction of the Earth is not the only force acting on 
an artificial satellite and for the full accuracy of the observations to be exploited, 
corrections must be applied to the observed motions to allow for the other forces to 
which the satellite is subject. Of these, the largest is that due to the drag of the 
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atmosphere but it can to a large extent be ignored because it acts almost entirely 
along the tangent to the orbit. The main effect of the drag is on the semi-major axis 
and the eccentricity of the orbit, both of which decrease, and it has no first order 
effect on the motion of the node or inclination. Second order effects do in fact occur 
because the drag is not exactly perpendicular to the radius vector in elliptical orbits 
and because winds in the atmosphere may give rise to small non-tangential components 
(G. E. Coorc, 1961). 

The other forces are conservative and Hamiltonian theory may be applied; in 
fact because the forces are small it is convenient to use the Lagrangian equations 
for the variation of the elliptical elements. All satellites are subject to the attraction 
of the Sun and the Moon which in general give rise to secular and long-periodic 
terms in the motions of node and perigee. The effects are greater the greater the distance 
of the satellite from the Earth and there is no difficulty in principle in their calculation 
to the first order (G. E. CooK, 1962). 

Radiation pressure from the Sun can be treated in a rather similar way to the 
luni-solar attraction. Again it is more important for the more distant satellites, and 
like atmospheric drag, it is greater the greater the ratio of the area of the satellite to 
the mass. (BRYANT, 1961). 

Lastly, the effect of using relativistic equations of motion should be mentioned: 
the correction is very small, about 0.005 deg/y in the motion of perigee, and may be 
ignored. (KING-HELZ, 1958). 

To illustrate the simple first order use of the Lagrangian and Hamiltonian 
equations of motion and to show the form of the dependence of the motion of  the 
node and perigee on inclination for the P2(cos 0) term in the potential, the secular 
terms will now be derived. 

Take first the secular motion of the node due to the J2 term in the potential, for 
which the additional part of the Hamiltonian is 

e 2 
F1 = ktJa ~g-" P2 (cos 0). 

The use of canonical variables will be illustrated and therefore the disturbing function 
must be put in terms of the canonical constants of the ellipse. Now (Figure la) 

and 

so that 

cos 0 = sin u sin i 

H 
COSi = - -  

G 

P  cos0   {3sin2u(1 
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Hence 
= h - 0H1 3 R 2 H 

OH - 2 k/J2 r 3 G 2 

in the  mean,  since the mean  value of  sin 2 u is �89 

Also,  
1 (1 + e cos v) 3 

r 3 a a ( i  - e2) 3 

the  mean  value o f  which is 
1 + - ~ e  2 

(1 - e ' )  3" 

Lastly/~2 = na a where n is the mean  mot ion  o f  the satellite and  so the average value 

o f  ~ is 

(5 -} n ']2 COS i 

ignor ing  terms of  order  e 2. 

The use of  the Lagrang ian  equat ions  will be i l lustrated by  deriving the secular  

m o t i o n  of  perigee. The  app rop r i a t e  equa t ion  is (see above) 

o5 = - -  
(1 - e2) ~x OR cot  i OR 

naZe Oe na 2 (1 - e2) } 0i ' 

where the  d is turbing funct ion has been wri t ten as R. R must  in this instance be ex- 

pressed in terms o f  the elliptic elements. As before  

cos 0 = sin u sin i 

and  
1 (1 + e cos v) 3 

, .3  - a 3 ( 1  - e 2 )  3 " 

Hence  

OR R 2 (1 + - ~ e  2) . 
Oi - ~ # J z  a 5"(1 - e2) 3 s m / c o s i ,  

t ak ing  the mean  value o f  sin u. 

Aga in  

OR p J2 Rz x O 1 + 3e cos v + 3e 2 COS 2 V + e 3 COS 2 V 

0e - a 3 ( 3 s i n 2 i ' s i n 2 u - � 8 9  ( 1 -  eZ) 3 

3flY2 R2 
- a3 ( 1 - e Z ) 2 ( l + � 8 9 1 8 8 1 8 9  

on tak ing  mean  values o f  t r igonomet r ica l  functions.  
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Thus the mean rate of  change is 

3#J2 R2 
d) - #J2R2 3 ( l n a  5 - e2)~(1 + �89188 i - �89 2naS( 1 _ eE)~COS2 i 

= �88 n J2 (1 -- 5 cos 2 i) 

when e 2 can be neglected. 

These results show, as was said before, that the dependence of ~ and d) on J2 are 
given by functions of  the parameters of  the orbit and it is easily seen that the most 

important factor is the function of cos i. ~ simply increases steadily as i decreases 
with a maximum value of 9~ per day for a close satellite on the equator, but ch has a 
maximum of 19 ~ per day for equatorial orbits and goes through zero when cos z i = 1/5, 

that is, at 63 ~ 45. The behaviour of  a satellite in an orbit with this critical inclination 
has some interesting features that will be mentioned below (Section 4). 

From a purely algebraical point of  view, the mean values of  ~ and c5 differ f rom 
zero because the mean value of sin z u is not zero but 1. All even order spherical 

harmonics contain even powers of sin u which have non-zero mean values and so give 
rise to non-zero rates of  change and secular motions of  node and perigee. Spherical 

harmonics of  odd order, on the other hand, containing odd powers of  sin u have zero 
mean values and they give rise to values of  ~ and cb with periods of  the revolution of 
perigee. 

A question that has given some difficulty is the definition of the elements of  the 
elliptic orbit when the actual orbit is not an exact ellipse. Dynamically, the canonical 

constants L, G, H, l, g, h, are defined by the ellipse that has the same radius vector  

and velocity vector as the actual satellite at any instant since physically it is products 
of  these two vectors that give the energy and angular momentum constants and so if 
the vectors are to be specified by elliptical elements, the elements must be those 
appropriate to each point of  the path and in general will change from point to point. 
The elements that correctly describe the actual radius and velocity vectors are called 
O s c u l a t i n g  E l e m e n t s .  They vary continuously round a non-elliptical orbit. For example, 
i is the inclination to the equator of  the plane defined by r and t and in general this 
plane rotates about r, leading to changes in i. 

Because the osculating elements are changing continuously, it is not convenient 
to express the rates of  change of the elements in terms of them. Instead, values of the 
elements at some specific point in the orbit (usually the ascending node) may be 
chosen, or some average value of the element may be used. 

The distinctions are not important in small terms but they do affect the terms 
involving J2, leading to different forms of the j2  terms in g~ and cb. Great care must 
therefore be taken in using the various theories of  satellite motion and also in making 
sure that the observation procedure and reductions do in fact give the parameters 
employed in the theory (MASSEVI6, 1961). 
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3. Theories of the Motion of a Satellite About an Axi-Symmetric Planet 

In this section, accounts are given of the more important theories describing the motion 
of  a satellite in an axi-symmetric potential field. This is the most important topic in 
the study of satellites because, as has been pointed out in Section 2, it is the coefficients 
of  the zonal harmonics in the potential that can most readily and most accurately be 
found from observation; it is also the topic that has been most thoroughly studied 
theoretically. The theories to be described in this section are those of  the greatest 
theoretical interest or those that have been most extensively used in the analysis of  
observations. Questions of singularities are deferred to Section 4. 

The purpose of these theories discussed is to obtain explicit literal expressions for 
the effects of each harmonic component, the most convenient form into which to cast 
the theory when values of  the harmonics are to be derived from the observations. It 
is, however, possible to develop semi-numerical theories in which the object is to 
derive the co-ordinates of the satellite numerically as a function of time. One such 
theory is that developed by HERGET and MUSEN (1958) on the basis of HANSEN'S theory 
of  the Moon. O'KEEFE et al. (1959) have shown how it is possible to apply this theory 
also to determine zonal harmonics by proceeding by numerical iteration until agree- 
ment is reached between the observed and calculated positions of  a satellite. 

3 . 1  I N T E G R A T I O N  OF THE EQUATIONS OF MOTION IN P O L A R  CO-ORDINATES 

KING-HELE'S THEORY 

KING-HELE'S theory (KINO-HELE, 1958) is important because it was the first that was 
used to derive exact information from satellite orbits, and has continued to be used 
subsequently for that purpose. It is stated in rather different terms from the theories 
that use LAGRAN~E'S equations and it will therefore be important to compare its 
results with those of other theories. The distinguishing characteristics of  KING-HELE'S 
method are the way in which the orbit is specified and the fact that the variation of the 
radius vector is obtained directly and in these two respects it has some similarity to 
DE PONTECOULANT'S lunar theory in which, however, instead of  spherical polar co- 
ordinates, cylindrical co-ordinates are used. 

An important point of  KIN~-HELE'S theory is the specification of the inclination 
of the orbit. It will be clear from the part played by the angular momentum vector in 
Hamiltonian theory, that the significant quantity dynamically is the instantaneous 
inclination of the plane containing the radius vector and the velocity vector of the 
satellite, that is the inclination of  the osculating ellipse. It is also evident that in general 
this inclination will vary with the position of the satellite in the orbit and an important 
question that will be discussed in Section 3.2 is the definition of  a mean inclination, 
and other elements, from which short periodic variations are removed. KING-HELE, 
on the other hand, takes a reference plane with a fixed inclination to the equator and 
forces it to rotate so that it shall always contain the satellite. This means that the 
rotation of this plane will not be the same as that of the osculating plane and therefore 
that the corresponding motions of the nodes will differ. Another difference from 
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conventional celestial mechanics is that the angular position of perigee is measured 
from the position of maximum latitude instead of from the node. 

The geometry is shown in Figure 4. /7 is the plane containing the centre of the 
Earth, O, and the satellite S. Oxyz are axes fixed in direction, Oz being directed 
northwards along the polar axis. Ox' y' z are rotating axes. Oz coincides with Oz 
in the fixed system, while Ox' is the direction in which H cuts the plane of the equator. 
The angle xOx'  is denoted by f2 measured in the opposite direction to the motion of 
the satellite. The, fixed, inclination of the plane H is called ~. The spherical polar 

Xx\\ 

J ~ X" 

~gquator 
Fig. 4. Satellite geometry - KING-HELE'S parameters. 

co-ordinates of the satellite, (r, 0, 4)) are as shown in the Figure, measured relative to 
the fixed axes. A is the point of maximum latitude of the satellite, fl is the angle 
between this point and perigee and ~b is the angle between A and S. 

Then: 
cot 0 = tanc~siu(q5 + f2), 
COS 0 = cosec e cos 0, 
sin 0 = -- sin0cos(q5 + f2). 

The equations of motion are 

/x __ tO2 _ r sin 20~ 2 ~3V 
c3r 

1 d 0.20 ) _  rsinOcosOgy = ____I~V 
r dt r ~0 ' 

d 1 ~V 
Clt (r2 sin2 0~) - r sin 0 g~b" 
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Writing 

R s 2 
the equations become 

#2 3gR 2 5/~R4 ~ 
- rO 2 - r sin 2042 - r2 + ~ -  J2Pz (cos 0) + ~ - -  a J ' 4  (cos 0) 

l d ( r 2 0  ) _  r s inOcos042  = d ( r  2sin204 ) = 0. 
r dt 

I f  the potential is just/~/r, the solution is 

1 l 
= ~ (1 + e cos  ( ~  - ~)), 

P 

where e and fl are constants, and the object of the theory is to find a solution of  the 
form 

1 1 
- {1 + ecos(O - fl) + J2vl  + J2ev2 + 0 (J i ) )  

r p 

where vl and v2 are functions to be found. The work is restricted to orbits with 
eccentricity not greater than 0.04; terms up to the order of the fourth power of the 
eccentricity are retained. 

The first step is to show that the equation for 0 leads to a steady change in g? 
given by 

~')= +}Jz(R~2coscx-t-O(J2e) 
k P /  

to the order of  JL To the same order, 

- = ~ + e c o s ( 0  - / ~ )  + k s~  (s  cos  2 ~ - 3 + ~-sin 2 ~ c o s 2 0 )  + 0 ( J 2 e )  �9 

r 

This solution does not show any change in fl and it is therefore necessary to include 
terms of  the order of e ~. It is first shown that 

where 

dO - + ~ Jz  [1 - e2 + 0 ( J 2 ) ]  c o s  0~ 

2 = �88 {3 cos (0 + fl) + cos (30 - fl)} cosec 2 0-  

There is a difficulty here because when fl is a multiple of ~, 2 becomes infinite, implying 
that the satellite momentarily leaves the plane H, a difficulty that KING-H~LE supposes 
could be avoided by suitable re-definition. 
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The third order equation for the radius vector leads to 

and 

with 

as above and 

dO - ~ J2 (s  cos  ~ ~ - i) + 0 ( a e )  

1 1 
r = }{1 + ecos(0 - fl) + Jev, + Jzev2} 

3-(R-xl2 (5 cos2 a - 3 + �89 2 c~cos 20) 

5 (R-~2 sin2 e cos (30 - fl). 
v2 = 24 \ p /  

To obtain the effect of J4 terms of order e 4 have to be included and in particular, 

dO (7 dO - ~J2 {1 - e2 - J2A + 0(J2a)} cosc~ 

where ). was given above and 

1(R'~2{3 5 J ,  (R)2{6_7s in2c~(2_s in20)}  " A = j , \ p j  + 5 sin/c~(1 + 2sin20)} - 1-2(j2)2. 

So far the motions of the node and perigee have been obtained in terms of the angle 0,  
the true anomaly of the satellite in its orbit. 

Using the angular momentum integral, 

dt Iz 1 + 3 Jz sec cz sin 20 + 0 (J2e) 

and thus, for example, the first order variation of ~ is given by 

dt - 2"/272" COS 0~ . 

KING-HELE expresses the rates of rotation of node and perigee as follows: 

dO ( 7 [  dt - n r cos~ azJ z+~J292 r ( l -~2s in2~- l ) -  

10. (RA2 -- Tgo41krj  (7sin2ct-- 4)],  

= ..(Rh2s2(Scos2 _ 1) 
dt ~ \ r , /  
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where r is the harmonic mean value of r with respect to ft. The above formulae have 
been changed slightly from those originally given by KING-HELE in order to conform 
to the notation used elsewhere in this paper. 

