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Abstract. Integrodifference equations are discrete-time models that possess many 
of the attributes of continuous-time reaction-diffusion equations. They arise 
naturally in population biology as models for organisms with discrete nonover- 
lapping generations and well-defined growth and dispersal stages. I examined the 
varied travelling waves that arise in some simple ecologically-interesting integro- 
difference equations. For a scalar equation with compensatory growth, I ob- 
served only simple travelling waves. For carefully chosen redistribution kernels, 
one may derive the speed and approximate the shape of the observed waveforms. 
A model with overcompensation exhibited flip bifurcations and travelling cycles 
in addition to simple travelling waves. Finally, a simple predator-prey system 
possessed periodic wave trains and a variety of travelling waves. 
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1 Introduction 

Invading species frequently alter the structure and function of entire communi- 
ties (Crosby 1986). Early ecologists exhibited a profound interest in the biology 
of these invasions (Elton 1958). A spate of recent volumes (Mooney and Drake 
1986; Groves 1986; Drake 1989; Hengeveld 1990) suggests that modern-day 
ecologists are just as interested: there is ever greater appreciation for the 
ecological and evolutionary significance of biological invasions. 

There is a cogent body of theory that attempts to predict the rates of spread 
of invading species (Roughgarden 1986). The theory employs reaction-diffusion 
equations, such as the Fisher equation, to describe populations that simulta- 
neously grow and diffuse. The Fisher equation, 

0u 02u 
Ot = ru( 1 - -  u) + O Ox 2, (1)  

was originally introduced as a model for the spread of an advantageous allele 
(Fisher 1937); it was then adopted by Skellam (1951) and by Kierstead and 
Slobodkin (1953) for problems in population ecology. It has, among its solu- 
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tions, travelling waves u(x - ct) of all velocities c/> 2 x / ~  (Fisher 1937; Kol- 
mogorov et al. 1937). Initial conditions with compact support converge to 
travelling waves of minimum speed c * =  2x//-~ (Kolmogorov et al. 1937; 
Aronson and Weinberger 1975). Initial conditions with "fat tails" evolve into 
travelling waves with speeds in excess of c* (McKean 1975; Larson 1978; 
Murray 1989). A wide variety of reaction-diffusion models exhibit travelling 
waves (Okubo 1980; Britton 1986; Murray 1989). 

How else might one model dispersal? Mollison (1977) has argued for spatial 
contact models built around contact distributions - probability distributions for 
the distance that an individual moves. Spatial contact models incorporate a 
variety of contact distributions, including the leptokurtic distributions that are 
typical of biological populations (Wolfenbarger 1946, 1959, 1979; Okubo 1980). 
Diffusion is viewed as a mere approximation in which all moments of the contact 
distribution, other than the second, equal zero. 

The earliest contact models were continuous-time models for epidemics 
(Kendall 1965; Mollison 1972a, 1972b; Atkinson and Reuter 1976; Brown and 
Carr 1977; Aronson 1977). An important example is Mollison's (1972a) equation 
for the rate of change of infectious individuals during a simple epidemic: 

au 
a t  = rti( 1 - u). (2) 

u(x, t) is the density of infectious individuals as a function of position and time, 
whereas 

(t(x, t) = _t2 k(x - y)u(y, t) dy (3) 

is a weighted spatial average of the number of infectives over the domain ~. The 
weights are prescribed by the nonnegative contact distribution k, 

f e k ( y )  dy = (4) 1. 

If k lacks an exponentially bounded forward tail, the velocity of propagation is 
asymptotically infinite (Mollison 1972b). With an exponentially bounded tail, 
there is a minimum wave speed c* that dominates the model. Travelling waves 
exist only for c ~> c* (Atkinson and Reuter 1976; Brown and Carr 1977), as for 
the Fisher equation. 

There are also a growing number of discrete-time spatial contact models. 
Slatkin (1973), Weinberger (1978, 1984), and Lui (1982a, 1982b, 1983, 1985, 
1986, 1989a, 1989b) have carefully analyzed models for changes in gene fre- 
quency. Weinberger and Lui, in particular, have concentrated on developing 
necessary and sufficient conditions on the contact distribution, on nondecreasing 
growth functions, and on the initial conditions that guarantee convergence to a 
travelling wave. Recently, discrete-time contact models appeared de novo, in 
population ecology, as integrodifference equations (Kot and Schaffer 1986; 
Hardin et al. 1988a, 1988b, 1990; Kot 1989; Andersen 1990). Integrodifference 
equations are functional maps; they describe populations with discrete, nonover- 
lapping generations and well-defined growth and dispersal stages. Analyses of 
these ecological models have emphasized steady states, bifurcations, diffusive 
instability, and chaos. These analyses have neglected travelling waves. 

This paper is an attempt to redress this deficiency. In Sect. 2, I review the 
formulation of integrodifference equations. In Sect. 3, I discuss travelling waves. 
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I examine the simple travelling waves that arise in the presence of a monotoni- 
cally increasing growth function in Sect. 4. In Sect. 5, I turn to a model built 
around the overcompensatory logistic difference equation. For this model, 
travelling cycles that arise via period-doubling bifurcations supplant a simple 
travelling wave. Section 6 illustrates the waves of a simple two-species predator- 
prey system. Concluding comments are relegated to Sect. 7. The writing in this 
paper is heuristic rather than rigorous: I barely scratch the surface on a number 
of interesting topics. Sections 5 and 6 are especially short and almost entirely 
preliminary. The reader is strongly encouraged to develop these topics in far 
greater detail. 

