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Abstract. A general SIRS disease transmission model is formulated under as- 
sumptions that the size of  the population varies, the incidence rate is nonlinear, 
and the recovered (removed) class may also be directly reinfected. For  a class of  
incidence functions it is shown that the model has no periodic solutions. By 
contrast, for a particular incidence function, a combination of analytical and 
numerical techniques are used to show that (for some paramete rs )per iod ic  
solutions can arise through homoclinic loops or saddle connections and disap- 
pear through H o p f  bifurcations. 

Key words: Epidemiological model - Nonlinear incidence function - H o p f  bifur- 
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1 Introduction 

The behavior of  a general SIRS epidemiological model in a population of 
varying size is modeled by a system of differential equations in ~3 Here S is the + .  

number  of  susceptible individuals, I is the number of  infective individuals, R is 
the number  of  recovered (or removed) individuals in the population, and 
N = S + I + R is the total population number. Natural  births and deaths are 
assumed to be proport ional  to the class numbers, with all newborns susceptible. 
Excess death due to the disease may occur in both the infective and recovered 
classes. The rate at which susceptibles become infective is taken as a nonlinear 
incidence function I f(S,  I, N). Recovered individuals lose immunity and cycle 
back into the susceptible class and may also be directly reinfected at a rate 
PP(R, / ,  N). 

The assumption that the recovered class may also be susceptible applies to 
diseases such as influenza, where infection by one strain provides some perma- 
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nent protection, or cross-immunity, against infection by a related strain. Castillo- 
Chavez et al. (1989) have studied models involving two viral strains and 
cross-immunity. They divided the infectious and recovered individuals into 
separate classes depending on the viral strain with which they have been infected. 
We will not make such a separation; instead individuals who have recovered 
from one or more bouts of the disease will be assumed to be susceptible to 
infection at a different rate than individuals who have never had the disease. In 
some sense, our infective and recovered classes will be a mass average of the 
separate classes considered by Castillo-Chavez et al. In mathematical models for 
tuberculosis, Revelle et al. (1967) identified classes of recovered inactive individ- 
uals who had been previously infected but may become active again. They 
considered a model with nine classes which included forms of control. In our 
simpler model, we can assume such individuals are in the R class, and they may 
become reinfected at a rate IgJ(R,I, N). Tudor (1990) developed a constant 
population SIRI model for herpes viral infections in which R is a latent class. 

Our model is a generalization of one considered by Busenberg and van den 
Driessche (1990) in which Iq~ is taken proportional to SI/N, thus the force of  
infection is of  the proportionate mixing type, and 71 is taken to be zero. This 
latter model, as well as a model with I~  proportional to SI has also been 
analyzed by Mena-Lorca and Hethcote (1991). Busenberg and van den Driessche 
(1990, 1991) proved a generalization of the Bendixson-DuLac criterion which 
rules out periodic solutions when the equations are transformed to proportional 
variables S/N, I/N, and R/N. Here we give a simpler proof  of this result, which 
we extend to more general • and kg. 

For  models with constant population size, it has been shown that certain 
forms of  nonlinear incidence functions can lead to periodic solutions. An 
excellent review of disease transmission models that exhibit periodic solutions is 
given by Hethcote and Levin (1989). In Sect. 5, we take the nonlinear incidence 
function that was used by Liu et al. (1986), namely I#  proportional to sqIP/ 
N p + q - 1. (Note that Liu et al. assumed that N was constant, but we allow N to 
vary.) For the case q = 1, p -- 2, we show that it is possible for the proportional 
variables to exhibit stable periodic solutions. We show that as we increase the per 
capita loss of  immunity rate of recovered individuals, for certain values of the 
parameters, a saddle connection or a homoclinic loop occurs giving rise to stable 
periodic solutions. As that parameter is increased, the period and amplitude of 
the periodic solutions decrease and vanish through a Hopf  bifurcation. 

2 A general SIRS model 

We consider a model of disease transmission in a nonconstant population of size 
N divided into three classes: susceptibles, infectives, and recovereds, the numbers 
in each class given by S , / ,  R, respectively. We set N = S + I + R, and use the 
following parameters, which are assumed non-negative unless otherwise specified: 

b = p e r  capita birth rate, assumed to be positive (except as indicated 
in Sects. 5 and 6), 

d = per capita disease free death rate, assumed to be positive, 
E = excess per capita death rate of infectives, 

= excess per capita death rate of recovereds, 
7 = per capita recovery rate of infectives, 

= per capita loss of immunity rate of recovereds. 
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We make the following assumptions in this model: 

(i) The incidence of disease in the susceptible class is given by the function 
I#(S, L N), where #(S, 1, N) is a non-negative, bounded, C 1, homogeneous 
function of degree zero on ~3 We also assume that + .  

lira ~(S, L N) = 0 
S ~ 0 +  

and that the values 

lim ~(S, L N ) = 0 ,  and ~ o =  lim ~(S, LN) ,  
I ~ 0 +  N ~ 0 +  

where N = S + I + R, are nonnegative and bounded. For example, if we let 
~b(S, 1, N) = c~S/N, then the incidence of disease is of the proportionate mixing 
type introduced by Nold (1980), with "force of infection" given by ~I/N, where 
the non-negative parameter q~ is the effective per capita contact rate of infectives 
with susceptible individuals. This incidence function has since been used in many 
models; see, for example, Mena-Lorca and Hethcote (1991) where it is called the 
standard incidence. Other bilinear and nonlinear expressions have been used for 
the incidence function, and other choices we can take for ~(S, 1, N) include the 
following. The function {O(S, 1, N) = ~ ) s q I  p - 1 /Np + q -- 1 with p >I 1, q ~> 1, was 
used for constant populations by Liu et al. (1986); see also Liu et al. (1987). In 
a study of AIDS, Jacquez et al. (1988) used ~(S, 1, N) = (oS/(S + I). We could 
also take a more general function displaying a saturation effect, such as 
• (S, 1, N) = 49S/(S + I + cN), for constant c ~> 0. Diekmann and Kretzschmar 
(1991) have considered functions of this type. 

(ii) The recovered class may also be directly reinfected by the disease with 
transfer rate I~(R, I, N), where 7t(R, 1, N), is also a non-negative, bounded, C ~, 
homogeneous function of degree zero on ~3 .  We also assume that 

lim 7t(R, I, N) = 0 
R ~ 0 +  

and that the values 

lira ~(R, 1,N), and ~ o =  lim kC(R, 1,N), 
I--* O +  N ~ O +  

where N = S + I + R, are nonnegative and bounded. A typical example of the 
function ~(R, 1, N) might be a proportionate mixing type ~(R, 1, N) = $R/N, 
where the non-negative parameter $ measures the average effective per capita 
contact rate of infectives with recovered individuals. 