KING-HELE'S method has been extended by BRENNER and LATTA (1960) who have 
allowed the inclination of the p lane /7  to vary, and by PETTY and BREAKWELL (1960) 
who have introduced in addition a small displacement of  the satellite out of the plane 
H. PETTY and BREAKWELL also discuss the behaviour of the satellite for inclinations 
close to 

cos-1 (5)-~ 

when the secular motion of perigee vanishes. 
STRUBLE (1961) has developed a theory that has some affinities with that of  

KING-HELE. He works in spherical polar co-ordinates and seeks a solution of  the 
equations of motion of the same form as KING-HELE looks for, but he differs from 
KING-HELE in taking the reference plane to be defined by the radius vector and the 
velocity vector of the satellite so that the inclination is now not constant, and instead 
of the true longitude of the satellite, he uses a related angle that somewhat simplifies 
that equations of motion. STRUBLE discusses in particular the behaviour of the satellite 
when the inclination has the value cos -1 (1/5) ~. 

MUSEN (1961) has developed a theory in terms of the true longitude with the especial 
object of applying it to numerical integration. 

MESSAGE (1960) has discussed the relation between the constant inclination of  the 
reference plane chosen by KINC-HELE and the changing inclination of the osculating 
plane. Let Oxyz be a moving frame of reference in the p l ane /7  of  fixed inclination, 
so that Ox is the intersection of this plane with the equator, Oy the northerly line of  
greatest slope in the plane, and Oz the direction perpendicular to the plane. Then the 
position vector of  the satellite in terms of  this frame of  reference is 

r = ( -  rs inO,  r co sO ,0 ) .  

Now let OXYZ be an inertial frame of reference with the plane OXY being the equa- 
torial plane; the angle 1"2 in KING-HELE'S theory is the angle between Ox and OX, 
measured in the opposite direction to ~k. 

Then 
X = x cos 12 + (y cos ~ - z sin ~) sin g2 
Y = - x sin 12 + (y cos e - z sin cz) cos 12 
Z = y s ine  + x c o s e .  

Accordingly the position vector of  the satellite in the inertial frame is 

r = (r sin ~, cos 12 + 1, cos ~ cos c~ sin 12, 
rsin $sin 12 + r cos~kcos ~cos12, 
r cos ~ sin ~). 
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The velocity of the satellite referred to the moving frame is 

(v) = ( -  i sin 0 - r~ cos 0 ,  t~ cos 0 - r~ sin 0 ,  O) 

and relative to the fixed frame it is 

where 
v = (v) + 0 ^ r + O ( J e )  

o = (o ,  o ,  - ~ ) .  

Since the osculating plane is defined by the position and velocity vectors, r and v, the 
unit normal to it is n = N/N where 

and 

N = r ^ v = r ^ (v) + r 2 0 -  r ( r .O)  + O(Je,  02 ) 

N z = (r ^ v) 2 + 2r 2{r ^ (v)}'O + O(Je,  02). 

But referred to the moving frame, 

r A (V) = ( 0 ,  O, r2~)  

and so in the inertial frame 

and therefore 

o r  

r a (V) = (-- r z ~J sin :r sin f2, -- r 2 ~ sin :r cos g2,r 2 ~ cos a) 

N 2 = r 4 ~2 _ 2r 4 ~ t'2 cos ~ + O (Je, Y2 2) 

( dQ ) O{Je (d~)2"~ 
N = r  2~ 1 -  d0"C~162 + ix , \ ~ - j  ] .  

Thus (dO) 
n = - s i n e s i n ~  1 +  dO cose - cos 0 sin : ~ ( ~ ) ( s i n  0 cos f 2 - c o s  0 cos c~ sin f2), 

dr2 
- sinacos ~ 1 + dr2 cose)  + cos0sincz .-== (sin 0 sin t'2 + cos 0 cos c~ cos I?) ,  

dO J dO" 

cosc~(1 + dr'2 cosa)  - dl-2 dr2 ( (df2)2,]  
dO ,] ~ -  + c~ 0 sin2 ct ~ ,  + O Je , \  dO/I J" 

Now in terms of the inclination of the osculating plane and the longitude of the 
ascending node, 

n = (sin i sin ~ , - sin i cos ~ ,  cos i). 
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For the two expressions for n to agree, 

and 

But 

so that 

and 

i = e +  df2 sinc~sln20 + O(Je ( df2~2~ 
dO \ ' ~ , d 0 /  ,] 

= _ f2 - _ _  df2 (Je (df2  ~2) cos 0 sin 0 + o 
d0 \ ' \ d 0 J  ,]" 

dO ( 5  dO - -~ J2 cos c~ 

i = (X + �88 J2  sin 2 e s in  2 0 = O (Je) 

= -- f2 -- �88 cosc~sin20 + O(Je). 

The mean value of i is accordingly 

io = e + 3 J2 sin 2 c~ + O (Je) 

and KING-HELE'S results for the time rate of change off2 transform to 

~ =----cosi~ LJz \P /  +9 j~  P (%a_sin2/o_Sg) 

,1 1 ~ J4 (4 - 7 sin 2 io 16 

where TN is the nodal period, the time between successive passages through the 
ascending node. 

MESSAGE points out that it is not in fact possible to define a plane of constant 
inclination such that the satellite always remains in it, as KING-HELE had indeed 
conjectured, and he observes that such a plane can only be defined if the maximum 
northerly and southerly latitudes attained by the satellite are the same, which of  
course they are not in an elliptical orbit. The variation in ~ will then be of order Jze, 
and MESSAGE shows that 

c~ = •o - �89 eJa sin 2 eo cos (0 + fl)- 

A very similar treatment to that of  KING-HELE, has been given by HALL and 
GAWLOWICZ (1962). It applies to circular orbits but includes the effect of Ja. 
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3 . 2  THEORIES U S I N G  THE EQUATIONS OF VARIATION OF THE ELLIPTIC ELEMENTS 

One derivation of these equations was given in Section 2 and methods of solving the 
equations will now be described. The main problem of manipulation is to express 

the disturbing function, 
R = V + # / r ,  

in terms of the elliptic elements in such a way as to bring out the salient features of the 
problem. It  has already been seen in Section 2 how this is to be done for the first 
order secular terms and consideration will now be given to the problems that arise in 
going to higher order terms. 

KOZAI (1959) has used the equations of  variation in the form given in Section 2, 
taking R to be the sum of zonal harmonics of  order 2, 3 and 4. He writes R as the 

sum of four parts, first order secular, R1, second order secular, R2, long periodic, R3 
and short periodic, Ra: 

where 

3 g,/2 R2 1 I sin 2 i) t/- 3 
= - 

35 lxJ4R 4 
3 ~2"~ .A-  7 R 2 -  8 a 5 ( a ~ - ~ s i n Z i + w  

R 3 
R3 = - ~-PJ3 ~ ( ~  sin2 i - 1)er/-5 sin isinco 

a6 . J4R4r 9 _ ~_sin 2 i)e2t/-7 sin 2 icos2co + -g-~ ~ - t g g  

3pJaR2(a '~3[ ( � 89189  ( 2 ) 3 ~ - a }  + 
R4 = 5 a 3 \ r ]  

+ 1sin 2 i cos 2 # /  
- - - i  

A 

t / =  (1 - e2) ~ . 

The first-order secular parts of  the changes in the elements are simply obtained by 

direct substitution of R in LAGRANGE'S equations: 

= COo + �88 J2 (4 - 5 sin 2 i) tit, 

= ~ o - - } J 2  r~tcos i, 

2i4 = M o + ~t. 

= no + -~ J2 no (1 - -~ sin 2 i)(1 - e2) ~ , 

2 a 3 p is the semi-latus rectum of the orbit and n o = p. 
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Short periodic variations of the first order are obtained by inserting R 4 into the 
equations and then integrating by using the following relation to transform from time 
t to true longitude v: 

dt _1( "~2 
dt = dMdM _r (1 - e2)-~dv 

n ka/ 
For instance 

dis=nZa2(1-eZ)siniJ \ a f  ~o) dv 

- -  g J 2  sin 2 i {cos 2 (v + co) + e cos (v + 20)) + 

+ �89 + 2co)}. 

In deriving the long periodic perturbations and the secular perturbations of the 
second order, account must be taken of the fact that the elements in the expressions 
on the right sides of the equations of variation are not constant. Thus if the variation 
of an element E~ is given by 

dE~ 
- f ~ ,  

dt 

the functionfl  may be expanded in a power series so that 

dE~ ~~ ( ~ )  
= ( f3o  + o dEj 

J 

and accordingly, on integrating by parts, 

with 

t t t 

dEi=Y(fi)~ + 2[Fi'dEj]j o -- ~ !  dt__ 

d\ es/ 

Now it can be shown that i and e can contain no secular terms and KOZM also shows 
that a can contain neither secular nor long-periodic terms and with the aid of these 
facts he is able to derive the long periodic variations of i and e, the latter from the 
condition that the angular momentum integral gives 

{a(1 - e2)} } cos i = const. 

The complete first order expressions for a, i and e are now available and may be 
inserted in the equation for dE i to give the long-periodic and second-order secular 
changes of node and perigee. 

Very general expressions for the first order changes in the elements (i.e. those 
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obtained on the assumption that the right sides of LAGRANGE'S equations are constants) 
have been derived by GROVES (1960). He takes the most general term of the expansion 
of the potential in spherical harmonics and expands it in terms of the inclination, the 
true longitude and the argument of perigee. He next transforms that expansion to 
one in terms of inclination, mean anomaly and argument of perigee and shows how 
to differentiate it with respect to the elements. General results are then derived for the 
first-order variations of the elements and explicit results are given for the zonal har- 
monics of order 2, 3 and 4. GROVES also obtains certain results for the motion of a 
satellite about an Earth with tesseral harmonics in the potential when the mean 
motion of the satellite is commensurable with the spin angular velocity of the Earth, 
a topic that is dealt with in more detail in Section 4. 

The Lagrangian equations can be written in an alternative form in terms of the 
three perpendicular components of the disturbing force acting on the satellite: 

2a 2e sin v 2a z 
d - (#p)} S + (--pp)---~ T,  

~?_  r s inp  W 

(# p)~ sin i 

d~ . . . .  S cos v + T 1 + sin v - We  r sin v cot i 
e \ p /  p 

p~ sin v r (e + 2 cos v + e cos 2 v) 
d =  S +  T r 

di r co s#  
w 

where S is the component along the radius vector, T the component perpendicular to 
S in the osculating plane, and Wthe component perpendicular to S and T. (PLUMMER, 
1960; MERSON, 1961). 

If  R, the disturbing function, is independent of longitude, then 

OR 

Or 

_ (cos_. sin,  
T =  \ rs in0 ] 0 0  

_(oos,)o  
W = \ r  sin O] O-O" 

If  now, R is given as a series of zonal harmonics, then S, T and W may be written 
down in terms of r, u and the inclination i of the osculating plane. The solution of the 
equations of variation is carried out as before, the first order terms being obtained by 
direct integration and the second order terms by taking account of  the first order 
changes of the elements on the right sides of the equations. 
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M~RSON (1961) and ~ONGOLOVI~ (1960, 1962) have each given very complete 
treatments on these lines. Both transform from time to the argument of latitude, u, 
as the independent variable and so since the nodal or draconie period is defined as 
the time in which u increases by 2n, their results are in the form of the changes of the 
elements in one draconic period, just as are those of KING-HELE, whereas KozAFs 
rates of change are with respect to time. Both give expressions (on which they agree) 
for the rates of change in terms of the osculating elements at the node. 

Since the osculating plane is constrained to rotate with the velocity Vector and 
since the motion of a satellite shows short periodic fluctuations, the inclination of 
the plane, the longitude of the node and other elements of the orbit show short 
periodic fluctuations. Since there are ways of  describing the position of a satellite 
other than by means of the osculating elements, these short periodic variations in the 
elliptic elements are not necessarily essential to the description of the behaviour of 
the satellite and MERSON and ZONGOLOVI~ both deal with the problem of defining 
other elements analogous to the osculating elements and equally suitable for repre- 
senting the motion of a satellite but from which the short periodic fluctuations shall 
be removed so far as possible. 

ZONGOLOVIC and PELLINEN (1962) take the expression for the element E in the form 

E = E o + J2E'u + J2 i (a,,, cos mu +Pm sin mu) + 0 (J22) 
0 

and then define the mean value of the element as 

2 n  ra 

E = E o + J2E' (M + o~) +a 2  | ~ '  2 n J s  (a,, cos mu +Pm sin rtlu) + 0 (j2). 

0 0 

They then derive the relations between these mean elements and the osculating 
elements at any value of the true anomaly and in particular for the values at the ascend- 
ing node and hence they can express the secular and long periodic changes of the orbit 
in terms of their mean elements. 

MERSON deals with the problem of defining elements that shall have minimum 
short periodic components. Corresponding to any element ~ he defines a smoothed 
element ~' such that 

~'  =_ ~ + 7 ~ J 2 .  

Now the osculating element may generally be written as 

and MERSON tries to find a 7~ such that 

7~J2 = c~J 2 - O~per 

where d~w~ is the periodic component of ~ and c~ = const + O(Jz), for then the 
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periodic components will have been removed from the changes in (. It  is not in fact 
possible to carry out this program completely (as has already been seen in the 
discussion of KING-HELE'S definition of the inclination), but MERSON finds that 
smoothed elements with minimal periodic terms can be found and he obtains 
expressions for the secular and long-periodic changes in these opt imum smoothed 
elements. 

3.3 USE OF THE CANONICAL EQUATIONS OF MOTION 

BROUWER (1959), GARFINICEL (1959) and KOZAI (1962) have developed theories of  
satellite motions starting from the canonical constants for an elliptical orbit in the 
form given by DELAUNAY: 

L = ( ~ a )  ~ t = M 

G = L ( 1 - e 2 )  ~ g = c o  

H = G c o s i  h =  g~. 