2 Integrodifference equations 

Consider an organism with synchronous, nonoverlapping generations. I assume 
that there are two distinct stages that define the life cycle of this organism: a 
sedentary stage and a dispersal stage. All growth occurs during the sedentary 
stage and all movement occurs during the dispersal stage. I further posit 
density-dependence in growth, but not in dispersal. These assumptions allow me 
to take the composition of a linear operator (for the dispersal stage) and a 
nonlinear operator (for the sedentary stage) as my descriptor of growth (Kot 
and Schaffer 1986). 

For the sedentary stage I begin with a nonlinear map 

N, +, =f(Nt)  (5) 

such as the Beverton-Holt stock-recruitment curve (Beverton and Holt 1957; 
Pielou 1977) 

N,+, - 1 + [(2 - 1)Nt/K]' (6) 

the logistic difference equations (Maynard Smith 1968; May 1972) 

r 
N,+I = (1 + r)N, -~[N2t, (7) 

or the Ricker (1952) curve 

N, is the population level at time t. K represents the carrying capacity of the 
environment. 2 = e r and r are the geometric and intrinsic rates of increase. 

Equations (6), (7), and (8) appear extensively in the literature. All three maps 
exhibit density dependence. The Beverton-Holt curve is a model of compensa- 
tory growth (Clark 1976): recruitment is a monotonically-increasing, concave 
function of density. This map has a single nontrivial equilibrium (N*=  K) that 
is asymptotically stable for all r > 0. In contrast, the logistic difference equation 
and Ricker curve exemplify overcompensation. They possess a wide range of 
dynamical states that includes equilibria, cycles, and chaos (May 1975; May and 
Oster 1976). 

Equation (5) makes no allowance for the dispersion of the population. If we 
let N,(x) represent the population density as a function of space at the start of 
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the tth generation's sedentary stage, change occurs in two alternating steps: 
(1) During the sedentary stage, N,(x) is mapped into f(x, Nt(x)). Explicit spatial 
dependence (from here on dropped) reflects clinal (spatially varying, time-inde- 
pendent) variation in the parameters. (2) During the dispersal stage, individuals 
are shuffled about. This shuffling may be modelled with an integral operator. 
Together these steps yield an integrodifference equation of the form 

t D  

N,+ l(x) -- 1o k(x, y)f(Ut(y)) dy (9) 

for the growth and dispersal of the population. 
The kernel k(x,y) is the cynosure of this formulation. It describes the 

dispersal of N from y about y. In particular, k(x, y) dy is the probability of an 
individual's dispersing from an interval of length dy about y to an equally small 
interval about x. As a probability, k(x, y)dy must be nonnegative. The kernel 
may depend on absolute location or on relative distance. In the latter instance, 
it is truly a contact distribution and Eq. (9) is built around a convolution 
integral, 

g ~  

N, + a (x) = _Io k(x - y)f(N, (y)) dy. ( 1 O) 

There are a number of methods for estimating the kernel from observed data 
(Silverman 1986). Throughout this paper, I will take the domain to be infinite 
and the redistribution kernel to be a contact distribution. I will further assume 
that the contact distribution has exponentially-bounded tails. In particular, there 
must exist a positive real number #0 with the property that the moment 
generating function satisfies 

f+~e~Yk(y)dy<+oo_ (11) 

for all I/~1~< P0. Mollison (1972b) has shown that (11) is necessary in order that 
continuous-time spatial contact models have a finite speed of propagation; the 
same appears to be true for discrete-time integrodifference equations. I will 
concentrate on the exponential distribution 

{;e~(X-Y) x < Y  (12) 
k l ( x - Y )  = x >y 

and on the bilateral exponential distribution 

k2(x _y)  _~_1 exp( - ~ ] x  - Y  I)- (13) 

These two distributions satisfy condition (11). Moreover, they emphasize the 
degree to which contact distributions may deviate from normality: the exponen- 
tial distribution is highly skewed while the bilateral exponential distribution is 
leptokurtic. 

3 Simple travelling waves 

The simplest interesting behavior arises for integrodifference equations of the form 

Nt+l(x)=f+°~k(x-y)f(Nt(y))dy,_ (14) 



Discrete-time travelling waves: Ecological examples 417 

with f(Nt) a monotonically-increasing growth function that satisfies 

f(N) <~f'(O)N. (15) 

The methods of  Weinberger (1978) may then be used to prove the existence of  
a travelling wave of invasion for a population confronting fresh habitat. Far less 
is known regarding the behavior of  (14) for nonmonotone growth functions. 

