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1 Introduction 

Some 35 years ago, Markus (1956) published an often quoted (and sometimes 
misquoted) paper on asymptotically autonomous differential systems where he 
considers ordinary differential equations 

Yc = f ( t ,  x), (1.1) 

= g(y),  ( 1.2) 

in R". Equation (1.1) is called asymptotically autonomous - w i t h  limit equation 
(1.2) - if 

f ( t ,  x) ~ g ( x ) ,  t ~ ~ ,  locally uniformly in x e R", 

i.e., for x in any compact  subset of  R n. For simplicity we assume tha t f ( t ,  x), g(x) 
are continuous functions and locally Lipschitz in x. Further all solutions are 
supposed to exist for all forward times. The co-limit set co(to, x0) of  a forward 
bounded solution x to (1,1), satisfying X(to) = Xo, is defined in the usual way: 

y eco(to, Xo) " ~ y =  lira x(tj)  for some sequence t j~oo  (j--.oo). 
j ~ o o  

Among other results Markus presents the following theorems: 

Theorem 1.1 (Markus) The co-limit set co o f  a forward bounded solution x to (1.1) 
is non-empty, compact, and connected. Moreover co attracts x, i.e., 

dist(x(t), co) --+ O, t ~ ~ .  
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Finally co is invariant under (1.2). In particular any point in o9 lies on a full  orbit 
o f  (1.2) that is contained in o9. 

Theorem 1.1 (Markus, 1956, Theorem 1 and preceding remarks) has some- 
times been misquoted in the form that og-limit sets of (1.1) are unions of og-limit 
sets of (1.2) or even subsets of co-limit sets of (1.2). A counter-example will be 
presented below. 

Theorem 1.2 (Markus) Let e be a locally asymptotically stable equilibrium of(1.2)  
and o9 the co-limit set o f  a forward bounded solution x o f  (1.1). I f  co contains a 
point Yo such that the solution y o f  (1.2), with y(O) = Yo, converges to e for  t ~ ~ ,  
then o9 = {e}, i.e., x(t) ~ e ,  t ~ ~ .  

Actually Markus proves more in his Theorem 2, but most applications use 
the formulation in Theorem 1.2 which is a consequence of Markus's (1956) 
Theorems 1 and 2. Markus's (1956) Theorem 2, in its original formulation, has 
been applied by Conway et al. (1978) in the proof of their Theorem 5.3. A 
generalization of Markus's Theorem 2 can be found in Hale (1980, III.2, 
Exercise 2.4). 

Markus's (1956) Theorem 7 generalizes the Poincarr-Bendixson Theorem to 
asymptotically autonomous planar systems. 

Theorem 1.3 (Markus) Let n = 2 and o9 be the og-limit set o f  a forward bounded 
solution x o f  (1.1). Then o9 either contains at least one equilibrium o f  (1.2), or o9 
is the union o f  periodic orbits o f  (1.2). 

Theorem 1.1 has heavily stimulated the development of the qualitative theory 
of non-autonomous differential equations and dynamical systems (see Miller 
1965; Sell 1967, 1972; Dafermos 1971; as a small sample of references). It has 
been generalized to Volterra integral equations by Miller and Sell (1970), e.g. 
Theorems 1.2 and 1.3 are often applied to show that the solutions of population 
dynamic (notably chemostat) models converge to an equilibrium (Theorem 1.2: 
Hsu 1981, Hsu et al. 1981, Hsiao et al. 1987, Cushing 1989; Theorem 1.3: 
Busenberg and Iannelli 1985). Theorem 1.3 has also triggered some research on 
almost periodic solutions of asymptotically autonomous ODEs in the plane (Utz 
and Waltman 1967; Grimmer 1968). 

Somehow Markus's paper has generated the feeling that the so-called Inverse 
Limit Problem has been fairly completely solved for asymptotically autonomous 
systems (Sell 1972), and little work on this topic has seemingly been done in the 
last ten or even twenty years except applying the known results. We phrase this 
problem as follows: 

Question 1.4 Assume that the equilibria o f  (1.2) are isolated and that any solution 
o f  (1.2) converges to one o f  them. Does every solution o f  (1.1) converge to an 
equilibrium o f  (1.2) as well? 

An answer to this question is helpful in analyzing certain chemostat/ 
gradostat and epidemic models where one can show for a multi-dimensional 
system that some components converge to a limit independently of what the 
other components do (Jfiger et al. 1987; Smith and Tang 1989; Waltman 1990; 
Smith et al. 1991; Blythe et al. preprint). It is also useful for determining the 
large-time behavior of solutions to non-linear reaction-diffusion systems with 
Neumann boundary conditions (Conway et al. 1978; Smoller 1983; Chap. 14, 
§D). 
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When considering convergence in an epidemic model (Blythe et al. preprint), 
CastiUo-Chavez (personal communication, triggering this investigation) noticed 
that Theorems 1.1 to 1.3 were not sufficient to answer Question 1.4 for their 
special case. The following example illustrates that, even in the plane, Question 
1.4 cannot be positively answered without further conditions. 