The object of the theory is to transform to new variables L '  ... in such a way that the 
Hamiltonian written in terms of these new variables is as nearly as possible a function 
of L' ,  G'  and H '  only, for then these parameters will be constants and the correspond- 

ing co-ordinates, l', g '  and h'  will be linear functions of  time. 
The transformation is effected by means of a solution, S, of  the HAMILTON- 

JACOm equation, following a method due to VON ZHPEL. 
In terms of the variables L, G, ..., F can be written out explicitly, as has already 

been seen. The L, G, ... are subject to various periodic changes and the object of the 

transformation is to remove these changes from the elements and put them into the 
form of F, which will now consist of  an infinite series instead of a finite set of  terms. 
Since the problem cannot be solved exactly, the determining function S will also be 

expressed as an infinite series. 
Let the Hamiltonian as a function of (L, ..., l, ...) be called F: 

F = F o + F 1 

where here, as in the sequel, the power of  ,/2 in any function is denoted by the sub- 

script. 
Let S = So + $1 + $2, the deterrniningfunction, be the solution of the HAMILTON- 

JACOBI equation, and let the Hamiltonian as a function of the variables (L ' ,  ..... l', . . .)  

be written 
F* * * * = Fo + F1 + F2. 

The object is to find a form of F* independent of l '  and h', remembering that F is 
already independent of h since V is axi-symmetric. 

So is chosen to be the identical transformation: 

S o = L ' I  + G'g + H ' h .  
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and so, 
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F ( L , G , H , I , g , - )  = F * ( L ' , G ' , H ' , - , g , - )  

Fo (S,) + (Sl, So, Sh, g, -)  

* * t t t 
= F o + F I  ( L  , G , H  , - , S  t ' ,  - )  

+ F 2 ( L ' , G ' , H ' , - , S  t ' ,  - ) ,  

where letter subscripts denote partial differentiation when it is helpful to use that 
notation : 

OS 
Sl = 81" 

The various terms are expanded in TAYLOR series and the parts of  the same order 
in -/2 on the two sides of  the equation are equated: 
order zero: 

one: 

two �9 

F o (L') = F o (L') 

8F , 
Slt ~ + F~ = F1 

01_; 

( ~ F o  i K '2  82F~ 8F1 8F1 

* F* �9 8S~ 
= F 2 +  lg OG'" 

BROUWER chooses for the unperturbed Hamiltonian that corresponding to the 

potential #/r, whereas GARFINKEL (see also STERNE, 1958; GARFINKEL, 1958) starts 
from a potential that allows the HAMILTON-JACOBI equation to be separated but which 
is not a solution of LAPLACE'S equation for in this way the perturbations that have to 
be dealt within the transformations are smaller. The potential that GARFINKEL chooses is 

3kcl 2 
Vo = - -~ r + r 5 -  (sin 0 - c2) 

with 

# = 1 - 6kc 3 
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a potential  that  gives a pseudo-elliptical orbit with secular variations of  the order  of  
�9 k2 when 

c, = 1/a(1 - e2), c 2 = cos / i  

c 3 = (3 cos2i - 1)(1 - e2)-~/ap 2 . 

BROUWER separates F a into a secular part,  Fa~, independent  of  I, and a periodic part,  
Fap, that  is a function of  l. 

Now 

or, writing 

Put  

and 

when 

and 

Hence 

F _ 1 "t2 #Ja(R ' ]ZP2(cosO)  ' 
2 L  2 r \ r /  

J2 = J2 

#2 p 4 J 2 a 2 [ (  1 7H2,~a a 
r = ~ + ~  - i + 2 ~ / ; ~ +  

- G-s 2(g  + v)] .  

a 3 L 3 L 3 
V = Gg + Z 2 P s c ~  = G x + ax 

a 3 

~ c o s 2 ( g  + v) = Z Q j c o s ( 2 g  + j l ) -  a2, 

# 4 j 2 a 2 { _ l  3H2"~ 

(.2)} 
r . =  ~ - [ \ - ? + 2 ~ ] r  +~ 1 - gs r �9 

~1 - E 3 - + 2 G 2 ]  al + ~ 1 -  ~ az 
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and so St may now be determined by integrating this expression with respect to l, and 

then all the primed variables can be found: 

OSt 
L = L '  + - - .  

Ol '  

G = G '  + - -  

H = H '  

~St 
Og ' 

~Si 
I = I ' - - -  

OL,' 

~S~ 
t _ _  _ _  , 

g =  g OG, 

0St 
h = h ' - - -  

OH" 

In terms of the primed variables, the Hamiltonian is 

and with 

F* _ 
#2 #4jza2 / 1 3H2~ , 

- 2c + 2 + 2 GV + F. 

F 2 = F2s -t- F2p, 

all the terms can be found from the preceding work. 
Now take a new determining function, S*, transforming to variables L", ... 

S* = L'I' + G"g' + H"h' + S1 (L", G", H", g') 

and let F** be the Hamiltonian in terms of the new variables, L" . . . .  
Once again, since F* = F**, 

giving 

, O N 1  ~ , , ~  . . . . . . . .  
F o + F  L " , G " + ~ , , H  + F 2 s + F 2 1 , = F o + F a + F 2  

* ** - - ' - - + F 2 p = O  Fo = Fo,  OG" ~g' 

* * *  * * *  

F 1 = Fi ,F2s  = F 2 

since l" has been eliminated from F**. 
* * t OF~/OG" and F2p are known from the preceding work and so OS1/Og is also known. 

Then directly 

G' = G " + - -  Og' ' 

and by integrating with respect to g ' ,  S 1 is found. Then as before, the new variables 
(l", g", h") can be calculated. Finally, F** can be written down as a function ofL", G", 
H" only and hence the rates of  change of l", g", h" can be found, giving the secular 
changes of  these elements to the order of j.2 
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Higher  harmonics  are readily added to the Hami l ton ian  F2 since only first order  

terms in J3, ,14,  . . . ,  are needed. 
GARFINKEL'S procedure  is very similar to that  o f  BROUWER and their results are in 

agreement .  
KOZAI (1962) has continued BROUWER~S t rea tment  to include terms of  order j3 .  

3.4 SOLUTION TO THE EQUATIONS OF MOTION IN SPHEROIDAL CO-ORDINATES 

I t  is known that  the external potential  o f  a body  bounded  by a spheroid o f  revolut ion 
(to which the potent ial  o f  the Ear th  approximates  quite closely) has a part icularly 

simple fo rm when expressed in spheroidal  co-ordinates (see for example,  PIZETTI, 
1894; A. H. COOK, 1959) and it is therefore natural  to ask if there is also a simple 
solution of  the equations of  satellite mot ion  in these co-ordinates that  might  enable 

the effect o f  at least the J2 te rm in the potential  to be treated more  exactly than  in 
spherical polar  co-ordinates.  VINTI (1959) showed that  there is indeed such a solution. 

The working in this section will be given in terms of  the co-ordinates,  t/, v, 2, 

which are related to Cartesian co-ordinates as follows: 

x = c cosh t/sin v cos 2,  
y = c cosh q sin v sin 2,  
z = c sinh q cos v. 

2 is the az imuthal  angle and v is the eccentric angle of  the meridional  section. 

VINTI used a slightly different set: 

x = c {(~2 + 1) (1 - 1/2)} } cos q~ 
y = c{(~ 2 + 1)(1 - t /2 )}~s in  ~b 

z = c~tl. 

There is some slight algebraic advantage  in the fo rm used here and it is ra ther  easier 
to relate the potential  in this set o f  co-ordinates to that  in spherical polar  co-ordinates.  

The line element, ds, is given by 

with 

d s 2 ~  

h~ = 

h~dq 2 + h2 zdv 2 + h3 zd22,  

h 2 = c 2 (sinh 2 t / +  cos 2 v) 
h 2 = c 2 cosh z t/sin 2 v. 

The kinetic energy for  unit mass is 

= 1 r  h~22}, T ~ ~nl~ + h ~  v 2 +  

or in terms of  the momenta ,  [2 1 Pn + p2 

T = ~ c  z sinh2r / + cos2 v + cosh2t/sin2v] " 
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As in the rest of this section, the potential is supposed to be symmetrical about the 
polar axis, that is, it is a function of ~/and v only, and the HAMILTON-JAcoBI equatior~ 
for the system is therefore 

1 

2C 2 + + V (q ,  v) = ~i sinh2~/+ cos2v cosh2~/sin v 

This is a form of the equation which, according to the theory of STACKEL, is known 
to be soluble by separation of the variables for a suitable form of the potential (see 
ISZAK, 1960). That potential will now be determined in the same way as that which 
permits separation in spherical polar co-ordinates was found above. 

Let S, the determining function, be the sum of terms which are functions of ~/, v 
or 2 alone: 

s = + S (v) + 

Denoting differentials by primes, the HAMILTON-JAcoBI equation then becomes 

I St 2 _~ S '2 S~ 2 ~ 1 1 2 

2e-- ~ sin~-2t / ~_ ~os2v + cosh2-~sin2v.j + V(q,v) = cq. 

Evidently S~ must be a constant, (X 3 say. 
Now 

sinh2q + cos2v = cosh2q - sin2v 

and so 

Si 2 + S• + 3\sin2 v cosh2~ 7 + 2c2V(cosh2~/-sin2v) 

--= 2C20q (cosh2t/-  sin2v). 

It is easily seen that this equation is separable if 

But  

and 

v = (cosh2  - s in2v)-I  {f( ' l )  + g(v)}.  

cosh2q - sin2v = sinh2q + cos2v 

= - (i sinh t /+  cos v) (i sinh q - cos v) 

i sinh ~I - cos v 
= Z (2n + 1) Q, (i sinh q) -P, (cos v), 
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where On(/z) is a LEGENDRE function of the second kind, defined by 

+ 1  

1 f P"( )du " 

- 1  

(HoBSON, 1931, p. 58) 

The general solution of LAPLACE'S equation in spheroidal co-ordinates that vanishes 
at infinity is 

Q,(i sinh q). P, (cos v) 

and so (i sinh ~/ - cos v)- t is such a solution, as is (i sinh q + cos v)- 1. 
Thus if A and B are constants, we must have 

that is 

A 

i sinh ~1 + cos v 
+ 

B f(rl)  + g(v) 

isinhq - cosy sinh2q + cos2v ' 

(A + B) isinh t/= f(q) 
( A - B )  cosv = g ( v ) .  

If  consideration is restricted to a potential that is symmetrical about the equator, 
A must equal B and so 

f ( t l )  -- A sinh q 
and the potential is 

iA Z (2n + 1) Q, (i sinh q) P, (cos v). 
n even 

The HAMILTON-JACOBI equation now separates into an q equation and a v equation: 

Then, 

and 

s? 
coshZq 

-]- 2c2A sinh q - 2c251 cosh2t/= 52 

2 
S~2 5 3  + sin2-~ + 2c2czl sin2v = - -  5 2 .  

v 

Vl 
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and the constants, ill, f12, f13 are obtained by differentiating S: 

397 

0S 3S1 ~$2 
~ 1 -  - + 

q 

= + ~ {c~ 2 (1 + sinh2r/) + 2c2cq (1 + sinhgq) 2 + 

+ 2c2A(1 + sinh2q) + c~}-}d(sinhq) 

• i i {c~2 (1 - cos2v) § 2c2~1 (1 - COS2V) 2 § 
Vl 

+ ~ }  d(cos  v). 

The integrals are both elliptic integrals of the first kind (WHITTAKER and WATSON, 
1940, p. 515). 

The corresponding integrals in VINTI'S co-ordinate system have been evaluated 
by VINTI (1961a) and by lSZAK (1960) who have each related the canonical constants 
involved to the elements of the elliptical orbit. To interpret the results, the potential 
must be related to the form in spherical polar co-ordinates. 

Write 

where 

and 

v =  vo + v2 + v4 + . . .  

t/o = - .~ Q0 (i sinh q) 
l C  

k 2 = - 5ktQ2 (i sinh t/) P2 (cos v). 
l e  

In spherical polar co-ordinates, 

Vo = ~ r a - P2 (cos 0) + 

(A. H. COOK, 1959) 

and 
5# 2 t 

1/2 = - 17' 15 (i sinh r/) 3 P2 (cos 0) + . . .  

- 3 e \ r J  e2  (cosO) + . . . .  
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Hence :[ ] V =  V o + I/2 = 1 -  P2(cosO) + ... 

the terms omitted being of order 

and less. (~)4 

Accordingly 

which is VINTI'S result. 

ISZAK (1960) includes second order terms in his expressions for the motions of the 
node and perigee, with the following results (s = sin i): 

Speed of node: 

_ 3 ( c ?  cos,  os, 
2 \ a ]  (1 - e2) - - ~ - 5  + 1 6 \ a ]  (1 - e2) 4{18 - 13s2 + 24s2e2} ; 

Speed of perigee: 

3_(c_'] z 4 -  5s z 1 ( c ' ]  4 1 
4 \a / /  (1 e:) 2 + 6 4 \ a /  ( 1 -  e2) - - ~  x 

x {288 - 1296s z + 1035s 4 - (144 + 288s 2 - 510s 4) eZ}. 

Remembering that 

J2 ~ 

these results are identical with those of other theories to first order but the j2 terms 
do not agree with those of other theories and the relation of the elements used by 
ISZAK to osculating elements, for example, needs further study. 

The result of VINTI'S theory is that it is possible to obtain an exact solution to the 
equations of motion in terms of canonical constants for a potential having exactly the 
same Jz term as the actual potential of the Earth. It is now of interest to see how far 
higher harmonics in this potential correspond to those of the actual Earth or to those 
in the potential outside a rotating spheroidal equipotential surface for which, as for 
VINTI'S potential, the higher harmonics are fixed once the J2 term is chosen. 