Simple travelling waves are solutions that satisfy 

Nt+ 1 (x) = Nt(x + c) (16) 
for some constant e. In effect, each iterate yields a lateral translation c with no 
other change in the shape of  the solution; e is the wave speed of  the solution. 
Substituting (16) into (14), we see that simple travelling waves satisfy the integral 
equation 

N(x+c)=f+~k(x-y)f(N(y))dy._ (17) 

N* = 0 and N * =  K will typically appear as constant solutions of Eq. (17). 
Our concern is with the nonnegative integral curves that connect these fixed 
points: Solutions that tend to N * =  0 in the limit as x---, - o o  and that tend to 
N* = K i n  the limit as x ~ + ~ yield leftward moving waves. We use Eq. (17) to 
calculate both the speed and the shape of these travelling waves. 

Speed 

The minimum wave speed is determined by the local behavior of (17) in the 
neighborhood of  N* = 0. For  small c, solutions near N* = 0 oscillate; finding a 
nonnegative integral curve to connect the two fixed points is thus impossible. The 
critical or minimum wave speed c* is the lowest value of c for which one can find 
a positive solution curve that decussates N* = 0. The appearance of this solution 
curve coincides with the first appearance of  a positive real eigenvalue for the 
linearization of  (17) in the neighborhood of  N* = 0. This eigenvalue is a double 
root of  the correspondent characteristic equation. 

The linearization of  Eq. (17) in the neighborhood of  N * =  0 is just 

N(x+c)=f'(O)f~°~k(x-y)N(y)dy._ (18) 

For  a leftward moving wave, one may attempt a solution of the form 

N(x) = A e ~x (19) 
for ~ positive. After some manipulation, this yields the characteristic equation 

e~C=f'(O) f~k(s)e-~ds._ (20) 

For/~ to be a double root, we require that 

ce~'C=-f'(O) f~®k(s)se-~Sds._ (21) 

Equations (20) and (21) together provide us with the minimum wave speed e*. 
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Weinberger (1978) proved that the critical wave speed c* is 

c* : min {~ ln [f '( O) f ~ k(s) e -~ ds > o 

and that this minimum exists for f ' (0)  > 1. 

(22) 

Shape 

We must also extract the shape of the travelling waves from Eq. (17). In general, 
this is rather difficult. However, for contact distributions (12) and (13), Eq. (17) 
simplifies and we can make some progress. In particular, by adapting the method 
of Canosa (1973) and Murray (1989) to integrodifference equations, we are able 
to expand the solution as a perturbation series. 

Example 1 For the exponential distribution 

Eq. (17) appears as 

{ : e  ~(x-y) x <y (23) 
kl(x - y )  = x >y 

N(x + c) = ~ Jx e~(X-Y)f(N(Y)) dy. (24) 

Differentiating Eq. (24), we obtain the first order delay-differential equation 

N'(x + c) + e[f(N(x)) - N(x + c)] = 0. (25) 

With the new unit of length 

Eq. (25) simplifies further, yielding 

x 
- - -  (26) z 

c 

eN'(z + 1) + [f(N(z)) - N(z + 1)] = 0 (27) 

with 

1 
_--=_ . (28) 

We will concentrate on simple, leftward-moving waves that satisfy 

lim N(z) = 0, lira N(z) = K. (29) 
z-~ --o0 z~ J-oO 

Our analysis is greatly facilitated by a choice of origin that guarantees 

K 
N(0) : ~ .  (30) 

It would appear that we have traded an unsavory integral equation (Eq. 
(17)) for an equally unsavory delay-differential equation (Eq. (27)). However, in 
the limit of infinitely fast propagation speeds (c ~ o% e ~ 0), Eq. (27) reduces to 
a difference equation; Eq. (27) may be thought of as a perturbation problem. 
Since ~ multiplies the highest derivative, Eq. (27) would appear to be a singular 
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perturbation problem. However, if the equation has a uniform limit as e ~ 0, a 
valid solution may be obtained with the regular perturbation series 

U(z; e) = No(z ) + eN,(z) + . . . .  (31) 

After substituting Eq. (31) into Eq. (27) and equating like powers of e, we obtain 

O(1): No(z + 1)=f(No(z)) (32a) 

O(e): N1 (z + 1) =f'(No(z))Nl (z) + N'o(Z + 1) (32b) 

and so on for higher powers of epsilon. Equations (29) and (30), taken with Eq. 
(31), further dictate that 

K 
No( - m) = 0, No( + m) = K, No(0) = ~ ,  (33a) 

N i ( - m )  = 0, Ne(+  m) =0 ,  Ng(0) =0 ,  (33b) 

for i = 1, 2 , . . . .  Equations (32a) and (32b) are to be solved successively. 
Together with Eqs. (33), they yield the shape of the travelling wave. 

Example 2 For the bilateral exponential distribution 

k2(x - y) = ½~ exp( - ~ Ix - y 1). (34) 

(17) takes on the form 

N(x +c) 1 f _ (35) 

which may be written 

fx +~ 
N(x + c) ~---~1 exp[~(x - y ) ] f (N(y ) )  dy 

+ lc~ f_x  exp[ - ~(x - y)] f (N(y))  dy. (36) 

Differentiating (36) twice yields the second order delay-differential equation 

N"(x + c) + c~2[f(N(x)) - N(x + c)] = 0. (37) 

With the new unit of  length 

x 
z -=- ,  (38) 

¢ 

Eq. (37) yields 

with 

eN"(z + 1) + [f(N(z)) - N(z + 1)] = 0 (39) 

1 

e = ~2c2. (40) 

Equations (29) for the boundary conditions and Eq. (30) for the choice of origin 
are still appropriate. 