Our model is given schematically in Fig. 1. Observe that the flow diagram 
in Fig. 1 is a special case of Fig. 1 in Busenberg and van den Driessche 
(1991). 

bN $ I ##(S,I,N) 'y] pR 

dS.~ (d + e)l .1. ~ -J- (d + 8)R 

i W(R,L N) 
Fig. 1 Flow diagram for the SIRS 
model 
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The above hypotheses lead to the following system of differential equations, 
where the derivative d/dt  is denoted by ': 

S '  = b N  - dS + QR - I#)(S, I, N) ,  (2.1) 

I" = I[~(S ,  I, N)  + 7J(R, I, N )  - (d ÷ E + ~)], (2.2) 

R" = 7I - (d + 6 + Q)R - ITt(R, I, N) ,  (2.3) 

or, in matrix form, by 

[!] [bd lI!] = 0 - ( d + e  + ? )  0 

0 ? - ( d + 6  +Q) 

[ - I # ( S , I , N )  

+ I I # ( S , I , N )  + I ~ ( R , I , N )  

L - I ~ ( R , I , N )  

Observe that this matrix equation is in the form x ' = M x  +f(x) ,  where 
x = col(S,/, R), M is a 3 x 3 essentially nonnegative matrix, that is, one with 
off-diagonal entries nonnegative and at least one such entry positive, and 
f:R~_ ~E3+ is a C 1 function that is homogeneous of degree one, that is 
f ( a x )  = af(x),  for a > 0, and has entries adding to zero. 

The equation for the total population N is obtained by adding (2.1)-(2.3): 

N" = (b - d ) N  - eI  - 6R. (2.4) 

The model Eqs. (2.1)-(2.4) are well-posed, in the sense that non-negative initial 
data (S,/ ,  R) leads to non-negative solutions which are defined for all time t t> 0, 
because, by our assumptions on ~(S, / ,  N) and ~(R, L N) 

b N + Q R > I I  lira ~ / i (S , / ,N)=0  and ?>~ lim ~(R, /, N) = 0. (2.5) 
S--* 0 +  R--* oq -  

Letting S ~ 0 +  in (2.1) and using the first inequality in (2.5) yields S'>~ 0, so 
that the /R-plane  is a barrier for trajectories. Similarly, letting I--. 0+  in (2.2) 
yields I '  = 0, while letting R ~ 0 + in (2.3) and applying the second inequality in 
(2.5) yields R'>~ 0. Hence, all trajectories stay in ~3 + .  

If  we seek the equilibrium points of (2.1)-(2.4), we observe that I = 0 
implies that R = 0, so that b N  = dS. If b = d, then any (N, 0, 0) is an equilibrium 
point, but if b ¢ d, then the origin is the only equilibrium point with I = 0. If  
I ¢ 0, b = d, and e = d = 0, then the curve (if any) satisfying 

~/i(S, I, N) + 7'(R, I, N) = b + 7 and (7 - 7t( R,  I, N ) ) I  = (b + ~)R, (2.6) 

consists of equilibrium points, because (2.6) forces the right hand sides of 
(2.1)-(2.3) to be zero. This case models disease transmission with no excess 
death due to disease and with equal population birth and death rates. Thus, the 
total population remains constant. As we are interested in varying population 
size, we assume in what follows that b ¢ d. 

Calculating the Jacobian matrix of (2.1)-(2.3) at the origin, we obtain the 
eigenvalues b - d, - (~ + d + 6), and (~o + 7/o) - (d + e + ?). If I = R = 0 and 
b > d, then the origin is the only equilibrium point, and it is unstable. If  b < d 
and (~o + 7%)/(d + ~ + ?) < 1, the origin is locally asymptotically stable. 

3 Nonexistence of periodic solutions 

We are interested in studying this model in situations where the population N(t)  
is not stationary. To do so we consider the proportions of individuals in the 
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three epidemiological classes, 

s = S / N ,  i = I / N ,  and r = R / N ,  (3.1) 

and examine the dynamics of the resulting system in the feasibility region 

~ = { s ~ > 0 ,  i>~O, r > ~ O : s + i + r = l ) .  

With these variables, system (2.1)-(2.3) becomes 

s'  = b(1 - s) + ~r + Esi + 6sr - i~(s, i), (3.2) 

i' = - ( b  + E + ~)i + Ei 2 + 6ir + iq~(s, i) + igJ(r, i), (3.3) 

r" = ?i - (b + ~ + 6)r + Eir + 6r 2 - i~(r, i), (3.4) 

where ~(s, i) = ~(s, i, 1) = ~ ( S / N ,  I /N ,  N / N )  = cb(S, I, N)  and kU(r, i) = 
~U(r, i, 1) = 7J(R/N, I /N ,  N / N )  = 7J(R, I, N)  by homogeneity. Rewriting (3.2)- 
(3.4) in matrix form, and letting 1 - s = i + r b l[!l I!]r i° i l 

s ' = - ( b  + e + 7) 0 + (Ei + 6r) + l i~(s ,  i) + i~(r,  i) . 

- (b + ~ + 6) L - iTt(r, i) 
(3.5) 

We seek conditions for the existence and stability of equilibria and the 
existence or non-existence of periodic solutions and oriented phase polygons for 
this model. A closed curve connecting several equilibrium points whose segments 
between successive equilibria are solution trajectories of a system of differential 
equations is called a phase polygon (see Hahn 1967). A phase polygon whose 
sides are solutions traversed in the same time sense is called an oriented phase 
polygon. 

It is not hard to show that system (3.5) has the form 

y" = F(y) = M y  - (1 " My)y  + f ( y ) ,  (3.6) 

where y --- col(s, i, r), 1 = col(l, 1, 1), M is the essentially nonnegative matrix 
given in Sect. 2, and 1 "f(y) = 0. The hyperplane 1 • y = 1 is invariant under the 
flow (3.6) since 

(1 "y) '  = (1 • My)(1 - (1 "y)) + (1 "f(y)) = 0. 

Busenberg and van den Driessche (1991) proved in Theorem 2.2, given an 
additional condition, that systems such as (3.6) have no periodic solutions 
(including closed orbits, homoclinic loops, and oriented phase polygons). For 
convenience, we provide a simpler proof of this result. 

Let g = ey x F(y), where e = (YlY2Y3) -1. Then, since y x y = 0, we have 

g = ~y x [My - (1" My)y  +f(y) ]  = ~y x M y  + ~y x f ( y )  = g M  +gf ,  

g " F = ( ~ y  × F) " F = ~ y  "(F x F) =0 .  (3.7) 

A direct calculation, without writing the terms of F in alternate forms as was 
done in Busenberg and van den Driessche (1991), gives 

--(m13 -] -m23 q -m32 -k -m12 q -m21 q -m31~ (3.8) 
( c u r l g M ) ' l =  \Y~Y2 YlY~ YlYZ3 YZ~Y3 YZYa Y2Y~J' 
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and 

(curlgf).l=e~(f_l_fl+ ~3fl ~ f l ) + ( f 3  f3 
~\Y2 Yl OYl @2,1 \Y2 Y3 

Of 3 ~f3)~ (3.9) 

where we have expressed (3.9) in terms off1 and f3, instead off2 and f3 as was 
done in Busenberg and van den Driessche (1991), because of the form of system 
(3.5). We now obtain the following generalization of the Bendixson-Dulac 
criterion to the 2-dimensional surface N in N3. 