The comparison is as follows, J2being ( C - A ) / M R  z, 

106J2 106.]3 106J4 106J5 106J6 
VINTI 0 --1.2 0 1.3 X 10 -3 
Equipotential 0 --2.4 0 2.5 x 10 .3 
observed 1083 - 2.4 - 1 0 0.73 

It is not of course to be expected that the terms for the equipotential surface will be 
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the same as those for VINTI'S potential because those in the latter are uniquely deter- 

mined by the relation, 

J 2 n  = - - ( - - J 2 )  n 

whereas those for the former are fixed by the spin angular velocity o f  the rotating 

body  by the relations 

J4 = - 7-r (J2 + �89 - m),  J6 = 2 ~ f ( 3 3 2  + m)2(9J2 - 2m) . . . .  

where m is the ratio o f  centrifugal to gravitational force on the equator. 

More  fundamentally,  VINTI'S potential expressed in spheroidal harmonics,  appears 

as an infinite series whereas the potential outside a rotat ing body  bounded  by a 

spheroidal equipotential surface is given exactly by just  the first two harmonics,  

Vo = ~- Qo (i sinh q)  P o  (cos v) 
IC 

and 
l 2n2 Q2(is inhq) P2(cosv)  

v 2  = - 
s i n ~ o )  

where % is the spin angular velocity o f  the body  and Re is the equatorial  radius. 

TABLE 1 

NOTATIONS FOR THE POTENTIAL OF THE EARTH 

A u t h o r  # J2 ,13 .I4 35 

2 8 
KING-HELE, 1958 gR2  + 3 J - -  35 D 

2 Az A8 8 A 
KOZAI, 1959 G M  3 R 2 R 3 35 R 4 
VINTI, 1959 J~ J4 

2kz A3.o 8 k4 
BROUWER, 1959 /t R 2 R 8 3 Rm 4 

2k k'  
GARmNKrL, 1959 

R z R 4 

2 8 
BRENNER and LATTA, 1960 -- g R  2 - J - -  - -  D 

3 35 
2 8 

PETTY and BREAKWELL, 1960 /z ~ J2 J3 35 J4 

RoA~ ~ RoA~ ~ 
GROVES, 1960 /.t 

/z /2 
~ONGOLOVIC, 1960, 1962 f M  --  c2o - -  c3o - -  c4o 

MERSON, 1961 /t ,/2 -]3 ,]4 

2 8 
STRUBLE, 1961 gR~ + 3 J - 35 D 

A5 .o 

R I  

Ja 
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VINTI'S potential matches the observed J4 term very closely, more closely in fact 
than seemed the case when VINTI proposed it. All other known coefficients up to J12 
are of order 10- 6 and so are not represented by the potential. 

3.5 SUMMARY AND COMPARISON OF RESULTS 

The results of the theories outlined above are given in a number of different forms and 
it is difficult to appreciate the relations between them at first sight. The purpose of this 
section is to present the various results so far as possible in a common notation, to 
bring out the most significant results so far as practical applications are concerned 
and to see how far the results are in agreement between one treatment and another. 

In the first place, although all theories except that of VINTt take the potential in 
the form of a series of spherical harmonics, there are many different notations for the 
coefficients. In this paper, the recommendation of the I.A.U. (Commission 7) is followed 
and the potential is taken in the form 

n 

Other notations that have been employed are summarised in Table 1. 
In the second place, the variations of the elements may be presented in different 

ways. The rate of change with respect to time may be given, or the change in one 
anomalistic or draconic (nodal) period, or, for periodic terms, the value as a function 
of  the argument co. Such differences do not affect the first-order secular changes, 
which are given in Tables 2a, 2b, 2c, in the J2 notation, but they do affect the first- 
order periodic changes with argument co. 

BROUWER (1959) and KOZAI (1959) for example, give these long periodic terms as 
the actual values at a particular value of co and for an element E they are in the form 

J .  - / s i n  \ 
6E = j - z . f~(e , i )~co  s qco), 

J2 coming in as a denominator because the speed of co is determined by the value of Jz- 
MERSON (1961) and ZONGOLOVI6 (1960a), on the other hand present the changes in 

one nodal period. Then if E(col) is the value of E when co = col, the change of E in one 
period, 

A(E) = E(co 1 + 60T) -- E(COl) 

J'sin . sin 
oc ~cos(qco 1 + qd)T) - cos qcol} 

COS ) 
-- sin qcol q&T 

since &T is small. 
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But 

and so 

COS 
AE=2~z x 3 q ( 1 - 5 s i n  2i) J .  f~ - s i n q ~ ~  " 

These long-period results, also, are summarised in Table 2, in the form of  the changes 

in one draconic period. 

There are some discrepancies between the theories. The results for e and i (which 

are not  independent) are in good agreement, but  there are more  serious divergences in 

the results for the node and for perigee, some of  which arise f rom the fact that  BROt:- 

WER'S results are in terms of  mean elements whereas MERSON (1961) and ZON6OLOVt~ 

(1960a) use the values o f  the osculating elements at the node. Only those terms for 

which there is no difficulty are included in the Tables but as noted there, more extensive 

results will be found in the original papers. The discrepancies do not,  however affect 

the general nature o f  the conclusions. All elements are subject to long-periodic 

variations, with speeds 2poe for harmonics o f  even order, and speeds (2q + 1)co for 

harmonics o f  odd order, the highest speeds being in each case (n - 2)co where n is 

the order o f  the harmonic,  e and i are not  subject to secular changes but the node and 

T A B L E  2 

CHANGES OF THE ELEMENTS IN ONE NODAL PERIOD 

NOTATION 

R : radius constant of the Earth at sea level, usually the equatorial radius 
p : semi-latus rectum of orbit 
e : eccentricity 
i : inclination at ascending node 

S : sin ~ i 

REFERENCES 

B 
G 

Gr 
K-H 

K 
M 

~2 
2P 

s 

l-p 

: BROUWER, 1959 
" GARFINKEL, 1959 
: GROVES, 1960 
: KING-HELE, 1958 
: KOZAI, 1959 
: MERSON, 1961 ( formulae  in te rms  of  oscula t ing elements  at  ascending node) 
: ~ONGOLOVI~, 1960 
: ZONGOLOVI(~, 1960a 
: ~ONGOLOVIC and  PELLINEN, 1962 
: secular  te rms  
: long-periodic terms 
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TABLE 2 (Continued) 

a. Eccentricity and Inclination: First order long periodic terms 

Ae = 2 n Jn in 

in = -- e '  en (1 -- e2) -1 cot i 

en 

3 ( l _ e ~ ) ( 1  5 )  - - ~  - -~  sinicosco 

7 S ) Se sin 2oo -- 14~(1 -- e~)(l  --~ 

15(14 - -e2)s ini (  1 +34 e~ ) ( 1 - -  27 + 8- 21S2)cosco 

105e2 i ( 1 cos 3co + ~  (1 -- e~) sin - - ~ S ) S  

- -  [( 33 Sz)(  1 +  l e 2 )  52532 (1 - e 2) S 1 -- 35 + 16 ~ e sin 2o0 + 

3 ( 1 -- 11S~ Seasin4o9 ] 
10 ] 

(1 -- e2) -1, evidently a misprint 

+ 

B has 

b. Node: First order secular and long periodic terms 

3 -- - cos i 
2 

2n g8~ 

3(1__154 S ) e s i n o g c o t i  

1 5 c o s i ( 1 7  + 3 e 2  ) 

( 7 )  -- - -  cos i 1 S e 2 16 -- j cos 2(o 

- - ~ c o t i ( 1  2 1 S +  105S2 3 

10, - - - - c o s i  1 - - - - S  e asin3o 
32 8 

1 0 5 ( 9  33 S~)( 15e~ ) 
----16 cosi 1 -- ~ S +  8 1 + 5e ~ + 8 

(3) 

Reference 

B, K, M, Z2 

B, K, M, Z2 

B*, M, 22 

B, M, 22 

M, Z2 

Reference 

B, G, Gr, K-H, K, 
M, Z1, 22, 2P 

M, 22, B, K (1) 

s : B, K, M, Z1, 2 
1 - - p : M ,  Z2 (2) 

M, ~2 

6 M, ~.2 
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TABLE 2 (Continued) 
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(1) 

(2) 

(3) 

525 ( 99S2)( 1 1 2) 32 cosi 1 - - 6 S + ] ~  ] \  + 2 e  e 2cos2o9 

1 5 7 5 ( 3 3 )  cosi 1 - - - - S  Se 4cos4o9 
512 20 

B, K have (1 -- ~S) 

B's form differs slightly in the function of S 

Additional 1-p terms proportional to e z in B 

c. Longitude of Perigee: First order secular and long-periodic terms 

(R)" 
zlco = 2 r i g  ff  

09T/, Reference 

{( 5 ) (  
2eSini 1 - -~S  -- cosec 2 i +  S- -  e 2 sinco B , K , M  

4 ~ ( 1 6 - - 6 2 S + 4 9 S  ~)+ 1 8 - - 6 3 S §  ~ e 2 B , K , M  

15( 6 3 )  
+ ~  + 6 - - 3 5 S + ~ S  2 e 2cos2m 

105e_lSinoJ [ (  4 3 )  
16- sin/ - - ~ + 2 S - - ~ S  2 S +  M 

( 4 8 7  67S2_357S8)  + 
+ ~ -  ~ s + ~ -  5 ~  e2 

+ -- 1 + ~ S  S 2e ecos r e+  .. 0(e 4) 

525 [ ~ (  129S2 297S~ ) 
g 1 -- 8S+  ~ -  - - 3 2  + M 

( 33) 
+ 2 - - 6 S +  ~-S 2 Scos2e) + 

( 43 109S2 121 ) ] 
§  2 1 -- 6 - S + ~  - - ~ S  ~ + . . .  

KING-HELE, COOK and REES (1963) have extended some of these results to harmonics of order 14. 
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perigee show such changes for harmonics of even order. In the variations of any 
element, the terms of successively greater speeds are multiplied by successively higher 
powers of e, for example, in the eccentricity the terms are 

cos co, e sin 2co, e z cos 3co, e 3 sin 4co. 

It follows that in general the only terms of any importance are those with speeds co and 2o). 
The variation of certain of the coefficients with inclination is shown in Figure 5. 

Fig. 5. 

4 
§ 

+4  

+3  

+2  

+1 

9 0  
O 

2 
9724 67 65 

0"2  0 ,4  

s S S 

60  53  47 3Q 33 28 ' 8  
0 "6  0"8 

-Cri t ical  inclinr 

I 
o ang le  (d~g) 

1.0 cos i 

Coefficients an ofjn in secular part of motion of node. S-bands in which satellite inclinations lie. 

At first sight, the secular terms proportional to J22 look very different but for the 
node at least, the differences arise from the definitions of the elements and the way 
of  presenting the change of element. The time rate of change (BRouwER, 1959; 
KozAI, 1959) or the change in one draconic period (MERSON, 1961 ; ZONGOLOVI~ and 
PELLINEN, 1962; KING-HELE, 1958) may be given and the semi-major axis constant 
may be either the value it would have if all the J ,  were zero (BROUWER, MERSON, 
~ONCOLOVI~ and PELLINEN) or the mean value actually observed (Kozhh KING-HELE). 
The results of the four principal theories are given in Table 3. The equivalence of the 
results will now be demonstrated. 

Take first the transformation from a rate of change with respect to time to the 
change in one draconic period. The former expression must be multiplied by noTN/2zc 

to obtain the latter, where no is the mean motion for J2 = 0 and TN is the draconic 
period. Now, in BROUWER'S notation l" + g" increases by 2n in TN and from BROU- 
WER'S first order results, 

l" + g" = not {1 + k j l  [--  1 -- ~/ + (5 + 3t/) C]} 
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TABLE 3 
TERMS PROPORTIONAL TO ( J2 )  2 IN THE SECULAR MOTIONS OF NODE AND PERIGEE 

405 

C = cos zi, S ~ sin 9" i 

NOTATION 

r / - - (1  --e2) ~, 

j ~ ' =  J2 ( ~ ) ~  ~/-4 

1. Mean 

h t, 

not 

gH 

not 

elements, a and n .for Jz ~ O, time rates o f  change (BROUWER, 1959; KOVALEVSKY, 1960). 

= - ~ . / ~  cosi 1 - 1 6  [ - 5 + 1 2 ' I + 9 ' 1 2 - ( 3 5 + 3 6 ~ + 5 ~  2) C] 

3 . ,  3 ",2 -- ~J2 ( - -1  + 5 C ) §  [ - - 3 5 + 2 4 ~ / + 2 5 r f i §  192r/--120/2 ) C +  

+ (385 + 3601# + 45rfi) C 2] 

2. Osculating elements at node, semi-latus rectum for Jz = 0, change in draconicperiod (MERSON, 1961 ; 
~ONGOLOVI~, 1960a). 

AS2 - -32 / '2 ' cos i{1  J ~ ' [ 1 2 - - 8 0 S - - ( 4 + 5 S )  e2] / ' J 

de) 3 
2n -- ~ j2 '  (4 -- 5S) + j2 '2 [(760 -- 890S) S + (56 - 36S - 45 S z) e 2] 

With mean osculating elements (~ONGOLOVI~ and PELLINEN, 1962) 

{ _ j2"  [12 -- 2 0 S - - ( 4  + 5S) e2] j  a ~  = -  ] ~ ' c o s i  l ~ 

3 iz' (4 -- 5S) + l ~ j z  '2 [(136 -- 170S) S + (56 -- 36S -- 45S z) e z] Zoo = - ~. 

3. Mean osculating elements, n and a for Jz r O, time rate o f  change (KOzAI, 1959). 

3 { 3 . ,  1 r/2 _ S ( 3 5  5 } 

15 
- ldj2 '2 (1 - ~/2). C 2. 

4. Mean osculating elements, mean radius vector for Jz ~ O, change in draconic period (KING-HELE, 
1958; MESSAGE, 1960). 

2. : --2J~'cosit l § c~ S-- " 

5. From VINTI'S Theory (IsZAK, 1960). 
Motion of node: 

-- ~j2 '  cos 3 i + ~6jz 'Zcos i [18 -- 13S + 24Se ~] 

Motion of perigee: 

j2'2 
j2 (4 -- 5S) § ~-[288 -- 1296S + 1035S 2 -- (144 + 288S -- 510S~) e2]. 
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where, as in the Table, C = Cos2i, ~ = (1 - -  e) ~, 
and 

J~ = J2 r / -4 .  