We again employ a regular perturbation series 

N(z; e) = No(z) + eNl(z) + " "  (41) 
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No(z + 1) =f(No(z)) 

N l(z + 1) =f'(No(z))N1 (z) + N~(z + 1) 

(42a) 

(42b) 

to first order in epilson. The boundary conditions are as before (Eqs. (33)). 

4 Compensatory growth 

For the Beverton-Holt  stock recruitment curve (Eq. (6)), the integrodifference 
Eq. (14) appears as 

Nt+l(X) = a oo- k(x - y )  1 +[(2 - 1)Ut(y)/K] 

Given the change of variables 

Eq. (43) simplifies to 

Nt(x) 
u,(x) =- K ' (44) 

f +~ dy. (45) 
2ut( y) 

u,+l(x) = k(x - y )  1 + (2 - 1)u,(y) 

Thus, for simple travelling waves, we wish to satisfy the integral equation (Eq. 
(17)) 

f +~ 2u(y) (46) u(x+c)= _ k (x -y)  l + ( 2 - 1 ) u ( y ) d y  

subject to 

and 

lira u(x)=0, lim u(x)= 1 (47) 
X ~ - - o o  x-- -~  + oo 

u(0) = ½. (48) 

Example 1 For the exponential distribution we have 

U(X + C) = O~ f~x e~(x-Y) 2u(y) dy. (49) 
1 + (2 - 1)u(y) 

Differentiating Eq. (49), we obtain the first order delay-differential equation 

I 2u(x) -u(x+c)]=O. (50) u'(x + c) + ~ 1 + (2 - 1)u(x) 

Equations (49) and (50) may be studied directly. Even at this stage, however, it 
is useful to rescale length. Thus, we introduce 

x 
z ---- . (51) 

¢ 
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(1-e)/E (1-e)/e (1-e)/e 
~, > e e  ~ = e e  ~, < ~3e 

Fig. 1. Rea l  roo ts  o f  the charac ter i s t ic  equa t ion  2 e -~ = 1 - a#. The roots  occur  a t  the in tersect ion of  

the exponent ia l  y = e - "  and  the s t ra ight  l ine y = 1 - ~#. Depend ing  on one 's  choice  of  2 and  ~, there 

are  0, 1, or  2 real  roo ts  

Equation (50) reduces to 

~ u ' ( z + l ) +  l + ( 2 - 1 ) u ( z ) - U ( z + l )  = 0  (52) 

with 

1 
- - - .  (53) 

~ c  

S p e e d  

The relevant characteristic equation now appears as the transcendental 
quasipolynomial (El'sgol'ts and Norkin 1973) 

2 e -~  = 1 - elt. (54) 

Equation (54) has an infinite number of complex roots, contained in some left 
half of  the complex plane. At the same time, it has at most two real roots. 
Indeed, if we examine the intersections that arise as we plot each side of Eq. (54) 
as a function of  # (see Fig. 1), we see that there are either 0, 1, or 2 real roots. 
Real roots emerge at the double root characterized by 

2 e -~ = e. (55) 

Equations (53), (54), and (55), together, yield the parametric representation 

~c = 1 + p (56a) 

e ~ 
(56b) 2 -  1 +/~" 

The graph of  this function for/~ ~> 0 (see Fig. 2) relates the critical wave speed 
c* to the growth rate 2 and the dispersal constant e. 
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Fig. 2. Minimum speed of advance for the 
travelling waves of a simple compensatory 
integrodifference equation. The model is a 
scalar integrodifference equation with 
Beverton-Holt growth and an exponential 
contact distribution. The minimum wave 
speed c is an increasing function of the 
geometric growth rate 2 and a decreasing 
function of the dispersal parameter 

Shape 

The per turbat ion scheme (32) reduces to 

,~Uo(Z) 
o ( 1 ) :  Uo(Z + 1) = 

1 + (2 - 1)Uo(Z) 

2 
O(~): ul(z + 1) = [1 + (A - 1)Uo(Z)] 2 ul(z) + U'o(Z ÷ 1) 

with 

~ o ( -  oo) = 0, Uo(+ ~ )  = 1, Uo(0) = ½, 

u , ( -  ~ )  = 0 ,  u , ( +  ~ )  = 0 ,  ui(0) = 0 ,  

for  i = 1 , 2  . . . . .  
Equat ion  (57a) has a closed-form solution that  satisfies (58a): 

2 z 
u 0(z) - 1 + 2 ~" 

As a result, Eq. (57b) reduces to 

A(1 + 2z) 2 A z+l 
u ~ ( z + l )  ( l + 2 z + l ) z u a ( z ) + l n 2 ( l + 2 Z + ~ )  2. 