Theorem 3.1 (Busenberg and van den Driessche 1991) Let M = (mij) be a 3 x 3 
essentially nonnegative constant matrix, let y = col(y1, Y2, Y3), where l ' y  = 1, 
and let f :  ~3+ ~ ~3+ be a continuously differentiable function satisfying 1 " f ( y )  = O. 
Let  g = ey x F(y), where c~ = (YlY2Y3)-1.  I f  (curlgy) • 1 ~< 0 in N ° = ~ - ON, 
where ~ = {Yl ~> 0, Y2 ~> 0, Y3 >t 0 :Yl q- Y2 + Y3 = 1}, then there are no periodic 
solutions in N ° o f  

y '  = F(y) = M y  - (1" My)y  + f ( y ) .  

Moreover, i f  F(y)i evaluated at Yi = 0 is nonnegative for  i = 1, 2, 3, and is positive 
for  at least one i, then this result holds in the region @. 

Proof  Since g • F = 0 by (3.7), and the off-diagonal entries of M are nonnega- 
tive with at least one of them positive, by (3.8) and applying the hypothesis to 
(3.9), it follows that curl g • 1 < 0. The nonexistence of oriented phase polygons 
in N ° follows from either Theorem 4.1 or Corollary 4.2 of Busenberg and van 
den Driessche (1990). The condition F(Y)i >~ 0 for i = 1, 2, 3, implies that the field 
F never points towards the exterior of ~ when evaluated on ~@, and since 
F(y)~ > 0 for at least one i, it follows that ON is not a phase polygon for the 
system. Thus, there are no periodic solutions in ~.  [] 

Using (3.8) and (3.9) we see that system (3.5) satisfies the conditions of 
Theorem 3.1), with g • F = 0 and 

cur lg-  1 = - s-~+--s2 r --}-~-~-fl-l-~s~ "~(r}t 1, (3.10) 

on N °, where 

1 ( ~  ) 1 (~_  ) 
g ~  = -  + q~i - ~ and garlic = -  "31- ~ i  - -  I//r (3.11) 

s r  r s  

and ~s, ~i, 7~, ~r are partial derivatives. Consequently, we have: 

Corollary 3.2 Let  f s ~  <~0 and ( r7  t <.0. Then the generalized SIRS model 
(3.2)-(3.4) has no periodic solutions in 9 .  

Proof. Since b > 0, ? >t 0, Q >~ 0 and the hypotheses, it follows that curl g • 1 < 0, 
so Theorem 3.1 implies the nonexistence of periodic solutions in @o. As the 
problem is well-posed, the field F never points towards the exterior of 9 when 
evaluated on 09,  and s'(0, i, r) = b + or > 0, so that 0N is not a phase polygon 
for the system. Thus, there are no periodic solutions in 9 .  [] 
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Corollary 3.3 I f  ~(s, i) = sh(s + i) and ~P(r, i) = rj(r + i), where h and ] are 
arbitrary nonnegative different&ble functions, then the model system given by 
(3.2)-(3.4) has no periodic solutions in the &variant region 9 .  

Proo f  Consider the partial differential equation f s~  = 0 on 9 °, namely 

45s - ~i = - .  (3.12) 
s 

By characteristics: ds = - d i  = s d ~ / ~ ,  so that s + i = cl and 4~ = c2s, implying 
that ~(s, i) = sh(s + i) solves (3.12), where h is any differentiable function. Since 
4~(s, i) is nonnegative in 9 ,  h must also be nonnegative. Similarly, E r ~ = 0 has 
the solution ~(r, i) = rj(i  + r), for any nonnegative differentiable function ]. The 
equality conditions of  Corollary 3.2 are met, and the result follows. [] 

Many of  the commonly used incidence functions 4~(S,/, N) satisfy Es~ = 0. 
We now list some examples from the literature which were cited in Sects. 1 
and 2. 

(i) ~ (S , / ,  N) = cbS/N, giving dpSI/N as the rate at which susceptibles become 
infected. The force of  infection is (~I/N, the proportionate mixing type (Nold 
1980). This yields ~(s, i) = ~bs, so that h is the constant function q$, which has 
been used in many models (see, for example, Busenberg and van den Driessche 
1990, Mena-Lorca and Hethcote 1991). 

(ii) 4~(S,/, N) = c~S/(S + I),  so that ~ S I / ( S  + I )  is the rate at which susceptibles 
become infected, so that the force of infection is (~I/(S + I).  This incidence 
function was used by Jacquez et al. (1988) for an AIDS model with constant 
input term. Here 4~(s, i) = c~s/(s + i), so that h(s + i) = ~/ (s  + i). 

(iii) ~ (S , / ,  N) = (aS/(S + I + eN),  so that ~(s, i) = c~s/(s + i + e), with 
h(s + i ) =  (~/((s + i ) +  c). The function ~(s, i) is a Holling type II response. 
Holling type II incidence functions have been considered by Diekmann and 
Kretzschmar (1991), but they consider numbers of  susceptibles and infectives 
rather than proportions. 

The functions ( i)-( i i i )  satisfy Es4~ = 0. Thus, by Corollary 3.3, when ~ -= 0, 
all such models have no periodic solutions. On the other hand, 

(iv) 4~(8,/, N ) =  ~)sqI  p -  I / N P + q - 1  yields 4~(s, i ) =  ffgsqi p - 1  which satisfies 

f sq~ = (~s q 2ip-2[(1 - q)i + (p - 1)s]/r, 

which is nonzero for p or q ~ 1. Liu et al. (1986, 1987) studied nonlinear 
incidence functions of  this type for constant populations, and found periodic 
oscillations for certain ranges of  the parameters with p > 1. Liu et al. (1986) 
analyzed the case p = 2, q = 1 (for constant populations) in substantial detail; in 
Sects. 5 and 6 we will do a similar study for varying populations. 

Observe that ~g(R,/, N)) = C R / N  yields kg(r, i) = ~Or which satisfies Er 5 v = 0. 
We now provide a characterization for the solutions of the partial differential 

inequality fs 4~ < 0. Let ~(s, i) = sH(s, i), then 

f s ~ = - -  + q~ i - ~s = + sHi - H - sH~) -- H,),  
sr sr r 

implying that ~ < 0 whenever Hi < H s. This inequality provides the following 
characterization adapted from a proof  by Westphal (1947/49). 
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Theorem 3.4 Let A = { ( s , i ) • N 2 : 0 < s + i < l } ,  and suppose H~ > H i and 
G~ = Gi on A, and H > G on OA. Then H > G on A. Exactly the same conclusion 
is obtained for the reverse inequality Hi > H, i f  all other conditions are unchanged. 