Hence 
3 "!  noT~ = 2~ {~ - ~j2 [ -  i - ,  + (5 + 3.)  C] } .  

(see also 2~ONCOLOW~ and PZLLrNZN, 1962) 
BROUWER'S formula for the node is 

h t !  

- -~JzZ., cos i 0 {1 - -~3z1 " [ -  5 + 12t/+ 9q 2 - (35 + 36q + 5r/2) C]} 
n o t  

so that multiplying by noTN/2~r 

2~ ~J2 I + [ -  12 + 20S + 4e z (4 + 5S (S = sin2i0) 

in agreement with the result of ~ONaOLOVI~ and PELLINEN (1962) expressed in mean 
elements. 

Likewise, multiplying BROUWER's expression 

t f  

g 8 " 5 C )  z j , 2  [ _  35 + 24q + 25q z + 
- -  -- ~-J2(--  1 + + l - -~g  z 

no t  

+ (90 - 192q - 12&/2) C + (385 + 360q + 45q 2) C 2] 

by noTN/2rc, it is found that 

Ao9 
- gJ2a., ( _  1 + 5C) + ~ a  j,22 [(136 - 170S) S + (56 - 36S - 45S z) e2-1, 

2re 

that is, the result of ~ozqGot.ovI~ and PELLINEN in terms of mean osculating elements. 
A further variant arises here because MZRSON (1961) and 7.ONOOLOVI~ (1960, 

1960a) give results in terms of the osculating elements at the ascending node instead 
of mean elements. ~OY~OLOVI~ and PELLINEN (1962) carry out the transformation to 
mean elements which, from the correspondence of the formulae, seem to be equivalent 
to the elements used by BROUW~R and KOZAI. 

Whereas BROUWZg uses the values, ao and no for J2 = 0, KozAr takes the actual 
values a and n and KozAI'S results must be multiplied by 

(a_o? 
no \ a /  

to obtain those of BROUWER. 
From KOZAI'S first order results, 

n( )2 9 
- .  = 1 + ~.12(1 - ~ s ) ~  
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and so 

h,, 
no t 

_ a . ,  - 9 . ,  ( I _ ~ S ) q  } gJ2 cos t {1 + ~-J2 

9 ,t2 - g J 2  cos i{-~ - 27 - 172 - (2~-~ - 37 - ~-s 
_ _  3 "' " 9 " r 5 1 - 9 2 3 5  3 ~J2 cos,  - ~j~ cos i ~ - ~ , / -  ~ 7  + ( ~  + ~7  + ~ 7  ~) c }  

in agreement  with BROUWER'S results. 

Similarly, taking KOZAI'S expression for  d), BROUWER'S result for  g" is given by 

g,, 

not 
I 3) ] j ; ( 4  - 5S) 1 + ~J2 1 -- 2 S  , + 

+ 3j,z {~_ 27 _12 7z _ (8~8 _ 37 + q4_8) S}l _ 15 ,2 i ~ j 2  (1 - . ~ ) c  2 

3 " 3 U 2 = ~ J 2  ( -  1 "-~ 5 C )  .-it- ~ - ~ - J 2  [ - 35 + 24q + 257 z + 

+ C(90 - 1927 - 126,12) + C2 (385 + 360q + 457,12)] 

tha t  is, the same as BROUWER'S expression. 

The equivalence of  KING-HEeE's theory to others is important .  In terms o f  the 
draconic  period, the per turbed mean  radius vector  and mean  elements, it is 

A$2 

2~ 
_ a .  i o [ 1  + g.12,~-S- ~-)] ~ _ j 2 c o  s 3 ; ( 2 3  

where J2 has been written instead of j~  because e is neglected. 

To  obtain the result in terms of  the unper turbed  ao, it must  be multiplied by 

that  is by 

leading to 

A ~  

2~z 

1 + 3j2 (1 - ~ s)  

j~cos~ ~.2 ~ q - ~ s )  2 - -  ~ J 2  COS 

which is the result o f  ZONGOLOVIC and PELLINEN for  e = 0. 

Lastly, to relate BROUWER'S result and MESSAGE'S form of  KING-HELE'S, the fo rmer  
must  be multiplied by 

X 
2~ 
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that is, by 

leading to 
A~ 

2~ 

3 "! 1 - ~ J 2  ( 5  - 7S) 

~ j c o s i { l +  a" 

which is MESSAGE'S result. 
To summarize, it has been shown that, apart from MERSON'S results in terms of 

smoothed elements, the four theories considered give equivalent results for the second 

order secular motions of node and perigee. 
In addition, LYDDANE and COHEN (1962) have shown that there is good agreement 

between BROUWER'S theory and numerical integration by COWLEY'S method. 

4. Special Problems 

The theories which are of by far the greatest importance in the determination of the 
external potential of the Earth have been discussed in Section 3 but as indicated there, 
they cannot be applied in all circumstances and may break down for very small 
inclinations or eccentricities or when the inclination is cos -1 5 -~ for which the J2 
term in the secular motion of the perigee vanishes. They also take no account of 
variation of the potential with longitude, that is of tesseral harmonics in the potential. 
Although these special problems are of considerable interest, they are not of great 
practical importance in the estimation of the potential of  the Earth, except that as the 
accuracy of observations increases, it should be possible to obtain more information 
about the tesseral harmonics. In general however, the special circumstances in which 
the theories of the effects of zonal harmonics break down can be avoided although 
the Russian satellites have inclinations close to the critical one. 

It is quite straightforward to include tesseral harmonics in the disturbing function 
and to obtain the corresponding short-periodic variations of the elements of the orbit 
to the first order (GROVES, 1960; KAULA, 1961; KOZAI, 1961; ISZAK, 1960; O'KEEFE 
and BACHELOR, 1957; ROBE, 1959; MUSEN, 1960; SEHNAL, 1960). It is found that if the 

potential is taken in the form 

/ R \ p  + a 
v,, , ,  = - Jp,,', j P (cosO).cosq(X - 

where Ppq(cos 0) is an Associated LEGENDRE function, 2 is the longitude referred to 
axes fixed in the Earth, and fipq is a constant, then most elements show variations 

proportional to 
sin 

JPq cos q (lpq - ~ )  

where 
lpq -- ~pq d- Greenwich sidereal time. 
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4.1 SPECIAL VALUES OF ECCENTRICITY AND INCLINATION 

It  can be seen from Tables 2b and 2c that the long periodic terms in the motions of  

node and perigee for odd harmonics appear to become very large when the eccentricity 
or inclination are small. Again the term proportional to j2  in the motion of motion of 
perigee has a component e -  ~ cos co when expressed in osculating elements at the node. 
The last is not a real singularity for it vanishes when the results are expressed in 

smoothed elements (MERSON, 1961) or in mean elements (BRoUWER, 1959) but the 
first order terms do have real singularities, again to some extent a feature of  the way 
in which the motion is described, for they do not imply that the perturbations of  the 
satellite, regarded as changes in rectangular co-ordinates, are large. Rapid changes in 
the longitude of the node when the inclination is small, for instance, are just a geo- 

metrical consequence of the fact that the angle between the orbital plane and the 

equator is in fact small. The theoretical problem is therefore to choose elements that 
will be better adapted to the situation. It is well known that the way to do that is to 
take quantities 

u = M + co, ~ = ecosco, t / =  - esin e) 

when the eccentricity is small and 

h 2 = sin i sin ~ ,  k2 = sin i cos g~ 

when the inclination is small (PLUMMER, 1960, p. 148). It  is a straightforward matter 
to write down the equations of  variation for these pairs of  elements and KOZAI has 

used the first set to solve the problem of the artificial satellite with small eccentricity 

(KoZAI, 1960). He then shows the variations in the radius vector and the argument of  
latitude, u = v + co are 

dr = a (1 + ~sin2icos2u) 

du = - (�89 - ~ sinZ 0 sin 22 

which are the same as are deduced from the theory in which e is not small, showing 
that the variations in the position of the sa te l l i t e  are not singular. 

KOZAI points out that it is possible for there to be two peri-positions in a nearly 
circular orbit. 

VINTI'S theory as originally developed, could not be applied too close to zero 
inclination but he has subsequently shown (1962) how to overcome that limitation. 

The preceding problems are ones of  defining the parameters in which to describe 
the bounded motion of a satellite but the difficulties connected with the critical inclina- 

tion of cos i reflect a real physical situation. As can be seen from Table 2b the secular 
motion of perigee vanishes at this inclination and certain terms which contain (1-5 
cos 2 i) as a divisor become infinite. The problem is to some extent akin to that of  
small divisors arising from nearly commensurable motions in planetary theory and as in 
that context has been studied by developing the disturbing function not in terms of J2 
but in terms o f  ( , /2)  �89 (GARFINKEL, 1960; HORI, 1960). HORI'S treatment is in terms of a 
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VON ZEIPEL type of transformation of the canonical variables but with the determining 
function and the Hamiltonian expanded in powers of  (,/2) ~. The results for the secular 
motions in the neighbourhood of the critical inclination are 

and 

dg a / ' t 2 k 2  

dt  - g L3G '~ + :1_ o L5 G, 6 -7- / - -  +G7:2 9 - - 8 ~  -2 

dt 5~L3G, 4 \ 2 + 5~LSG, ~ - 9 + ~2 G' + 

+ ~ (11 - 222) 

where 

and 

1 2 3 4 
k2 ~ J2 R , k4 = = _ ~ J 4 R  , 

t = 1 - -  5COS2i0 . 

3 2 J" = -- ~ J J J2 

HORI shows that there are no singularities in the behaviour near the critical inclination 

if Y4/(J~) is - 1. This is just the value of the ratio for VINTI'S potential and there is in 
fact no singularity in the solution that VINTI obtains. 

The general feature of  the solution derived by GARFINKEL, HORI and STRUBLE 
(1961) may be understood by reference to Figure 6. In this the rate of  rotation of co 
as a function of u is plotted against the value of co. When the trajectories are straight 
lines parallel to the axis of co, the value of co increases continually and there is a secular 

motion of perigee but when the trajectories are closed curves, the value of co oscillates 

d~ 

J~'~ "~ 

Fig. 6. Oscillations of Perigee. 
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about the points of maximum latitude if J4/J  2 > - 1  and about the nodes if 
Jg/J  2 < - 1. In the former case the nodes are unstable points and in the latter case, 
the points of maximum latitude are unstable. The amplitude of the oscillatory part 
of the curves is proportional to 

j4 ,~  _~ 
- e  1 + ~ )  J~. 

As with the cases of zero eccentricity and inclination, it has been suspected that the 
behaviour at the critical inclination is a feature of the parameters used to describe the 
motion and not of the motion itself but MESSAGE, HORI and GARFINKEL (1962) have 
shown that the radius vector and the sine of the latitude as derived from BROUWER'S 
theory both contain the factor (1-5 cos 2 i) as a small divisor and therefore argue that 
the singularity is a physical one. 

ISZAK (1962), however, maintains that the development in powers of J2 itself 
breaks down when the terms of order j2  are included and he has undertaken an 
analysis of the problem in terms of VINTI'S theory. 

4.2 COMMENSURABLE MOTIONS 

If the potential of the Earth is truly axi-symmetrical the orbit depends in no way on 
the period of rotation of the Earth but if the potential depends on longitude then it is 
possible that special effects may arise when the period of the satellite is commensurable 
with the rotation of the Earth. The possibility, first examined by GROVES (1960) and 
A. H. COOK (1961), is of especial interest in connexion with satellites of period 24h 
and MUSEN (1962), MUSEN and BAILIE (1962) and BLITZER et al. (1962) have studied 
this particular problem. 

In the general case, take a term in the potential 

R p 
Vpq = Jvq" -"~ Pq (cos 0) sin q (l + fipq) 

, p M  P 

where l is the longitude measured from axes fixed in the Earth. 
If  2 is the longitude of the satellite and if 2 o is the longitude of Greenwich, referred 

to sidereal axes, then 

1 = 2 -  2 G = 2 -  tort 

where o# is the spin angular velocity of the Earth about her polar axis. 
Now if 

0 = ~ - e  
then 

tan 0 = tan (m + v) cos i 
or for small inclinations, 

I/] ,~, O) -~ V - -  1 7 2  sin 2(co + v)... 
where 

7 = tan i. 
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Hence 
/ = c o +  ~ + v - c o f l - l ~ 2 s i n 2 ( c o + v ) . . .  

When Vpq is differentiated for substitution in the right side of  the LAGRANGE equations, 
terms with factors such as 

sin 2(co + v ) c o s 2 ( / +  1322 ) 

are obtained. Such a term will give rise to a secular or very long periodic term in an 

element if 
co + v = co + v + ~? - cort - ~ ~2 s i n 2 ( c o  + v ) .  

That relation cannot be satisfied because ~ is about 4 deg/day, but for a term like 

the relation is 
sin2 (co + v ) s in2 ( /+ /322 )c0sM,  

M = 2( /+/322) .  

In general it is not possible to satisfy this relation exactly because M contains long- 

periodic parts, but if 

M = 2 ( l +  fizz) - q 

there will be a term proportional to sin r/in the variation of the element. In this way 

terms proportiona ! to cos r /or  sin r/can be picked out and are shown in Tables 4 and 5. 

Now. 
co = co o + & t  + 3cope r , 

and 
M = n t  + Z + ~Mper  

and therefore if 
n = 2cot - 2 ( ~  + a ) ,  

t! = 2(co o + ~o +/32z) + 2 + per . t e rms .  

It  will be noted that r/depends on Z, the position of the satellite at zero time and it 
follows that if the amplitude and phase angle of  an harmonic term are both unknown, 
they cannot be separated from data on a single orbit. 