This looks gruesome, but  the substitution 

ul (z) = In 2 ( 1 + 2z) 2 vl (z) 

simplifies Eq. (60) to 

which has the solution 

vl (z + 1) = vl (z) + 1 

(57a) 

(57b) 

(58a) 

(58b) 

(59) 

(60) 

(61) 

(62) 

Va (z) = z. (63) 



The solution of Eq. (60) is, therefore, 
z2 z 

Ul (z) = In 2 ( 1 + 2~) ~ '  

Combining Eqs. (59) and (64), we may write 
2 z z2: 

u(z) - + e In 2 - -  + O(e 2). 
1 + 2  z (1 + 2 : )  2 

In terms of the original variables N and x, the uniformly 
solution for all x is thus 

~ e "x/c 1 (rx/c) e'X/C] 
N(x) = K 1 + erX/C + ~c ~ - +  ~ J  + O(e2) 

with 

(64) 

(66) 

(65) 

valid asymptotic 

(70) 

r = In 2. (67) 

Figure 3 shows a numerically integrated simulation of  Eq. (43). A leftward- 
moving travelling wave is clearly evident. The series (66) for the shape of  the 
travelling wave is asymptotically accurate only in the limit of  infinitely large 
speeds. However, even for small speeds it does passably well. This is readily seen 
in Fig. 4 wherein we compare a numerically computed wave profile with O(1) 
and O(e) approximations. 

Example 2 For the bilateral exponential distribution, Eq. (46) is just 

f_ -~ 2u(y) 
u(x + c) 1 exp( - ~ [ x  [) 1 + U ~ - l ) u ( y )  = :c~ - y dy. (68) 

oo 

Equation (37) is the second order delay-differential equation 

F 2u(x) 
u"(x + c) + ~2 L 1 + (2 - 1)u(x) 

By rescaling length, 
x 

Z ~  

C ~ 

- u ( x  + c ) ]  = 0. (69) 

Nt(x) 

~ =  1.5 
o ~ =  6.0 

K 
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0 x 10 

Fig. 3. Travelling wave for a 
compensatory integrodifference 
equation. A scalar integrodifference 
equation with Beverton-Holt growth 
and an exponential contact distribution 
readily exhibits a simple, 
monotonically-increasing travelling 
wave. This simulation was obtained by 
numerically integrating the 
integrodifference equation (using the 
extended trapezoidal rule) through a 
transient of twenty iterates and by 
then integrating and plotting the next 
ten iterates. The wave maintains its 
simple shape while moving to the left 
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K 

N(x) 

0.0 

Numerical 7 7 S  

= 0.i82 

-5.0 x 5.0 

Fig. 4. A comparison of the numerical and 
perturbation-scheme approximations to a 
small-speed travelling wave of an 
integrodifference equation with 
Beverton-Holt growth and an exponential 
contact distribution. The numerical solution 
was obtained by numerically integrating 
through a large number of iterations so as 
to allow for convergence to the travelling 
wave. The O(1) and O(e) 
perturbation-scheme approximations are 
those contained in Eq. (66) 

we may  reduce Eq. (69) to 

eu"(z+l)+ l + ( 2 - 1 ) u ( z ) - U ( z + l )  = 0  (71) 

with 

1 
e = ~ac2. (72) 

Speed 

The proper  characteristic equat ion is 

2 e-U = 1 - e# 2. (73) 

Equat ion  (73) has an infinite number  o f  complex roots, contained in some left 
half  o f  the complex plane. However ,  a concave parabola  may  intersect a convex 
exponential  at mos t  twice; Eq. (73) has either 0, 1, or  2 real roots. Real roots  
emerge at the double root  characterized by 

J. e -~ = 2e#. (74) 

Equat ions  (72), (73), and (74), together, engender the parametr ic  equations 

c~c = x / #  2 + 2# (75a) 

2e ~ 
2 - 2 + #" (75b) 

The graph of  (75) for # / >  0 determines the min imum wave speed c* (see Fig. 5). 
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/ . . . . .  
0 ~ 10 
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Fig. 5. Minimum speed of advance for the 
travelling waves of a second compensatory 
integrodifference equation. The model is a 
scalar integrodifference equation with 
Beverton-Holt growth and a 
bilateral-exponential contact distribution. The 
minimum wave speed c is an increasing 
function of the geometric growth rate 2 and 
a decreasing function of the dispersal 
parameter c~ 

Shape 

The per turbat ion scheme (42) reduces to 

2Uo(Z) 
O(1)" Uo(Z + 1) - 1 + (2 - 1)Uo(Z) 

2 
0(~)" ul(z + 1) = [1 + (2 -- 1)Uo(Z)] 2 u,(z) + u'~(z + 1) 

with 

Uo(--oO ) = 0 ,  Uo(+ oO ) = 1, Uo(0 ) =½, 

u,(--oO) = 0, u , (+oo)  = 0 ,  u~(0) = 0 ,  

for i = 1, 2 . . . . .  
Equat ion  (76a) also has the closed-form solution 

2 z 
Uo(Z) = 1 + 2 ~" 

As a result, Eq. (76b) m a y  be rewritten 

UI(Z -[- 1) 

The substitution 

reduces Eq. (79) to 

so that  

2(1 + 2 0 2  2)2z+~ (1 - - 2  z+~) 
(1 + 2 - ~  -2 u~(z) + ( I n 2  (1 + 2z+~) 3" 