Proof. Define the cont inuous function W = H -  G and the closed set 

A = {s" W(s, i) <~ 0 for some (s, i) • A}. 

Assume A ~ 0 and let So be the smallest value in A. Then there is a sequence 
{(sn, in)} in A such that  W(sn, in) <<. 0 and sn --+So. By compactness,  some subse- 
quence converges to (So, io) in A, and W(so, io) <~ O. But if we approach  (So, io) 
f rom the left, W(so, io) >10. Thus, W(so, io) = 0, and 

W~(so, io) = lim W(so + k, io)/k <~ O, 
k--*O 

implying that  H~(so, io) <~ Q(So, io). But W(so, i) >~ 0 for all 0 ~< So + i ~< 1 in A, 
so that  

W~(so, io) = lim W(so, io + k) /k  
k ~ O  

is non-negative if k > 0, and is non-positive if k < 0. Thus, W~(so, i o ) =  0, or  
Hi(So, io) = G~(so, io). But then H~ ~< G, = G~ = Hi < H~ at (so, io), a contradic-  
tion. The p roo f  for H~ < Hi follows by reversing the roles o f  s and i. []  

It  is trivial to show that  G~ = Gi has the solution G = G(s + i), so whenever 
we can produce a function G such that  H > G on ~A, it follows that  H > G 
o n  ~ .  

Example 3.5 Suppose H(s, i) satisfies Hs > Hi on A and H(s, 0 ) =  1/ (s2+ 1), 
H(0,  i) = 1/(2i + 1), H(1  - i, i) = 1/(i 2 + 2) on ~A. First consider the constant  
function G* = I - c, which clearly satisfies G* = G* on A and H > G* on OA. By 

1 Theorem 3.4, it follows that  H > ~ - e on A, and since e is arbitrary,  that  H ~> 1. 
We can improve on this bound  by selecting G(s + i) = 1/(s + i + 1 + 0 2 which 
satisfies G~ = Gi on 3 and H > G on 0A. Hence H > G on A, and letting e ~ 0, 
we get H >t 1/(s + i + 1) 2. Finally, observe that  H(s, i) = 1/(s 2 + 2i + 1) satisfies 
all o f  these hypotheses and conclusions. Thus,  the known  bounda ry  condit ions 
o f  H can sometimes be used to design an appropria te  funct ion G. 

4 An SIRI model 

In  this section we present a brief analysis for the special S IRI  case o f  the general 
model  in system (3 .2) - (3 .4)  when ff = 6 = 0, ~(s, i) = q~s, and gJ(r, i) = Or. 
Observe that  in Sect. 3 we showed that  f s ~  = gr7  ~ = 0, so that  no periodic 
solutions are possible. Since s + i + r = 1, the system is essentially two-dimen- 
sional, so we can eliminate one o f  the variables. Eliminating the r variable, we 
obtain the system 

s '  = b(1 - s) - (~ - Qsi, (4.1) 

i '  = i[(q~ -- 0)s + (e -- 0) i  -- (E + b + 7 - O)]. (4.2) 

No te  that  A = {(s, i) E N2 : 0 ~< s + i ~ 1} is invariant: if s = 0 then s '  = b > 0, if 
i = 0 then i '  = 0, and on s + i = 1 we have (s + i ) '  = - y i  ~< 0, so that  trajecto- 
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ries beginning in A remain in A-. System (4.1)-(4.2) has an equilibrium point at 
(1, 0) corresponding to the disease free equilibrium (DFE). The eigenvalues of  
the Jacobian at the DFE are - b  and q~-  (E + b + 7), so that the DFE is a 
locally stable node whenever the threshold parameter Ro = q~/(e + b + 7 ) <  1, 
and an unstable saddle whenever R0 > 1. 

To determine whether there are any endemic equilibria ( s , , i , )  with 
s , ,  i ,  > 0, observe that the s ' =  0 isocline is a hyperbola through the DFE with 
asymptotes s = 0 and i = b / ( e  - (9). This hyperbola intersects A if and only if 
q~ > b + e. The i' = 0 isoclines are the s-axis and the line 

(~b - ff)s + (e - ~b)i = (e + b + 7 - ~k). (4.3) 

The analysis depends on four quantities: E + b + 7, ¢, e, if, and the first two must 
exceed the third, so there are eight possible alternatives. There is no equilibrium 
besides the globally asymptotically stable DFE  if e + b + 7 is the largest of the 
four quantities, because the line (4.3) either does not intersect the hyperbola, or 
intersects it outside of  A. When ¢ is the largest quantity (so that the D F E  is a 
saddle), there is at most one equilibrium point in A. This is easy to see if ~k > ~, 
since (4.3) has positive slope and intersects A ; the equilibrium point so obtained 
is stable since the trace of the Jacobian is negative and the determinant is 
positive. When ~ > ~k so that the line (4.3) has negative slope, the line may 
intersect the hyperbola at two points, the lower of which is clearly in A. To see 
that the other intersection is outside of A,  consider the intersections of the 
isoclines with the line s ÷ i = 1. Substituting 1 - s = i into the hyperbola, we get 
s = b/(gp - ~), while the intersection of (4.3) with s + i = 1 yields s = (b + ~)/ 
(q5 -E) .  An isocline analysis of  this case shows that near the origin in ~2+ we 
have s '  > 0 and i' < 0, indicating that the direction field revolves counter-clock- 
wise around the equilibrium point at ( s , ,  i , )  in A. The s-axis is a separatrix 
going to the saddle at the DFE  and the separatrix leaving the DFE has initial 
slope - ( 0  - E - 7)/(4 - e). This separatrix must approach the equilibrium point 
(s , ,  i , )  as otherwise there would have to be a periodic orbit, which is impossible 
as shown above (see Fig. 2(a)). Thus, the equilibrium point (s , ,  i , )  is a stable 
focus. 