In general if (p - q) is even, 

and 

q (1 + /3pq)  = M + ,7, 

(q - 1)n + q (& + ~ )  = qcor 

= q (coo + e o +/3pq) + (q - 1) z + . . .  
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while  i f  (p  - q )  is odd,  

and  

q (1 + & . )  = o~ + v + 

(q - 1) (n + o5) = q (o9~ - ) g; 

= (q - 1)(COo + z) + q ( a o  +/~.q) + . . .  

NORTON, in an  a p p e n d i x  to  COOK'S paper ,  has  g iven  a c o m p l e t e  set o f  the  cond i t i ons  

fo r  c o m m e n s u r a b i l i t y  a n d  the  speeds  o f  the  m o t i o n s  tha t  ar ise w h e n  they  are  satisfied. 

T h e  a b o v e  cond i t i ons  app ly  w h e n  e is smal l  bu t  i f  t ha t  is n o t  so, the  e x p a n s i o n  o f  

the  d i s tu rb ing  f u n c t i o n  con ta ins  t e rms  such  as e * sin v M  which  give rise to  cond i t i ons  

l ike 
q (1 + ~pq) = v (M + .~) 

w h i c h  wil l  be  satisfied a p p r o x i m a t e l y  w h e n e v e r  

qo)r 
n =  

q - - v "  

But  the re  is an  infini te  set o f  pai rs  (q, v) tha t  g ive  t he  same  va lue  o f  n and  so an  

inf ini te  set o f  h a r m o n i c  t e rms  con t r ibu tes  to a v a r i a t i o n  o f  an  e l emen t  at  any  p a r t i c u l a r  

speed.  Aga in ,  w h e n  v = 1 and  q is large,  the  m e a n  m o t i o n s  tha t  sat isfy the  c o n d i t i o n  

a p p r o a c h  the  a n g u l a r  ve loc i ty  o f  the  Ea r th .  H o w e v e r ,  the  s i tua t ion  is m u c h  s imple r  

TABLE 4 

FACTORS OF TERMS PROPORTIONAL TO SIN t] OR COS t] IN DERIVATIVES OF V22 

I/ = 2 (l + P22) -- M 

Order of term 

Derivative 
with respect 1 e y2 ye 

to 

27 
a - -  - -  - -  e s i n  r /  - -  

2 a  

3 
3_ sin~ i sin t/ D 

e -- - sin t/ -- -- 
2 4 

21 
S -- e cos t/ -- 

2 

-- 9e cos r/ -- 
co -- 9e cos t/ -- 9 
i . . . . .  e sin i cos i sin ~/ 

2 

al termstobemu'tip'iedby ( ) 3 
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for circular orbits. MUSEN (1962) has developed more satisfactory methods for dealing 

with appreciable eccentricity. 
MORANDO (1962), using canonical variables, has derived very similar results but 

he also is more concerned with the stability and libration of the 24h satellite. 
There does not seem much likelihood of satellites with commensurable motions 

being used to determine tesseral harmonics, mainly because even if satellites with the 
correct mean motions and small eccentricities were launched, the difficulties involved 
in separating the effects of individual harmonic terms seem to be too great. Should 
the observation of such satellites become a practical possibility, it would be necessary 
to consider the effect of the Sun and the Moon on the stability of the commensurability 

conditions. 

5. Observations and Results 

5.1 OBSERVATIONS 

The most significant and, until recently, the only information about the gravitational 
potential of the Earth to come from observations of satellites is values of the zonal 
harmonics of the lower orders derived from the secular and long-periodic changes of 
the elements of orbits, in particular, values of the even harmonics from the secular 
changes of node and perigee, the only elements that show such changes, and values 
of the odd harmonics from the long-periodic changes in eccentricity for which they 
are particularly well defined. These topics will be the main matter of this section. It 
should be noticed that it is long-periodic changes with argument co that are of  greatest 
importance because changes with arguments that are multiples of o~ are smaller by a 
factor of e at least and most orbits that are dealt with have eccentricities of  0.2 or less. 

Satellites are observed visually or photographically or by radio interferometers or 
by means of Doppler radio measurements. Doppler measurements give the velocity 
of the satellite relative to the observing station and are proving to be a very powerful 
means of tracking satellites accurately as has been shown by the performance of the 
Transit system. But only special satellites are equipped with the necessary radio 
transmitters emitting very accurately controlled frequencies and the ground equipment 
is not generally available, so that most of  the data from which the Earth's potential 
has been deduced have been obtained from observations of the directions of satellites 
made optically or with radio interferometers. Details of different systems will be found 
in the report of the second COSPAR symposium published as Space Research II, 
1961 and particularly the paper of VEIS and WHIPPLE (1961) and MASSEVI~ (1961). 
The most extensive systems are the Minitrack radio network and the Smithsonian 
Astrophysical Observatory Baker-Nunn cameras, both of which are distributed over 
the whole Earth. At the same time very valuable data have been acquired from 
relatively simple instruments because the motion of the node in particular can be 
obtained from rather elementary observations at one site and most of the early and 
most important discoveries were made in this way (MERSON and KING-HELL, 1958; 
MERSON, 1959). 

The observed directions must be converted to directions from the centre of the 
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Earth,  which can in the first instance be done with an approximate  distance deduced 
f rom the period, and corrections must  be applied for  zero errors of  the equipment .  
Elliptic elements can then be fitted, usually by an iterative compute r  p rogram,  to runs 

of  observations.  Particulars o f  such processes are given by MERSON (1959), MERSON 
and KING-HELE (1958) and MASSEVI~ (1961a). The orbits so derived will show 

changes due to air drag and these must  be removed before long-periodic changes, 
especially in the eccentricity, can be isolated. One way of  doing this (O'KEEFE, ECKELS 

and SQUIRES, 1959), is to determine the change in a f rom the change in period and 
then to assume that  the distance of  perigee does not  change, as is very closely true 
when most  o f  the drag occurs near  perigee, and hence derive the change in e. When 
that  has been done, the changes in the other elements due to drag may  be deduced. 
It  m a y  be possible to improve  the correction for  drag by taking advantage of  the fact 
that  the drag is correlated with solar activity. When  an estimate of  the change in a is 

available, corrections can be applied for  the rotat ion of  the a tmosphere  which gives 
rise to changes in node and perigee. The following formulae  have been obtained by 
G. E. COOK (1961): 

dg? _ 12 + 2eI  1 + cL~cos2co T a A s i n 2 c o  {1 + 0(e2)} 
I o + 2e l  1 + cI  2 cos 20) 4a (1 - a T A  sin i 

d g? 2cI  2 - �89 ee (I1 - 913) + 2c2 j4  cos 20) H sin 20) 
- cos i . . . .  x 

da Io  + 2eI1 + ci2 cos 20) a2e 2 

da 

do) 

da  

x {1 + 0(e2)} 

where T a is the orbital  period in days, 

angular  velocity of  a tmosphere  
A =  

angular  velocity of  Ear th  

and Io /1  . . . .  are BESSEL functions of  the first kind with imaginary  argument .  
Corrections must  also be applied for  the at t ract ion of  the Sun and the M o o n  which 

give rise to secular and long-periodic terms in the mot ion  of  node and perigee. 
KOZAI (1959) gave formulae  for  the secular parts  and G. E. COOK (1962) has included 

the long-periodic parts in the following formula :  

3 K C  
ga = 4n (1 - e 2) sin i [5 Ae  2 sin 2o) + B (2 + 3e 2 - 5e z cos 20))] 

where K = n2ma, n a being the mean mot ion  of  the disturbing body  and m a its mass 

in terms of  the Ear th ' s  mass. 

A = cos ( g? - g? a) cos u a + cos ie sin ua sin ( g? - g? a) 

B = c o s / [ -  sin(g? - g?a)COSUd + cOSiaSin / tacos(g? -- g?a)] + sin i sin i a sin #d 

C = sin i [cos/.t a sin ( g? -- a a) - cos i a sin Pa cos ( g? -- g? a)] + cos i sin i a sin/l  a . 

d refers to the disturbing body,  u is the argument  of  latitude. 
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There is a similar result for the contribution to the motion of perigee. The effect of 
the Sun is about half that of the Moon. It will be noticed that the periodic parts are 
very small for nearly circular orbits. KAULA (1962) and SMITH (1962a) have also 
published theories of the luni-solar effects. 

Radiation pressure from the Sun can also affect the orbit of a satellite and BRYANT 
(1961) has given formulae to determine the effects by numerical integration. The 
perturbations are very small for satellites with a small ratio of area to mass and 
satellites with a large area/mass ratio would not in practice be used for gravitational 

studies. 
The quantity actually determined from the data is not the coefficient J2, say, but 

the combination 

Jz#-2/3R~ = - ~ ~2 TT/3seci[1 - ~J2 ( 7c~ - 1)] .7/3 

Thus for Jz at least, it is necessary to use good values of the Earth's radius constant R, 
and of the constant #, and when values of J2 are to be combined with other data to 
determine consistent values of geodetic constants, it must be borne in mind that the 
observation equation is of this form. 

It will be seen that the inclination has a dominant influence on the magnitudes of  
the various changes of the elements and it is therefore important to have a good value 
of  this parameter. The value of J2 is especially dependent on the value of i because J2 
is about 1000 times greater than any other coefficient, and because the change of the 
node can be found very precisely if the observations can be continued for long 
enough, it may happen that the uncertainty in J2 is determined almost entirely by the 
uncertainty of the inclination. 

5.2 E V E N  H A R M O N I C S  

As soon as observations were obtained on Sputnik 2, it was found that the motion of 
the node was very definitely less than would be expected from the value of J2 inferred 
from surface gravity measurements, (BUCHAR, 1958 ; Harvard Card, 1958 ; KIN~-H~LE 
and MERSON, 1958; MERSON, 1959) and although J2 and J4 could not be separated 
by means of data from just one satellite, it seemed, by taking data from gravity 
measurements into account (A. H. Coo~:, 1958) that the value of Jz was about 
1083 • 10 -6. As soon as Vanguard 1 was launched, however, it was possible to 
find J2 and J4 separately from satellite observations alone (JACCmA, 1958 ; KIN~-HELE, 
1959a) using the observed motions of the nodes of Sputnik 2 and Vanguard 1 which 
have the very different inclinations of 65 ~ and 34 ~ respectively. There was also an 
indication that J6 might be significant, and with the launching of Explorer 4 at yet a 
third inclination (50 ~ it was possible to obtain the following values : (KING-HELE and 
MERSON, 1959; KING-HELE, 1959b). 

106J2 = 1083.0 _+ 0.2 
1 0 6 , ] 4  = - -  1.3 _ 0.2 
1 0 6 J 6  = - 0 . 1  -}- 1 . 5  
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(Note that the values of  J2 are given here and elsewhere in terms of the equatorial 
radius of  the Earth and not the mean radius, for the sake of easy comparison with 
other papers, although in a wider geodetic context it is advantageous to use the mean 
radius). 

The preceding work was based entirely on the motion of the node but the very 

accurate orbits that were obtained for Vanguard 1 on account of  its being very little 
perturbed by drag, made it possible to derive J2 and J4 from the one satellite by itself. 
It  was mentioned that for the purposes of  determining orbits by numerical integration, 
theories had been developed for computer application in which numerical instead of 
literal values of  the various parameters were used. It is necessary in these theories 

that the calculated and observed secular motions of  the node and perigee should be in 
exact agreement and this condition can be fulfilled by iterative changes of  the numerical 

parameters until the observed and calculated positions of  the satellite agree. The first 
results obtained from Vanguard 1 alone were reported by LECAR, SORENSON and 
ECKELS (1959) and subsequently the following values were given by O'KEEFE, ECKELS 
and SQUIRES (1959a): 

106J2 = 1082.5 -t- 0.1 

106.]4 = - 1.7 + 0.1. 

I t  will be seen that despite the quite different method of deriving these results, they 
agree well with those from the three satellites. It  may be mentioned that it has been 
suggested that they do not take account of  the j2  contribution to the secular terms 

but in fact it seems that although this is not done explicitly it is taken account of  by 
means of the numerical procedure. 

With the many satellites now launched, a number of  more detailed studies have 
recently been made, and the results for the harmonics of  even order are summarised 
in Table 6. The harmonic coefficients are found by solving equations of  the form 

a2Jz + a4J4 + a6J6 + . . . .  (~a 

bzJ2 + b4J4 + b6J6 + . . . .  fit, 

one such equation being obtained for each satellite. The right sides are the observed 
secular motions of  the node or perigee and the coefficients on the left hand side are 

functions of  the orbital elements and, since the ranges of  a and e are not very great 
for most satellites that have been launched, the coefficients are most dependent on the 

inclination. Then if two satellites have the same inclination it is found that they give 
almost identical left sides in the equations, and the separation of the different harmonic 
coefficients J ,  is not very satisfactory unless the satellites used have very different 
inclinations. Inclinations are fixed by such considerations as range instrumentation 
and safety and so most satellites have inclinations that fall in three rather narrow bands 
near 34 ~ , 50 ~ and 65 ~ but recently it has been possible to obtain observations on 
Discoverer satellites with very high inclinations. 