2z 
Ul(Z ) = In 2 2 ( l  ÷ 2z) 2 vl(z) 

vl (z + 1) = Vl (z) + 
(1 - - 2  z+l) 
(1 + 2 z+l) 

( 1  - -  2 i) 
/)I(Z) = /)1(0)+ i=1 ~ ( 1 T ~  

(76a) 

(76b) 

(77a) 

(77b) 

(78) 

(79) 

(80)  

(81) 

(82) 
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or 

v, (z) = - ~ tanh[(½ In 2)i1. (83) 
i=o 

Equation (83) is awkward to the extent that the spatial variable z appears as 
the upper limit of the summation. For  large z, one may approximate Eq. (83) 
with the Euler -MacLaur in  summation formula. For  small z, one may expand 
the hyperbolic tangent in a Taylor series and, switching the order of summation, 
sum to z term by term. This yields 

1 
vl (z) = - ~ (ln 2)z(z + 1) + (ln 3 2)z2(z ÷ 1) 2 + - -  • (84) 

so that 

u ' ( z ) : - ~ l n 3 2 Z ( z + l ) 2 Z I ~ -  ~ ] +2z)2 1 -  (ln 22)z(z + 1) + . . . .  (85) 

Combining Eqs. (78) and (85), we may write 

^ z(z + 1)2z 1-1 _ 2~ ] 2z e In 3 Z (-i + 2 ~  - [ (ln 22)z(z + 1) + . . .  + O(~2). (86) u(z) - l + )~z 4 

In terms of the original variables N and x, the uniformly valid asymptotic 
solution for all x is thus 

erx/c r3x 1 ÷ ÷ erx/c) 2 
N ( x ) = K  l +erX/c 4c¢2c3 c (i  erX/c 

x 1 - - ~ c  l + e  + " "  +O (e  2) (87) 

where 

r = In 2. (88) 

The series (87) is, as before, asymptotically accurate only in the limit of infinitely 
large speeds. However, for small speeds it now does exceedingly well, as may be 
seen in Fig. 6. 

K 

N(x) 

0.0 

-5.0 

)~ = 1.25 

L--o79 3 

/ . O(e) 

"-"~ ~ Numerical 

x 5.0 

Fig. 6. A comparison of numerical and 
perturbation-scheme approximations for an 
integrodifference equation with compensatory 
Beverton-Holt growth and a 
bilateral-exponential contact distribution. The 
perturbation scheme does a superb job of 
approximating the numerically-observed 
travelling wave even at small speed 
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50vercompensation 

The examples of Sect. 4 possessed simple, monotonically-increasing travelling 
waves. There was, moreover, little else to be seen with these models. This 
austerity of form follows from the simplicity of the Beverton-Holt  stock 
recruitment curve: for all r > 0, the curve has sigmoidal solutions that are 
monotonically-increasing functions of time. In our two examples, the tie-in 
between the monotonicity of the travelling waves and the monotonicity of the 
underlying time series was quite explicit: the Beverton-Holt  equation reappeared 
as the O(1) equation for the shape of the travelling wave. 

Behavior of far greater complexity may arise for models that permit over- 
compensation. Consider, for example, an integrodifference equation built around 
• e logistic difference equation, 

--fT [ l 
Given the change of variables 

this simplifies to 

;+ 

N,(x) 
ut(x)  = , (90) 

K 

k ( x  - y)[( 1 + r)ut ( y )  - ru ~ (y)] dy. (91) 

For the bilateral exponential redistribution kernel, 

k ( x - y ) = ~ l  e x p ( - ~ ] x - y l ) ,  (92) 

we may, in analogy with our second example, consider the perturbation scheme 

O(1): Uo(Z + 1) = (1 + r)uo(z) - ru2(z) (93a) 

O(e): Ul(Z + 1) = [(1 + r) - 2ruo(z)]ul(z) + u~(z + 1) (93b) 

for the shape of the travelling wave. 
There are immediate differences between Eqs. (76a) and (93a). First of all, we 

can no longer write out a simple closed-form solution for Uo(Z). More impor- 
tantly, since Eq. (93a) is just a rescaled version of the logistic difference equation, 
it exhibits a variety of solutions (May 1975; May and Oster 1976). For small r, 
it has solutions that rise from 0 and that tend, monotonically, towards 1. In this 
instance we expect, once again, simple, monotonically-increasing travelling 
waves. Figure 7 illustrates a simulation of integrodifference Eq. (89) with kernel 
(92) in which we observe just such waves. As we increase r, solutions of (93a) 
still tend towards 1, but with damped oscillations in the neighborhood of 1. 
These solutions still satisfy all of the relevant boundary conditions (Eqs. (77)) 
and so we expect the perturbation scheme (93) to go through and the oscillations 
to manifest themselves in the shape of the travelling wave. Figure 8 demonstrates 
that this is indeed the case. In particular, Fig. 8 illustrates the travelling wave 
profile, a damped oscillation, that appeared in a simulation of Eq. (89) for larger 
r. For still larger r, u = 1 becomes unstable. In particular, the underlying 
difference equation undergoes a period-doubling flip bifurcation: trajectories 
tend towards a periodic two-cycle rather than the equilibrium. As a result, we 
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Fig. 7. A simple travelling wave for an 
overcompensatory integrodifference 
equation. An integrodifference equation 
with logistic growth and a bilateral- 
exponential contact distribution exhibits 
a simple, monotonically-increasing 
travelling wave for small r. The 
simulation was obtained by numerically 
integrating the integrodifference equation 
(using the extended trapezoidal rule) 
through a transient of twenty iterates 
and by then integrating and plotting the 
next ten iterates. The wave preserves its 
shape while moving to the left 
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Fig. 8. A travelling wave with damped 
spatial oscillations. The equation gave 
rise to the simple travelling wave of Fig. 
7 yields a travelling wave with damped 
spatial oscillations for larger r 