Finally, when ff is the largest quantity, the line (4.3) intersects the hyperbola 
in one point interior to A when Ro > 1, and in (possibly) two points inside A 
when Ro < 1. In both cases the direction field in ~_ near the origin satisfies 
s '  > 0, i '  > 0. If  ~b > e + b + ~, then Ro > 1 so that the D F E  is a saddle point. An 
isocline analysis (see Fig. 2(b)) shows that the equilibrium point (s , ,  i , )  in A 
must be a stable node. If  ~b < e ÷ b + 7, then R0 < 1 and the DFE is a stable 
node. An isocline analysis reveals that when the line (4.3) intersects the hyper- 
bola in two points inside A, the one with largest i value must be a stable node, 
while the other must be a saddle point (see Fig. 2(c)). The separatrices going to 
this saddle point divide A into two basins of  attraction. Figure 2(c) shows that 
one of  these separatrices is very close to the s-axis: this indicates that if the initial 
number of infectives is very low the disease dies out as the trajectory lies in the 
basin of  attraction of  the DFE,  but a slightly larger number of initial infectives 
may initiate a trajectory in the basin of attraction of (s , ,  i , ) ,  leading to an 
endemic situation. Thus, this separatrix serves as a threshold curve determining 
the basin of attraction the trajectory will lie in. Hence, this SIRI model has a 
behavior more complicated than the corresponding SIRS model in Busenberg 
and van den Driessche (1990) and the constant population SIRI model in Tudor  
(1990), although none can have periodic solutions. 
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Fig. 2 Phase  planes showing  isoclines and  separatr ices  for  the Q = a = 0, ~(s ,  i) = ~bs, 7t(r, i) = ~,r 
case. (a) Parameters :  q5 = 0.3, e = 0.15, 0 = 0.1, y = 0.05, b = 0.01. Separatr ix emana te s  f rom saddle 
at  (1 ,0 )  and  goes to stable focus at  (0.5355,0.0578).  (b) Parameters :  ~b=0 .25 ,  E =  
0.15, 0 = 0.4, 7 = 0.07, b = 0.01. Separatr ix emana te s  f rom saddle a t  (1, 0) and  goes to stable node  at  
(0.1442, 0.5935). (c) Parameters :  q~ = 0.2, E = 0.15, ~ = 0.4, 7 = 0.07, b = 0.01. Separatr ices to saddle 
at  (0.7791, 0.0567) split A into two bas ins  of  at t ract ion:  one to the D F E ,  the o ther  to the stable node  

at  (0.3209, 0.4233). No te  separat r ix  gets arbitrari ly close to s-axis  

5 Periodic solutions 

Before studying a situation that leads to periodic solutions, it is convenient to 
analyze the general case by eliminating the s variable from Eqs. (3.3) and (3.4). 
One equilibrium point is immediate: the disease free equilibrium at the origin. 
Any others depend on the locus of the functions ~(1 - i - r, i) and ~(r, i) in the 
triangular region A1 = {(i, r ) e  R2+ '0 ~< i + r  ~< 1}. We denote any other such 
equilibrium point (if it exists) by the notation ( i , ,  r , ) .  

The eigenvalues of the Jacobian for the DFE are 

- ( Q + b + S )  and ( e + b + ? ) ( R o - 1 ) ,  

where R0 = (~(1, 0 ) +  7*(0, 0))/(e + b  +~),  so that the DFE is locally stable 
whenever R0 < 1. For R0 > 1, the DFE is a saddle point. 

At any interior equilibrium point ( i , ,  r , ) ,  the Jacobian is given by 

j = ~i(E + [q~(1 - - i - - r ,  i) + ~(r, i)]i) i(& + [~ (1  - - i - - r ,  i) + ~(r, i)]r)~ 
+ er -- ~(r ,  i) -- i~ , ( r ,  i) ar + i ( (~(r ,  i) - y) /r  - ~Pr(r, i)) J"  (5.1) 

L 
In the rest of this section we assume that ~(s, i) = ~asi and ~(r, i) = 0. Then 

ds~  = ~o/r and dr~  = 0, so that by (3.10) 

1 ( 7i bi ( b + ~ ) r )  
curlg • 1 = - -  ~si  . (5.2) 

str r s s 

Observe that if b > ~b or 7 > ~b, then (5.2) is negative and no periodic solutions 
are possible. However, for small values of b and ~ < ~b, the term in parenthesis 
may be either positive or negative depending on the sizes of s, i, r, and ~. Thus, 
periodic solutions are possible. For this case the Jacobian becomes 

r i (e  + ~b(1 - 2i - r)) i(6 - gpi)~ (5.3) 
J / + er f i r - i T ~ r ] "  
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The  interior equil ibrium points  ( i , ,  r , )  are located at  the intersections o f  the 
hyperbolas  

(~i 2 + (gir -- (q~ + Qi -- fir + (b + ~ + 7) = 0, (5.4) 

eir + 6r 2 + 7i - (b + 6 + Q)r = 0. (5.5) 

Using these expressions, we can write the trace and de te rminant  o f  (5.3) in the 
following ways: 

tr J = (ci + 6r)  - i[7 / r  + q)(2i + r - 1)], (5.6) 

tr J = (b -k- E q- 7) - i[7 /r  + q~i], (5.7) 

det J 
- ~b(2i + 2r - 1)(Ti /r  - 6r) + (Ei + 6r ) (Or  - 7 /r ) ,  (5.8) 

i 

where (i, r) = ( i , ,  r , ) .  In what  follows, we require the following inequalities: 

3E - 26 < q) < min{4e, 16(e - 6), 166}, (5.9) 

0 < 2o- < 2E < 6 + w / ~ .  (5.10) 

The  paramete rs  q~ - -0 .7 ,  E = 0.3, and 6 = 0.25 satisfy (5 .9) - (5 .10) ,  and  will be 
used in the numerical  s imulat ions in Sect. 6. The  condi t ion that  6 < E implies that  
the disease related deaths are likely to be greater  in class I than  in class R, a 
reasonable  assumpt ion.  

We begin by considering the si tuation when b -- 7 = 0, and extend the results 
we obta in  by h o m o t o p y  to small posit ive values of  b and then 7. Observe that  the 
region A1 is invariant:  setting i = 0 in (3.3) implies that  i ' =  0, setting r = 0 in 
(3.4) yields r ' =  0, while on i +  r = 1 we have ( / +  r ) ' = - Q r  ~<0 since s = 0 .  
Thus,  any orbit  beginning in A1 mus t  remain  in A1. The i ' =  0 isoclines are the 
axis i = 0 and the hyperbo la  r = (1 - i ) ( c~ i  - e ) / ( O i  - 6 ) ,  while the r ' =  0 isocline 
in Eq. (5.5) degenerates into two lines: the axis r = 0 and r = (6 + ~ -  Ei) /6 .  
Solving the hyperbo la  and this last line s imul taneously  for  i, we get the quadrat ic  

(~ - -  8 ) q ~ i  2 - -  ~q~i + 6(Q - (e - -  6))  = 0. ( 5 . 1 1 )  

Let ~ = k ( e -  6), then (5.11) becomes i 2 - k i -  ( 1 -  k)6/c~ = 0, which has the 
roo t  

i = (k/Z)[ 1 + x/1 + 46(1 - k ) l ( ~ k 2 ) ,  (5.12) 

so there is at  mos t  one equil ibrium point  in ~J- when 0 < k < 1. To  see that  there 
is an equil ibrium point  ( i , ,  r , )  in A1 n ~ + ,  observe that  

r = (1 - k )  + ( ke /26 ) [1  - x/1 + 46(1 - k ) / ( ~ k 2 ) ]  > O, 

s = 1 - i - r = (i  - k)(E - 6 ) / 6  > 0, (5.13) 

since 6q) > e 2 by (5.10). Thus,  there are four  equil ibrium points  in A1: the D F E  
(0, 0), (e/q), 0), (1, 0), and  ( i , ,  r , ) .  