Where many observation equations are available it is found that quite large 
differences can arise in the calculated J ' s  according to the data used and the numbers 
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of  harmonics determined. ~ONGOLOVIC (1960) uses the changes of  co and ~ and 

takes account of  the long-periodic terms to solve for J2, Ja and J4. According to the 
data he includes, he obtains values in the following ranges: 

1063"2 : 1080.6 to 1084.1 
106J3 : 1.7 to 10 

106J4 : -- 3.9 to - 5.0 

SMITI-I examined the effect of  omitting J6 from his solution and as can be seen from 

the Table 6, 3"2 is appreciably altered but J4 is almost unchanged. KOZAI (1962), on 
the other hand, found a large change in J4 as well as in J2 when J6 was included but 
the addition of J8 made little difference : 

Standard error of 
Solution 108 d J2 108 dJ4 10s J6 108 Js Observation 

1 . . . .  13.5 

2 10.1 - - - 3.0 
3 10.4 0.6 - - 3.0 
4 30.8 29.3 41.6 - 1.0 
5 29.3 26.1 38.6 - 2 . 4  1.0 

The latest determination is by KING-HELE, COOK and REES (1963 and private communi- 
cation) who have used data from seven satellites with inclinations covering the range 
from 28 ~ to 97 ~ a considerable improvement on previous sets of  data, for KOZAI'S 
most recent values really depend on only three mean satellites. They find it possible 

to derive the coefficients of  J2 ... Ja2 but if the potential is to be represented by fewer 

harmonics, they find that it is best fitted by the first three, J2, J4 and Jr. In view of this 
finding, it is useful to compare the values obtained by the different authors who have 
fitted three terms: 

106 "]2 106 J4 106 J6 

MmHIELSEN, 1961 1082.66 -- 1.72 0.73 

SMITH, 1961 1083.15 --1.4 0.7 
KOZAI, 1962 1082.48 -- 1.81 0.42 
K~NG-HELE et aL, 1963 1082.79 -1 .09  0.73 

The values of J2 are not very sensitive to the number of terms retained provided at 
least J6 is included and except for KozAfs  result, they agree well. The analysis of  

K~NG-HELE et al. shows that J ,  depends very much on the range of inclination em- 
ployed, for their value is considerably less than that of  all authors and they are the first 

who have used data with large inclinations. Again, apart from KOZAI, the values of  
J6 agree remarkably well considering the uncertainties assigned to them. On the face 
of  it, the differences between KOZAI'S results and those of other workers seem to be 
connected with his use of  data from perigee. A rough statistical analysis shows 
clearly how KOZAI'S results stand apart from the others. The following are the values 
of  Z 2 obtained on dividing the departure of  each result f rom the mean value by the 
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assigned standard deviation, squaring the quotient and summing the squares for 
each harmonic. The expected value is the number of separate results, in this case 3 for 
each harmonic, since MICHIELSEN assigns no standard deviation. The values o f z  2 are 

- /2 :60 
J4:15 
3 6 : 6  

and in each case, the sum is almost entirely due to KOZAI'S value. In part this is because 
KING-HELffS uncertainties are on a more liberal basis than KOZAFS which are derived 
strictly from the residuals of his observation equations whereas KING-HEL~ and his 
colleagues make some allowance for neglect of higher harmonics. This however only 
reinforces the conclusion that there is a real difference between KOZAI and other 
workers, that it is not due to statistical fluctuation but reflects some difference 

. 19100  

. 1 9 0 5 0  

0ooo  

~" . 18950  C 
U 
u .18900 
U 

L d  
. 18850  

.18800 
0 

�9 �9 
O�9 �9 O � 9 1 4 9  

~ o  o ~ 1 7 6  �9 ~ 1 7 6 1 7 6  
�9 �9 o O 0  O � 9  �9 0 ~ O 0 

�9 �9 

I I I I I t I I I I I I 

40  80  120 160 2.00 240 
Days since launch 

Fig. 7. Eccentricity of satellite 1958fl2 (Vanguard). 
( F r o m  O'KEEFE, ECKELS, and ~QUIRES, 1959) 

I . 

apparently connected with the use of data from perigee, either in the theory employed 
or in systematic effects in the data available. 

In the circumstances it is difficult to estimate a statistically optimum value and 
to assign it a standard deviation, for the discrepancies between the results of the 
different workers are clearly not of random origin. It seems that at the present time 
the most probable values are those of KING-HELE and his collaborators and they must 
certainly have greater weight than the other results because of the greater range of 
inclination of the satellites that were included. 

5.3 ODD HARMONICS 

Because the Vanguard 1 satellite is in an orbit for which air drag is very small, the 
secular change in the eccentricity is very small and it was possible to see long-periodic 
changes that for the Russian satellites were masked by the reduction and irregular 
variations due to drag. O'KEEFE, ECKELS and SQUIRES (1959) using data for the first 
240 days (Figure 7) were thus able to establish that there must be odd harmonics in 
the potential of the Earth and subsequently (1959a) they were able to estimate -/2 and 
Js, as well as even harmonics, from the motion of Vanguard 1 alone. 
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The estimates now available are listed in Table 7. KOZAI (1961) again shows the 
effect of  including additional terms in the solution: 

Standard error of 
Solution 108 J3 108 -/5 lOS J7 lOS ,/9 Observation 

1 0 - - - 84 
2 -234.1 - - - 2.8 
3 - 230.0 - 9.3 - - 2.7 
4 -255 .3  - 8 . 3  -41 .5  - 1.9 
5 - 256.2 - 6.4 - 47.0 11.7 1.0 

The standard error is the rms scatter of the residuals of  the observations and from the 

way in which it changes with the terms included it will be seen that the third harmonic 
is much more definitely established than the others, that Js is not really significant, 

but that ,/7 and J9 do seem to be statistically significant. This behaviour is consistent 
with the scatter of  estimates made by different authors. There is no serious doubt 
about the first order theory of the long-periodic terms and in particular the results 
for the eccentricity, which has considerable weight in the numerical work, are secure. 
The differences between results are therefore almost certainly due only to observational 

errors and to the different effects of neglecting higher harmonics at different inclina- 
tions. In these circumstances it is permissible to take the best values to be the mean of 
values from different studies; they are then 

106 J3 : -2 .41  +0.04 
106J5 : - 0 . 0 5 5  ___0.08 

106 J7 : - 0 . 4 5  +0 .09  

106 J9 : 0.12 

5.3 TESSERAL HARMONICS 

It  was seen in Section 4 that tesseral harmonics give rise to terms with argument 
m(I ,m- ~? ) in the variations ofthe elements. Since Greenwich sidereal time is involved, 

errors in the longitudes of  observatories will lead to errors in the estimates of these 
terms and so it is not possible to derive them independently of station positions. For 
this reason the problem of the analysis of the data is much heavier for tesseral har- 

monics than for zonal ones and could not be undertaken until many accurate observa- 
tions were available, preferably with accurate estimates of  station positions. An 
accurate measure of time is essential for both the measurements of  station longitude 
and the satellite observations themselves and in the Baker-Nunn camera system of the 
Smithsonian Astrophysical Observatory, the time system is based on atomic standards 

of  frequency. 
In addition to observational problems, there is the difficulty that it is not possible 

to separate different tesseral harmonics because components proportional to P~ + 2, 
P~ + 4, give rise to the same frequencies as P~ (KAULA, 196la). 

In the paper just referred to, KAULA has analysed observations of Vanguard 1 by 
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Minitrack over 385 days, determining the corrections to the geodetic datum systems 
of  the Americas, South Africa and Austrialia as well as the coefficients of five tesseral 

harmonics (See KAULA, 1961). Two solutions were made using different runs of data 
and it appears as well from the sizes of the solutions in relation to the standard 
deviations, as from the differences in the solutions for the two sets of data, that most 
of the results are not statistically significant. The only harmonics that are established 
are p2 and P~ and only two or three datum shifts seem significant. 

ISZAK (1961) has analysed the Baker-Nunn camera data but has assumed that the 
station positions are exact and has looked only for the P22 term, corresponding to the 
ellipticity of the equator. A much more extensive and detailed study has been made 
by KOZAI (1961, 1962b) using data from three satellites observed with the Baker-Nunn 
cameras with an accuracy of  3-4 seconds of arc, as compared with about 2 rain for the 
Minitrack data. He derives 8 tesseral harmonics. Most recently, KAULA (1963) has 
applied his method of analysis to the Baker-Nunn Camera data. He used data from 

T A B L E  8 

ESTIMATES OF TESSERAL HARMONIC COEFFICIENTS IN THE EXTERNAL POTENTIAL 

Coefficients are 10ICnm, 106Snm, where Cnm, Snm are as defined by KAULA (1963) (see Appendix) .  

n m ISZAK KAULA KOZAI NEWTON KAULA 

1961 1961 1961 1962 1963 

2 2 C + 6.9 + 0.59 + 0.93 3.34 
S - -  4.4 --  2.54 - -  3.48 --  0.59 

3 1 C § 2.78 
S + 1.10 

3 3 C - -  12.1 
S 4- 6.0 

4 1 C 4- 1.18 - -  2.66 --  2.58 
S --  0.27 4- 0.79 --  0.45 

4 3 C 
S 

1 . 8 4  

--  1.71 
1 . 7 7  

- -  0 . 2 1  

- -  0.21 
4- 0.46 

0.50 
0.16 

Satellites used 

lSZAK, 1961 
KAULA, 1961 
KOZAI, 1961 
NEWTON, 1962 
KAULA, 1963 

1959 cd, 1959 ~/ 
1958/?2 (Mini t rack observat ions)  
1958 fi2, 1959 c~l, 1959 ~ / (Baker -Nunn observat ions)  
1961 ol  (Transit  observat ions)  
1960 i2 (1959 cd and  1959 I/rejected) 

(Baker -Nunn  observat ions)  

Remarks on Table. The numer ica l  values are normal i sed  to KAULA'S (1963) form.  

KAtJLA, 1961, uses p~m (cos 0) and  a change o f  sign in the  potential  funct ion.  
ISZAK (1961), KOZAI (1961) and  NEWTON (1962) use  Pn m (cos 0). A s  to Sign of  Longitude," NEWTON 
and  KOZAI measu re  longi tude  posi t ion to East.  It is a s sumed  tha t  o ther  workers  do so as well. 

Numer ica l  values are admit ted  in the  Table if either the  cosine or  the  sine te rm exceeds twice the  
au tho r ' s  es t imate  o f  its s t anda rd  deviation. 
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O B S E R V A T I O N S  O F  SA T E L L IT E S  A N D  T H E  E A R T H ' S  G R A V I T A T I O N A L  P O T E N T I A L  427 

three satellites and found that the results showed considerable variation according to 
the orbits used. In particular, the results from 1959 c~ 1 and 1959 11 give apparently 
significant values for the coefficient of P~ which, it is known from dynamical consider- 
ations, must be infinitesimal; the final results were therefore based on 1960 ~ 2 only. 
KAULA considers that the coefficients of  four harmonics, P22, Pa ~, P4 ~ and P~, are 
significant and these are given in Table 8. 

The preceding studies, like those from which zonal harmonics have been determined, 
start from variations in the elements of an elliptical orbit fitted to the observed positions 
of  the satellite. It was pointed out at the beginning of this paper that the most direct 
way of determining the potential, if  it were possible, would be to measure directly the 
variations in the acceleration vector of  a satellite. This itself is not possible but the 
very high accuracy of the Doppler velocity measurements in the Transit navigation 
system has enabled the variations in the position of  the satellite along the orbit, that is 
of  the true longitude of  the satellite, to be found and from them NEWTON (1962, and 
paper at IAG - COSPAR Symposium on the Geodetic Uses of  Artificial Satellites, 
Washington, 1962) has estimated the tesseral harmonics proportional to p2 and P4 ~. 
He shows that if the error along the track of the satellite as observed at a number of 
stations well spaced in longitude is called g where g = - & o  - c~M - c~g2 cos i for 
small e then for Transit 4A, fi is found to have an amplitude of about 1.4 x 10 .4  rad 
with a period of 12h (Figure 8) and the phase of the variation is found to change from 
day to day with the longitude of  the node. The advantage of  Transit 4A for such a 
study, apart from the accuracy of the observations, is that g is proportional to sin 2 i 
and i is 66.8 ~ much greater than for any other satellite used to find tesseral harmonics. 
NEWTON first gave a result for p2 only but subsequently on isolating a 24h component 
in ~, derived the P4 ~ term. 

The results of  these studies of tesseral harmonics are summarised in Table 8. The 
notation is 

v = - 1 - ; J . , .  P ' 2 ( c o s  0 )  c o s  m ( 4  - 

tl m 

or alternatively, 

Cnm= Jnmcosm),mn, S,,~= J,,,sinrnA,.,. 

There may be some doubt about the interpretation of some of the results as given in 
Table 8, for there may be ambiguity about the sign of the coefficients (e,g. KAULA, 
1961, 1963) and there is also a number of ways of choosing the constant in the defini- 
tion of P,~ (see Appendix). 

The data used by NEWTON seem to be the most reliable but, as he indicates, even 
there the interpretation is not clear cut because the geocentric positions of the 
observatories depend on the coefficients of the tesseral harmonics. It certainly seems 
from the comparison of the different estimates, that much more work needs to be 
done before reliable values of any tesseral harmonics are available. 
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6 .  A p p l i c a t i o n s  

Gravity values as measured at the surface o f  the Earth  vary with the height of  the site 
at which they are made but  they may be all reduced to equivalent values on the 

equipotential surface at sea level by applying a correction equal to 6V/r where 6V is 

the difference o f  potential between the site and sea level. 6V is the quanti ty directly 

determined in spirit levelling surveys and when the results are expressed as difference 

of  heights, allowance must  be made for the known or assumed variation o f  gravity 

with height. The values of  gravity so corrected are known as free-air values and if 

they are analysed into a series o f  surface harmonics,  then according to the generally 

accepted theory, the relation between a spherical harmonic  coefficient o f  the potential, 

J , ,  say and the corresponding surface harmonic  component  o f  free-air gravity, 

gfl,,P,,(sin ~) say, is given by 

/L = (n - 1) J . .  

For  the zonal  harmonic  o f  order 2, the above result does not  apply but  

s2  =  (2m + 

where m is the ratio o f  centrifugal acceleration to gravitational acceleration at the 

equator,  and q5 is the geographical latitude. 
A number  of  estimates have been made of  the harmonics o f  lower order in free-air 

gravity, based on statistical analyses o f  the available gravity measurements,  and the 

results are summarised in Table 9, which also contains the corresponding estimates 

f rom satellite data. The comparisons are not  very satisfactory. There is a large range 

o f  values of  fl depending on the data and statistical methods used, and  few of  the 

TABLE 9 
VALUES OF HARMONICS IN THE POTENTIAL DERIVED FROM SURFACE GRAVITY 

Surface Gravity 

Coefficient JEFFREYS ~ONGOLOVI~ KAULA* Satellite 
( • 106) 1948 (see JEFFREYS) 1959 Estimate 

1961 

J2 1072.5 1070.5 1083.5 1082.8 
C2~ -- 6.2 -- 6.2 + 1.6 
S~2 -- 0.3 -- 2.1 
Ja -- 7 + 0.3 -- 2.4 
Y~ - - 0 . 1  --  0.8 
C4t + 0.32 -- 1.1 
Sr + 0.35 + 0.1 
J~ + 0.41 -- 0.06 
J6 -- 0.17 + 0.7 
,/7 0.00 -- 0.45 
Js -- 0.04 + 0.24 

* KAULA'S estimates of J% J4 and J6 involve a condition derived from satellite data. 
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estimates of other harmonics are statistically significant. There are two difficulties. 
About three-quarters of the surface of  the Earth is covered by the seas and before 
satisfactory estimates of the surface harmonic components of  free-air gravity can be 
made, the seas must be covered with a reasonably uniform network of gravity obser- 
vations. 