can no longer expect the travelling wave profile u(z) to tend to 1 in the limit as 
z --, oo. Amazingly (see Fig. 9), simulations at higher r now show the existence of 
a travelling two-cycle. If  we sampled the system at every second iterate, we would 
see a travelling wave. As is, the wave alternates between two profiles, all the 
while moving to the left. There is, in fact, an entire cascade of period-doubling 
bifurcations (leading to chaos), both for the logistic difference equation and for 
integrodifference Eq. (89). Figure 10, for example, shows the travelling four-cycle 
that appears at the loss of stability of the travelling two-cycle; the wave now 
alternates between four profiles as it moves to the left. 

There are a number of interesting and unanswered mathematical and biolog- 
ical questions that follow from the above observations: Are the critical wave 
speeds of the travelling cycles truly the same as those predicted for the simple 
travelling wave? Do these new waves exhibit the same sort of structural univer- 
sality (Metropolis et al. 1973) found in the logistic difference equation? Can one 
find, for example, a travelling three-cycle and another travelling four-cycle for 
larger r? Can one find the same sort of global universality made famous by 
Feigenbaum (1978, 1979, 1983)? Is there evidence of travelling cycles in nature? 
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Fig. 9a,b. A travelling two-cycle. The 
integrodifference equation employed 
in Figs. 7 and 8 exhibits a travelling 
two-cycle for still larger r. The wave 
alternates between two profiles, all 
the while moving to the left 
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Fig. 10a-d. A travelling four-cycle. 
The integrodifference equation of 
Figs. 7, 8, and 9 exhibits a 
travelling four-cycle wave after loss 
of stability of the travelling 
two-cycle. The wave alternates 
between four profiles, all the while 
moving to the left 
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6 Waves of pursuit and evasion 

One can also study the travelling waves that arise in systems of integrodifference 
equations. The simplest ecological scenario is perhaps that of a predator and a 
prey that grow and disperse in synchrony but with different diffusivities. 

Consider, for example, the (rescaled) system of difference equations for a 
predator and prey (Kot  1989) 

Nt+, = Art exp[r(1 - N t - Pt)] (94a) 

Pt+ 1 = bNtPt (94b) 

where Nt is the number of  prey and Pt is number of predators at time t. In the 
absence of the predator, a high r prey (r > 2) exhibits oscillatory or chaotic 
behavior (May 1975; May and Oster 1976). In the presence of the predator, but 
with no dispersal, the nontrivial equilibrium 

(N*, P * ) = ( ~ , 1 - ~ )  (95) 

is asymptotically stable (see Fig. 11) for 

1 < b < 2 (96a) 

4b 
0 < r < - - .  (96b) 

3 - b  

A high r prey may, in other words, be kept in check by a predator. For  b < 1, 
the predator dies out and the prey exhibits its natural propensities. For  b > 2, 
oscillations reappear by way of  a Hopf  bifurcation. Finally, for r > 4b/(3 - b), 
stability is lost via a subcritical flip bifurcation (Neubert  and Kot  1991). 

In the presence of  the predator and dispersal, it is natural to consider 

Nt+l(x) = f +°~kl(X - y)Nt(y) exp{r[1- Nt(y) - Pt(y)l} (97a) 

Pt+ l(X) =- f +°° k2(x - y)bNt(Y)Pt(y) (97b) 

I0 

0 1 2 
b 

Fig. 11. Stability region for a simple discrete-time 
predator-prey model (Eqs. (94)). The nontrivial 
equilibrium corresponding to coexistence of the 
predator and prey is asymptotically stable for 
parameters within the shaded region 
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with 

kl(x-Y)=~11 exp(--~l [x--Y[)  (98a) 

k2 (x - y) -- ½~2 exp( - ~2 [x - y [) (98b) 

as our governing equations. This system has been studied with an eye to diffusive 
instability by Kot (1989); it was shown that overdispersal of the predator 
(relative to the prey) can lead to a cascade of diffusion-driven period-doubling 
bifurcations. There has not been a detailed analysis of system (97) concerning 
travelling waves. However, it is clear, from numerical simulations, that system 
(97) may exhibit many of the same waves that one associates with systems of 
reaction-diffusion equations. 