I t  is easy to check that  the D F E  is always a stable node  (Ro = 0), (e/q), 0) is 
always a saddle point ,  and (1, 0) is a saddle for  k < 1. In  Sect. 6 we will need the 
sum of  the traces o f  the Jacob ian  at (e l6 ,  0) and (1, 0): 

tr J ( e / 6 ,  0) + tr J(1,  0) = 3e - 26 - ~ - 2~ < 0, (5.14) 

for  all Q by (5.9). We now consider the nature  o f  ( i , ,  r , )  at  k -- 0 and k = 1/2. 
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If k = 0, then i 2 = 6/49, so that i = 6 / x f ~ ,  r = 1 - ei/6 = 1 - E/x/@, and 
s = ( E - 6 ) / x / 6 4 9  >0 ,  implying that s < 1 by (5.10). By (5.7) we have that 
tr J = e - 6 > 0, and, by (5.8), det J = 49ir[ci - fir - 26i + 6] = 2ir(£ - ~) x / ~  > O. 
But the discriminant equals (tr j )2  _ 4 det J = (c - 6)[(E - 6) - 86(1 - E/ 
V /~ ) ]  < 0, since by (5.10) 

E 8E 
6 -~ x / ~  9 <½(8~/6/49 - 1)(1 - x / ~ / 6 ) ,  

and the first term in parenthesis is positive by (5.9), while the latter is negative. 
Thus, ( i , ,  r , )  is an unstable focus. 

If  k = 1/2, then i = [1 + x/1 + 86/49]/4, r = (1/2) + (e/6)[1 - n i l  + 86/49]/4, 

and t r J = ( 2 c - 6 - 4 9 0 / 2 < 0 ,  by (5.10), because i >  6xf ~ f r o m  (5.11). Fur- 
therrnore, det J = 49ir(E - 6)(x/1 + 86/49)/2 > 0, and the discriminant equals 

( ~ -  (E - ~ ) )  2 -  2(E - 5)(x/1 + 8 6 / 4 9 ) ( ~ -  2 )  ' 

which is negative since 

0 < ( ~ - -  (E -- ~ ) )  < ( ~ - -  2 ) ,  2(E -- 6)(x/ l  + 86/49), 

by (5.9) and (5.10). Hence, ( i , ,  r , )  is a stable focus. Thus, a Hopf  bifurcation 
occurs between k = 0 and k = 1/2. It is not difficult to find the value of k at 
which the Hopf  bifurcation occurs: substitute (5.12) into tr J = 0 using (5.7) and 
solve the resulting quadratic equation getting 

c - 6  
k = x / ~ -  6" (5.15) 

We use (5.8), (5.12), (5.13), and (5.15) to compute the eigenvalues +ie) at the 
Hopf  bifurcation. A messy, but routine, calculation yields 

c o 2 = ( E - 6 )  E + 6 - ~ - - ~ 3 \ . / - ~ _ 6 )  , (5.16) 
• V - r  ~ ¢ - r  

so that the period of the periodic solution is 2~/co. 
Now assume that b > 0 = ~. The i' = 0 isoclines again consist of the axis i = 0 

and a hyperbola which lies below the previous hyperbola for i >  6/4). For 
(49 - e)2/449 > b, the new hyperbola will intersect the/-axis at two points il and 
i2 between E/49 and 1. The r' = 0 isoclines again consist of the axis r = 0 and a 
straight line ci + 6r = b + 6 + Q. For i i < (b + 6 + 0)/c </2,  this line intersects 
the hyperbola at a point ( i , ,  r , )  with i ,  between the roots of the hyperbola. We 
again find four equilibria: the DFE  at the origin, (il, 0), (i2, 0), and ( i , ,  r , ) .  The 
DFE  is again a stable node with eigenvalues - ( b  + E), - ( b  + 6 + ~), and since 

s(ij, 0) = [249ij( 1 + E/49 
2 

0 

it follows that (il, 0) and (i2, 0) are 
of the Jacobian at these points we 

tr J( i l ,  O) + tr J(i2, 

which, like (5.14), will be negative 

b + 5 + O  
e ij E 

saddles. If  we calculate the sum of the traces 
get 

O) = 3 e - - 2 S  --  49 - -2Q + 2 b ,  

for all Q provided b is sufficiently small. 
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The analysis at ( i . ,  r . )  is very similar to that done above and shows that for 
0 = k(E - 6) = 0 we again have an unstable focus, while for k = 1/2 and suffi- 
ciently small b, we again have a stable focus. Thus a Hopf  bifurcation occurs 
between these values. 

If  we continue this homotopy process to sufficiently small positive values of 
both b and 7, the i ' =  0 isocline again consists of the axis i = 0 and a hyperbola 
lying below the previous ones for i > 6/(a, but the r ' =  0 isocline becomes the 
hyperbola (5.5). For sufficiently small 7, this hyperbola is closely approximated 
by the two straight line isoclines of the b > 0 = 7 case. This time we have only 
three equilibria: the DFE, the point ( i . ,  r . ) ,  and a point P close to (i~, 0). The 
equilibrium corresponding to (/2, 0) now lies in the fourth quadrant, so has no 
biological meaning. The trace at P is given by (5.6) or (5.7), and an isocline 
analysis reveals that P is a saddle point. The point ( i . ,  r , )  is an unstable focus 
for k near zero and a stable focus for k near 1/2, so that a Hopf bifurcation 
again occurs in between. 

To investigate the stability of the periodic oscillations associated with the 
Hopf  bifurcations occurring above, we could invoke the criterion for super- or 
sub-critical Hopf  bifurcations given by Guckenheimer and Holmes (1983) or its 
equivalent formulation given by Eq. (A. 16) in Liu et al. (1986). It is difficult to 
test this condition analytically at these Hopf  bifurcations, because it contains 
dozens of terms. In the next section, we use two other numerical methods to 
determine the stability of the periodic oscillations. 

6 Numerical simulations 

In this final section we will provide numerical evidence to show that stable 
periodic solutions exist for the model in Sect. 5. We use the values ~b = 0.7, 
e =0.3,  6 =0.25, and make computations for the cases b =7  =0 ,  
b = 0 . 0 0 1 > ? = 0 ,  a n d b = 7 = 0 . 0 0 1 .  

The analysis above indicates the existence of a single Hopf bifurcation. We 
show that as ~ increases stable periodic solutions arise as a consequence of a 
saddle connection, for the cases b = 7 = 0 and b = 0.001 > 7 = 0, and from a 
homoclinic orbit, for the case b = ~ = 0.001, and these stable periodic solutions 
vanish as a consequence of the Hopf  bifurcation. 