Technically it is much more difficult to measure gravity at sea than on land and 
until many more observations can be secured at sea it would be idle to expect better 
comparisons with satellite results. 

In geodetic applications in the strict sense, the value of J2 is used to obtain the 
form of the spheroid that best fits the sea-level equipotential surface by means of the 
relation 

2 J2 = g ( f ( 1  - ~ f )  - � 89  - { f ) } ,  

where f ,  the ratio (a - b)/a, a and b being respectively the equatorial and polar radii 
o f  the spheroid. The actual form of the sea-level equipotential is obtained by adding 
to this spheroid harmonic components given by 

N. = aJ~" P,  (cos O) 

where N, is the departure of the radius vector of the surface from the spheroidal value. 
For most geodetic purposes these other components may be neglected but the accuracy 
of  the value o f f  obtained from satellite data is much greater than that hitherto available 
from terrestrial measurements and greatly simplifies the problem of  determining the 
size of the Earth from geodetic surveys. A reference value of  gravity may also be 
calculated from the corresponding value of f and with the best available value of  mean 
gravity on the surface it is 

978.0362 {I + 5302.23 • 10- 6 sin 2 q5 - 6.40 x 10- 6 sin 2 2q5} cm s-2 , 

where q5 is the geographic latitude. 
This formula, like that for fdepends  on the assumption that the sea-level surface is 

a spheroid. 
According to MAcCULLAGrI'S theorem, the moments of inertia of the Earth are 

related to the value of J2 by the formula 

C - A  
J 2 -  M a  2 

where a is the equatorial radius. 

Furthermore, the precession of the Earth due to the attraction of  the Sun and the 
Moon is proportional to (C - A)/C.  The precessional constant is very accurately 
known and leads to the value 

C - A  
- 3.27237 x 10 -3 

C 

(see A. H. COOK, 1959a). 
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Wi th  the value of  J2 f rom satellite data ,  

C 
- 0.33089 

M a  z 

A 
- -  = 0.32981 
M a  2 

(see also ARNOLD, 1960). 

A l though  the precessional  constant  is very accurate ly  known,  the ra t io  (C - A) /C is 

uncer ta in  by  abou t  1 par t  in 103 because it also depends  on the mass o f  the M o o n  

which is no t  too  well determined.  The values given here depend  on JEFFREYS'S (1948) 

value for the mass o f  the M o o n  since this seems to be in best  agreement  with other  

da ta  (see A. H.  COOK, 1963).* 

N o w  if  the Ear th  were in hydros ta t ic  equi l ibr ium,  so tha t  no shearing stresses 

could  be suppor ted ,  it  was shown by G.  H. DARWIN (1899) tha t  the flat tening f ,  

re la ted to Jz by the fo rmula  given above,  may  be calcula ted f rom the po la r  momen t  o f  

inert ia  as fol lows:  

C 211 _2~5m(1 3 ) }~1 
M a Z = 3  - 5 ( 2 f \  - 2  m - 1  �9 

Wi th  the ac tua l  value o f  C given above  (which is der ived f rom observat ions  alone and 

involves no assumpt ion  at  a l l ) f -  1 would  be 299.7 ins tead of  the observed value,  derived 

TABLE 10 
COMPARISON OF NON-HYDROSTATIC POTENTIAL WITH CONTRIBUTIONS FROM CONTINENTS 

Order of Observed Hydrostatic Non- Continents 
harmonic hydrostatic ( lO00 fathom line) 

m tZ 

2 
3 
4 
5 
6 
7 
8 
2 2 C  

S 
1C 

S 
1C 

S 
3C 

S 

1082.8 1078.5 + 4.3 -- 0.42 
- -  2 . 4  - -  2 . 4  - -  0.17 
-- 0.8 -- 2.3 + 1.5 -- 0.34 
-- 0.06 -- 0.06 + 0.56 
+0.7  N 10 a +0.7  --0.18 
-- 0.45 -- 0.45 § 0.34 
+ 0.24 ~ 10 -6 + 0.24 + 0.03 
+ 1.6 § 1.6 + 0.20 
- -  2 . 1  - -  2 . 1  + 0.12 
+ 2.3 + 2.3 + 0.02 
+ 0.46 + 0.46 + 0.01 
- -  1.1 -- 1.1 § 0.02 
§ 0.1 -- 0.1 -- 0.01 
+ 0.50 § 0.50 -- 0.22 
+ 0.16 + 0.16 -- 

Coefficients of Associated Legendre Polynomials correspond to 

f [Pn m (cos 0)j]z sinZcos2 m2 dS = 4~ 

* An improved value is now available from space probe tracking. 
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from the observed value of J2, of 298.2. Alternatively, if the Earth were in the hydro- 
static state, the value of C/Ma 2 would be 0.33328 instead of 0.33089. There is no doubt 
of the reality of the departure of the observed values from the hydrostatic ones and 
therefore of the conclusion that the mass distribution in the Earth is in part supported 
by shear stresses. MUNK and MACDONALD 0960) have extended this comparison to 
other harmonics of low order and a revised version of their figures is given in Table 10. 
MUNK and MACDONALD compared the non-hydrostatic part of the potential with the 
contributions arising from the distribution of continents and oceans, allowing for the 
difference of structure of continents and oceans above the Mantle, and these, extended 
to compare with the more recent satellite data, are given in the Table. It is clear that 
Mt~NI( and MACDONALD'S conclusion, that the low order harmonics are in no way 
related to the distribution of continents and oceans, is still valid and the correspond- 
ing mass differences are presumably situated in the Mantle and supported by strengths 
of the order of 106b. * MuNt( and MACDONALD also point out that the difference 
between the observed and hydrostatic moments of inertia corresponds to the Earth 
having had a larger rotation and therefore a larger bulge in the past. They estimated 
that the present bulge corresponds to the spin velocity 10 My ago; with the figures 
calculated here, it would be 3 My ago. 

Lastly, the bearing of  the satellite results on the motion and mechanical properties 
of  the Moon are considered. The node and perigee of the Moon's orbit about the 
Earth show secular changes which arise for the most part from the attraction of the 
Sun but are in part due to the second harmonic in the potential of  the Earth and in 
part due to second harmonics in the potential of the Moon. If  the polar moment of  
inertia of the Moon is denoted by CM and the moments about the other two principal 
axes by A M and B~, and if we write 

2CM - (A~t + B~) 
J2M = 2MMa~ ' 

L = J2~ + �89 

then the formulae for the non-solar parts of the motions of perigee and node are 

perigee 3897 J2 + 380 L - 1192 K~t = 4"274 per year 

node -3648  J2 - 460 L = -4'.'119 per year 

For comparison, the solar parts are -46448" for the node and 97618" for perigee per 
year. 

On substituting the value of J2 from satellite data, it follows that 

JZM = 3.137 x 1 0  - 4  

KM = 1.074 x 10 -4 

* See also A. H. CooK, 1963a. 
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In addition a quantity fl equal to (CM - AM)/CM may be derived from observations 
of  the libration of the  Moon and while there are difficulties with the observations and 
the reductions, it now seems that/~ is about 6.28 x 10 -4 and therefore that 

CM 
- -  = 0.500. 
M Ma~ 

The value for a uniform sphere is 0.4 and so it seems on the face of it that the Moon is 
fighter at the centre than at the surface. This improbable result is almost certainly 
due to errors in the calculation of the very large solar contributions to the observed 
motions of node and perigee and until that can be improved it cannot be expected 
that results from artificial satellites about the Earth will lead to better knowledge of the 
mechanical constitution of the Moon. 

7. Conclusion 

Within six years of the launching of the first artificial satellite, it is now possible to 
say that the theory of the orbits of such satellites, so far as it concerns the determination 
of the external gravitational potential of the Earth, is virtually complete and that the 
observational results have led to a body of information about the field that is unlikely 
to be changed in any significant way. It would be hard to think of a more striking 
example of a complete revolution in a well established traditional study as a result of 
new technical possibilities, especially when it is considered that almost all the results 
have been harvested from observations of a purely passive satelfite, some of them, as 
has been emphasised, by the most elementary means. This is not to say that no 
problems remain. So far as the Earth is concerned, it seems likely that little will be 
known about the tesseral harmonics for some time to come, and it must be remembered 
that there is no physical reason why they should not be at least as important as the 
zonal harmonics other than Jz; they may indeed be more important for if there is 
convection in the mantle of the Earth, it would be expected to show up, if at all, in 
the tesseral rather than in the zonal harmonics. The results have also stimulated new 
theoretical studies of the gravitational field of the Earth, bringing to attention problems 
that were not so pressing when the external field could not be determined directly, 
and they have shown also how very necessary it is to intensify measurements of gravity 
at sea in order to obtain results from surface gravity measurements that shall be compa- 
rable in accuracy to the satellite results and so enable the two sets of results to be 
critically and profitably compared. At present it is premature to attempt to combine 
them statistically. 

The main theoretical problems that remain relate to the orbits about the Moon, 
for since the equatorial ellipticity of the Moon is compatable with her polar flattening, 
the theoretical treatment that is adequate for the Earth will almost certainly not be so 
for the Moon. No doubt other critical cases will arise and commensurable motions will 
be more interesting theoretically, although perhaps not so important practically on 
account of the slow spin of the Moon, and it is to be hoped that it will be possible to 
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extend an analysis  o f  the type given by  VINT~ to the Moon .  Fur ther ,  more  a t t en t ion  

will have to be given to solar- terrest r ia l  pe r tu rba t ions  than  is given to lun i -so la r  

pe r tu rba t ions  for  satellites o f  the Earth.  Fu r the r  the satellite results show up the 

inadequacy  o f  existing results and  emphasise  the need for a new s tudy o f  the theory  

o f  the mot ion  o f  the Moon .  Final ly ,  little geophysical  use has been made  o f  the results 

but  as :more harmonics  o f  higher  order  are de termined it is to be expected that  they 

will provide  in fo rmat ion  abou t  the var ia t ion  o f  densi ty in the Mant le .  
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NOTE 

W. M. KAULA has discussed many of the topics considered here in his review article, Celestial 
Geodesy (Adv. in Geophys. 9, (1961)) paying particular attention to the comparison of satellite results 
with other data. 

Recent developments were discussed at the IAG-COSPAR Symposium on Geodetic Uses of  
Artificial Satellites, Washington, April 1962. (The Use of Artificial Satellites for Geodesy, ed. by 
G. Veis, Amsterdam, North-Holland Publishing Co., 1963). 

A P P E N D I X  

Tesseral  Harmonics  and Standard Forms of  

Associated Legendre Funct ions  

C o m m i s s i o n  7 o f  the I n t e r n a t i o n a l  A s t r o n o m i c a l  U n i o n  

(Trans .  I . A . U .  Vol. X I  B, (Proceedings ,  1961) pp.  173-174) r e c o m m e n d s  tha t  the  

force f u n c t i o n  (negat ive  o f  the po ten t ia l )  o f  the Ea r th  shou ld  be wr i t t en  in  one  o f  the  

a l t e rna t ive  fo rms :  

U = 1 + P2(cos0)  x {C.mcOSm2 + S.msin m2 

n=O m = 0  

o r  
n 

U = 1 + Pnm (COS 0) X {Anm COS m• + Bn. , sin m2 

n=O in=O 

where 

pm (z) (1 2~6 d "  = - z )  ~ m ' P n ( z )  
d~ 
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and 

Now 

- m ) ! ] §  
p..(z) I~ +-~))i J ,~(z) 

+1 

- 1  

2 ( n + m ) !  

2n + l (n  - m)! 

and therefore, on integrating over the surface of a unit sphere, 

while 

Accordingly 

f I p m z .  COS 12 2 (n+m)! 
" ( ) s i n m 2  d S - z n + l  ( n - m ) ! '  

s 

costa2 dS = 
Pn= (z) sin 2n + I 

( n - m ) !  ~ cs =(. A.=. 

KAULA (1961, 1963) has chosen a third normalising factor such that if Ynm is a surface 
harmonic, the integral over a unit sphere is 4re. He writes the coefficients in this con- 
vention as C,m, S,m ; 

1 (n + m)! 1 2 
Cff= 2 (2n + 1)" (n -- m)! c2= = 2 (2~ + 1) A.,,. 

A fourth normalising factor arises if the p~ (z) functions introduced by JEFFREYS and 
J~FFm~YS (1950, chap. 24) are used. 

P2 (z) = (n - m)! pm (z) 
n! 

and therefore the integral over the unit sphere is 

2~ (n - m) !(n + m) t 

2n + 1 (n !)2 

and if the cosine and sine coefficients of an expansion in terms of these functions are 

anm, b n,., I o,._m,l 2 
2 = Cn2m _ anm [ 

and so on. 
This is the convention used by MUNK and MACDONALD (1960). 
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The results of determinations of tesseral harmonics listed in Table 8 are normalised 
with KAULA'S convention. The following conversion factors are required: 

n m Cnm/C.m 

2 2 1.55 
3 1 0.93 

3 7.17 
4 1 1.05 

The comparison of the observed harmonics in the potential with those expected from 
MtJNK and MAcDoNALD'S continentality function is as given in Table 10 requires the 
following factors: 

n m C.m/anm 

2 2 0.77 
3 1 0.30 

3 1.2 
4 1 0.26 
4 3 0.70 