Dunbar  (1983, 1984) observed two varieties of  travelling waves of  passive 
pursuit and evasion in a reaction-diffusion system based upon a Lotka-Vol terra  
predator-prey model. One variety exhibited monotonicity in the final approach 
of the waveform to the steady state (a la Chow and Tam 1976); the other variety 
exhibited damped oscillations. System (97) possesses both varieties of waves. 
Figures 12 and 13 illustrate simulations of system (97) that exhibit these two 
wave forms. 
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Fig. 12. Simple travelling waves of  
pursuit and evasion for a predator-prey 
system with bilateral-exponential contact 
distributions for both predator and 
prey. The predators do not actively 
pursue; the dispersal is passive. 
However, the prey population wave 
propagates ahead of  the predator wave 
in such a way as to give the impression 
of  pursuit and evasion. Solutions were 
obtained by numerically integrating 
system (97) using the extended 
trapezoidal rule 
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Fig. 13. Travelling waves of pursuit and 
evasion with exponentially damped 
oscillations. These waves were obtained 
by numerically integrating system (97) 
using the extended trapezoidal rule 
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F i g .  14. Travelling wave trains in a 
system with oscillatory kinetics. The 
underlying system of difference 
equations (Eqs. (94)) has undergone a 
Hopf bifurcation and exhibits 
oscillatory kinetics. The corresponding 
system of integrodifference equations 
(Eqs. (94)) possesses travelling wave 
trains 

There is also an extensive literature, built around the seminal papers of 
Kopell and Howard (1973) and Howard and Kopell (1977), on travelling wave 
train solutions for reaction-diffusion systems with limit cycle kinetics. The limit 
cycle acts, in effect, as a pacemaker: each oscillation gives rise to a wave which 
propagates as the result of diffusion. System (97) also exhibits such phenomena. 
Figure 14 highlights the travelling wave train that appears in a simulation of 
system (97). I am currently endeavoring to extend some of the more rigorous 
arguments for reaction-diffusion systems to systems of integrodifference equa- 
tions. 

7 Discussion 

Many modellers appear to have a marked antipathy toward the use of integrals 
in their models. This has lead to some interesting paradoxes in the history of 
modelling. Models with distributed delays, Volterra integrodifferential equations, 
are, for example, more general and, in many instances, easier to deal with than 
delay-differential equations (Cushing 1977; Burton 1983). Yet delay-differential 
equations are prevalent in the literature, perhaps because of their simpler 
appearance. Similarly, it might be argued (Mollison 1977) that continuous-time 
spatial contact models are preferable to reaction-diffusion models because of the 
flexibility that contact distributions provide. Nevertheless, continuous-time spa- 
tial contact models are far from common. For continuous-time models, there are 
alternative formulations that employ continuous dependent and independent 
variables; integral formulations are often viewed as something of a luxury. 

The situation is rather different when we turn to discrete-time models that 
allow for dynamics and dispersal. There are, in fact, a variety of formulations 
that have been offered in lieu of integrodifference equations. The more promi- 
nent of these alternatives are coupled (or cellular) maps, coupled lattice maps, 
and cellular automata (Jackson 1990). These are not, however, in any sense 
equivalent to integrodifference equations. Cellular maps (Yamada and Fujisaka 
1983; Kaneko 1984; Waller and Kaprall 1984) typically take space and time to 
be discrete, even if the dependent variable is continuous. Coupled lattice maps 
(Oono and Kohmoto 1985; Oono and Yeung 1987) and cellular automata 
(Wolfram 1983, 1984) take the extreme approach of letting space, time, and the 
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dependent variable all be discrete. Continuity, of  course, is a severe constraint on 
the behavior of  a model, as may be seen in moving from the logistic difference 
equation to the logistic differential equation. Integrodifference equations, because 
they maintain continuity of  space and the dependent variable, are easier to analyze 
than these alternative formulations. The occurrence of discrete, nonoverlapping 
generations in a biological population may force us to turn to discrete-time 
models; it should not, by itself, force us to give up continuity in space and number. 

I have studied a variety of  integrodifference equations. In the simplest 
instances, integrodifference equations behave like reaction-diffusion equations, 
despite the dissimilar appearance of the actual models. Scalar integrodifference 
equations with compensatory growth exhibit simple travelling waves like those of  
scalar reaction-diffusion equations. The critical speed of these waves is, in many 
instances, determined from a straightforward linearization. For  carefully chosen 
redistribution kernels, one may approximate the shape of the waveform with a 
method developed for reaction-diffusion equations. With the occurrence of 
overcompensation, scalar integrodifference equations suddenly exhibit travelling 
waves far more complicated than those of scalar reaction-diffusion equations. 
However, the complexity is that which we might predict f rom our knowledge of 
difference equations: overcompensatory integrodifference equations may exhibit 
a cascade of period-doubling flip bifurcations that result in travelling cycles. 
Systems of  integrodifference equations, in turn, are reminiscent of  systems of  
reaction-diffusion equations, again modulo discreteness in time. In sum, integro- 
difference equations readily incorporate the varied dispersal patterns found in 
nature; they allow us to model populations with discrete, nonoverlapping 
populations; and they allow us to build upon our knowledge of  continuous-time 
reaction-diffusion models. At the same time, they are substantially easier to 
analyze than a variety of  alternative discrete-time models. 
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