We have used PhasePlane (Ermentrout 1990) to obtain the first three graphs 
in Fig. 3, showing the separatrices emanating from each saddle point for the case 
b = 7 = 0. These graphs were produced using a Runge-Kutta integrator and a 
time step of 0.05. In Fig. 3(a) we have set 0 = 0.005 (k = 0.1); a separatrix 
emanates from the saddle at ( l ,  0), bounds the unstable focus at (0.6191, 0.2770) 
and goes to the origin. The saddle at (3/7, 0) has separatrices going to the origin 
and to (1, 0) and a separatrix coming from the unstable focus. Figure 3(b) shows 
the saddle connection which occurs at approximately ~ = 0.007278 according to 
PhasePlane, and confirmed by AUTO (Doedel 1986) (see Fig. 3(d)). This 
structurally unstable connection, from the saddle at (1, 0) to the saddle at 
(E/~b, 0), encloses an unstable focus at (0.6300, 0.2732) and gives birth to stable 
periodic orbits of arbitrarily large periods by (5.14) (see p. 295 of Guckenheimer 
and Holmes 1983). Using (5.15), we calculate that the Hopf  bifurcation occurs at 
approximately Q =0.012, so that periodic orbits exist in the range 
(0.007278, 0.012). Figure 3(c) shows that when ~ = 0.009, the separatrix emanat- 
ing from (1, 0) is attracted to a region containing the unstable focus at 
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Fig. 3 Separatrix analysis and bifurcation diagram for the b = ? = 0, cb(s, i) = (~si, •(r, i) = 0 case. 
The following parameters are held constant: q5 = 0.7, E = 0.3, 6 = 0.25. The parameter Q varies. (a) 
Q = 0.005. Separatrix emanates from saddle at (1, 0) and goes to DFE. Separatrix emanates from 
unstable focus at (0.6191, 0.2770) and goes to saddle at (3/7, 0). (b) Saddle connection occurs at 
0 g 0.007278, creating stable periodic orbits of arbitrarily large period by (5.14). (c) Here Q = 0.009. 
Separatrix to (3/7, 0) separates A into two basins of attraction: to the DFE, and to the stable periodic 
orbit. (d) Bifurcation diagram with 0 on abscissa and i on ordinate. Dashed lines correspond to 
unstable focus, solid line stable focus at (i., r.). Open circles denote maximum i value of stable 
periodic orbit. Observe max i tends to 1 as Q decreases to 0.0073, where the periodic orbits originate, 
and decreases to i as 0 tends to the Hopf bifurcation at 0.012. (e) AUTO graph plotting periods of 
stable periodic orbits for values in the range 0.007278 < Q < 0.012. Periods decrease from 361.0856 at 
0 = 0.007278 to 78.3611 at Q = 0.012. Data points marked by an x 

(0.6386, 0.2697), while the separa t r ix  going to (3/7, 0) emana tes  f rom the line 
i + r = 1. Here  there are two basins  of  a t t rac t ion:  one to the D F E  above  this 
separatr ix ,  the other  (be low the separat r ix)  going to the s table  per iod ic  orbi t .  
F igure  3(d), p roduced  by  A U T O ,  t racks  the equi l ibr ium po in t  (i . ,  r . )  for  a 
range o f  values ~; the abscissa shows the values o f  Q, the o rd ina te  the values o f  
i. A U T O  uses a b roken  line for  uns tab le  and  a solid line for  s table equi l ibr ia ,  and  
m a r k s  the H o p f  b i furca t ion  by  a solid box.  The  circles in Fig.  3(d) indicate  the 
m a x i m u m  value of  i for the s table per iodic  orbi ts  cast  off by  the H o p f  
bi furcat ion.  F igure  3(e) also p roduced  by A U T O  graphs  the per iods  o f  the s table 
per iodic  orbits .  Observe  tha t  the pe r iod  increases as Q decreases to 0.007278. F o r  

= 0.012, PhasePlane  computes  eigenvalues o f  +0 .08001i  a t  (0.6546, 0.2624), 
which are very close to the exact  values +__0.08018i ob ta ined  using (5.16). The  
co r respond ing  exact  pe r iod  o f  the orb i t  is 78.3605, in very close agreement  wi th  
the value 78.3611 ob ta ined  by  A U T O .  

W e  repea ted  these calcula t ions  for the case b = 0.001 > 7 = 0, with the same 
values for  qS, e, and  6, F igure  4(a)  wi th  ~ = 0 shows the isoclines and separatr ices  
th rough  the saddles  at  ( i l ,  0) and  (i2, 0). There  is an  uns table  focus at  
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Fig. 4 Isoclines, separatrices, and bifurcation diagram for the b = 0.001 > 7 = 0, ~(s, i) = gpsi, LP(r, i) 
= 0 case. Constant parameters used for ~b = 0.7, E = 0.3, 5 = 0.25. Again Q varies. (a) Here Q = 0, 
i 1 = 0.4311 and i 2 = 0.9975. Separatrix from (i2, 0) goes to DFE. Single basin of attraction. (b) Saddle 
connection occurs at ~ ~0.005249. Here i I = 0.4311, i z = 0.9975 and the unstable focus is at 
(0.6313, 0.2674). Two basins: one to DFE, the other to the saddle connection. (c) Q =0.01. Two 
basins of attraction: one to DFE, the other to the stable focus at (0.6557, 0.2571). (d) Bifurcation 
diagram with Q on abscissa and i on ordinate. Dashed line represents an unstable focus, solid line a 
stable focus. Open circle give maximum i value for stable periodic orbits. Note they originate near 
0.0052 and vanish at the Hopf bifurcation, indicated by black square. (e) AUTO graph showing 
period of stable periodic orbits for ~ in the range 0.005 < ~ < 0.01. Period reaches 285.6755 at 
0 = 0.005249 and decreases to a period of 78.2918 at Q = 0.01. Data points marked by an x 

(0.6077, 0.2748) which  sends  a t ra jec tory  to (i i ,  0). In  Fig.  4 (b)  the saddle  
c o n n e c t i o n  be twe en  (i l ,  0) a n d  (i2, 0) is f o r m e d  at  a b o u t  ~ = 0.005249. Here  
(0.6313, 0.2674) is a n  u n s t a b l e  focus.  T h e  saddle  c o n n e c t i o n  p roduces  s table  
pe r iod ic  orb i t s  o f  a rb i t r a r i l y  large per iod.  F igu re  4(c), wi th  ~ = 0.01, shows two 
bas ins  o f  a t t r ac t ion :  one  to the D F E ,  the o the r  to a s table  focus  at  
(0 .6557 ,0 .2571) ,  so the H o p f  b i fu r c a t i on  occurs  in  the in te rva l  
0.005249 < ~ < 0.01. P h a s e P l a n e  f inds (b y  repea ted  trials) tha t  the H o p f  b i furca-  
t ion  occurs  w h e n  ~ 0 . 0 0 9 9 4 4  at  (0 .6670 ,0 .2516) ,  wi th  e igenvalues  o f  
+ 0.07906i,  i m p l y i n g  a pe r iod  o f  79.4696. U s i n g  A U T O  (see Figs.  4(d)  a n d  4(e)), 
we f ind the  H o p f  b i f u r c a t i o n  o ccu r r i n g  a t  Q = 0.01 wi th  a pe r iod  o f  78.2918. 
A U T O  t racks  s table  pe r iod ic  orb i t s  to ~ = 0.005249 wi th  a pe r iod  o f  285.6755, 
in  very  close a g r e e m e n t  wi th  P h a s e P l a n e  a n d  the theory  we have  d o n e  in  Sect. 5. 
Hence ,  s table  pe r iod ic  so lu t ions  exist in  the  r ange  0.005249 < Q < 0.01. 

W h e n  b = 7 = 0.001, the  r '  = 0 isocl ine  no  longe r  degenera tes  in to  two l ines 
(see (5.5)),  so tha t  we lose the saddle  a t  (1, 0). W e  n o w  have  a s table  n o d e  a t  the 
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origin, a saddle at the point P near (e/~b, 0) where the two hyperbolic isoclines 
intersect, and an equilibrium point at ( i . ,  r . ) .  The first assertion is easily 
shown from the Jacobian matrix and the second follows from the direction 
field. By homotopy, for k near zero we should have an unstable focus and for k 
near 1/2 a stable focus at ( i . ,  r . ) .  In Fig. 5(a) we set ~ = 0 and note that the 
separatrix emanating to the right from P = (0.4341, 0.0036) encircles the un- 
stable focus at (0.6044, 0.2698) and proceeds to the origin. A separatrix em- 
anates from the unstable focus and goes to P. We set Q = 0.006393 to get a 
homoclinic orbit as shown in Fig. 5(b). Essentially, the homotopy has trans- 
formed the saddle connection we had when b = 0.001 > ? = 0 into this homo- 
clinic orbit. The same theory (see Theorem 6.1.1 of Guckenheimer and Holmes 
1983) applies to homoclinic orbits as to saddle connections: they cast off 
periodic orbits with arbitrarily large periods. Here the trace at P is positive, so 
unstable periodic orbits are cast off by the homoclinic orbit. However, since 
( i , ,  r , )  = (0.6315, 0.2622) is an unstable focus, a stable periodic orbit must lie 
between it and the homoclinic orbit. We should expect AUTO to find at least 
one limit point between the periodic orbits to indicate changes from stable 
periodic orbits to unstable periodic orbits (see Fig. 5(d)). At least two basins of 
attraction must exist. Figure 5(c) for ~ =0.0111 shows that the separatrix 
emanating from P = (0.4341, 0.0033) approaches the stable focus at 
(0.6542, 0.2530), and that a separatrix originates on the line i + r = 1 and goes 
to P. Thus there are now exactly two basins of attraction: the DFE and the 
stable focus. PhasePlane locates the Hopf bifurcation (by repeated trials) at 
approximately Q =0.011, with eigenvalues +0.08185i, implying a period of 
76.7618. Figure 5(d), produced by AUTO with ~ on the abscissa and i on the 
ordinate, shows that a Hopf  bifurcation occurs at ~ =0.01106 at the point 
(0.6540,0.2531). AUTO finds several limit points near Q=0.011 and 

---0.006393, indicating the existence of multiple stable and unstable periodic 
orbits (see Figs. 5(e) and 5(0). The periods of the orbits near Q = 0.006393 
become progressively larger; those near ~ = 0.011 are approximately 76.349, in 
very close agreement with PhasePlane. Thus, stable periodic solutions exist for 
the range of values 0.006393 < ~ < 0.01106. Their maximum i values are plotted 
in Fig. 5(d) by the open circles. 

The results above can be summarized briefly as follows. Setting ~ = 0 in our 
model (3.2)-(3.4), with ~(s, i)--qbsi, 7J(r, i)=-0, and the other parameters 
used, yields an SIR model whose endemic equilibrium (i . ,  r . )  is an unstable 
focus. Thus, the infected and recovered proportions tend to zero as t ~ oo. By 
contrast, for a corresponding SIRS model with ~ = ( ¢ -  6)/2, the endemic 
equilibrium ( i , ,  r . )  is a stable focus. Then, depending on initial conditions, the 
infective and recovered proportions can tend to endemic values. For intermedi- 
ate values of Q, stable periodic solutions (as shown in Figs. (3)-(5)) are 
possible. 

As suggested by a referee, we have also found periodic solutions for our 
model with a different incidence function ~(s, i) = ~b,fs, with 7~(r, i) = 0 and 
the parameter values used above. Observe that (3.10) yields 

curl g • 1 = - -  
S I r  ?" S 

in D °, so that for small values of b, 7, and ~, cur lg"  1 may be positive. This 
incidence function corresponds to that used for constant populations by Liu et 
al. (1986, 1987) with p = 1, q = 1, where no periodic solutions occur. Numerical 
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Fig. 5 Isoclines, separatrices, and bifurcation diagram for the b = ~, = 0.001, q~(s, i) = ?psi, ~ ( r ,  i) = 0 
case. Constant  parameters q~ = 0.7, E = 0.3, 6 = 0.25. The parameter  Q varies. (a) Using Q = 0 we get 
a saddle at P = (0.4341, 0.0036) with separatrix going around the unstable focus at (0.6044, 0.2698) 
and proceeding to the DFE.  Note that the track of  this trajectory is close to the separatrices f rom 
(i 1 , 0) to (i 2, 0) and from (i2, 0) to the DFE.  (b) Homoclinic orbit occurring at Q = 0.006393 for 
P = (0.4341, 0.0034) and surrounding the unstable focus at (0.6315, 0.2622). (c) Using 0 = 0.0111, 
separatrix from P = (0.4341, 0.0033) proceeds to stable focus at (0.6542, 0.2530). Separatrix from 
i + r = 1 goes to P splitting domain into two basins of  attraction: one to the DFE,  the other to the 
stable focus. (d) A U T O  bifurcation diagram indicating creation of stable periodic orbits shown as 
open circles near 0 = 0.0064, which then vanish at the H o p f  bifurcation point marked by a black box 
near Q =0.0111.  Unstable foci denoted by dashed line, stable foci by solid line. (e) Bifurcation 
diagram showing periods of  periodic orbits for different values of  Q in the range 
0.006393 < O < 0.0111. Each data point marked by an x. (f) Magnification of  the data  in Fig. 5(e) 
in a range about  0.00639 < 0 < 0.00642 
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calculations with 0 = 0 yield a stable limit cycle in the /r-plane in the region 
(0.0, 0.1] x [0.9, 1.0) about the unstable focus at (0.0255, 0.9694) for b = ? = 0, 
or (0.0457, 0.9489) for b = ? = 0.001. 
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