Example 1.5 Consider the following system in cylindrical coordinates 
r, O, x3, x~ = r cos O, x 2 = r sin O: 

~=r(1  --r) 

0 = fir Isin 01+ x3 (1.3) 

23 = -7x3 

with initial data 0 < r ( 0 ) <  1, 0~<0 <2n ,  x3(0)/>0 and positive constant 
parameters fl, 7- This system has three equilibria: (0, 0, 0), (1, 0, 0), (1, rt, 0). Any 
solution x(t) is attracted to the circle r = l ,  x 3 = 0  for t--*oc. I f  
x3(0) =0 ,  r ( 0 ) > 0 ,  then x(t) converges to (1,0,0) or to (1, re, 0) as t-~oo. If  
fl > 7, x3(0) > 0, r(0) > 0, the o-limit set is the whole circle r = 1, x 3 = 0, for 0 in 
(1.3) is unbounded. 

This can be seen by contradiction. Assume that O(t) is bounded. As O(t) is 
strictly increasing, O(t) converges to some 0oo for t~oo,  O~=2kzc or 
0~ = (2k + 1)r~ for some k e Z. On the one hand, for any e > 0, one can find 
M > 0 such that 

O ~  - O ( t )  <<. M e - ( B -  ~)t 

On the other hand, we have 0 >~x3(0)e-rt which leads to a contradiction for 
fl - e  > 7. A detailed exposition and more examples (including some with C ~ 
vector fields) can be found in Thieme (preprint b). 

It is tempting to argue that, for determining the asymptotic behavior of (1.3), 
it is sufficient to study the limiting system x3 = 0 because x3 decreases to 0 
exponentially. Example 1.5 shows that this shortcut (which can sometimes be 
found in the literature) is not allowed a priori. Fortunately it can often be a 
posteriori justified by Theorem 1.2 or the more general results presented in this 
note. 

We give two answers to Question 1.4. The first is restricted to planar ODE 
systems and consists in extending Theorem 1.3 to a Poincart-Bendixson type 
trichotomy. 

Theorem 1.6 Let n = 2 and o the o-limit set of a forward bounded solution x of 
(1.1). Assume that there exists a neighborhood of o which contains at most finitely 
many equilibria of (1.2). Then the following trichotomy holds: 
(i) o consists of an equilibrium of (1.2). 
(ii) o is the union of periodic orbits of (1.2) and possibly of centers of (1.2) that 
are surrounded by periodic orbits of (1.2) lying in o. 
(iii) o contains equilibria of (1.2) that are cylically chained to each other in o by 
orbits of (1.2). 

In the third possibility the o-limit set contains homoclinic orbits (phase 
unigons) connecting one equilibrium to itself and/or phase polygons with finitely 
many sides (connecting equilibria) all of which are traversed in the same 
direction. 
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Theorem 1.6 allows to use the Dulac criterion to show that all forward 
bounded solutions of (1.1) converge to an equilibrium of (1.2). See Hahn (1967), 
e.g. There remains the following 

Open Problem. Let n = 2 and co be the co-limit set o f  a forward bounded solution 
x of(1.1). Assume that the equilibria of(1.2) are isolated. Is o9 the union o f  periodic 
orbits, equilibria, and orbits connecting equilibria associated with (1.2)? 

Our second answer to Question 1.4 is not restricted to planar systems (see 
Theorem 4.2 for details): 

• Assume the equilibria of(1.2) are isolated and not cyclically chained to each other. 

Both conditions are necessary in general: Cyclical chains have to be excluded 
as illustrated in Example 1.5, and certain connected sets of equilibria have to be 
ruled out as shown in an example by Smith (1991). Actually we assume more in 
Theorem 4.2, namely that the equilibria are isolated compact invariant sets of the 
limit equation. The assumptions of Theorem 4.2 are satisfied, e.g., in Corollary 
2 by Smith (1991) who positively answers Question 1.4 for asymptotically 
autonomous tridiagonal competitive and cooperative ODE systems modeling 
neural nets. 

Theorem 4.2 holds for general asymptotically autonomous semiflows and so 
applies to asymptotically autonomous (parabolic and hyperbolic) partial differen- 
tial equations, functional differential equations, and to Volterra integral and 
integro-differential equations. We mention that persistence theory can be extended 
from autonomous to asymptotically autonomous semiflows, too. There are 
examples, however, for an equilibrium to be a uniform strong repeller for the 
autonomous limit-semiflow, but to be locally asymptotically stable (though not 
uniformly in time) for the asymptotically autonomous semiflow. (See Thieme, 
preprint b). 

The key to generalizing or improving Markus's theorems lies in proving 
Butler-McGehee type and cyclicity results for asymptotically autonomous 
semiflows (Sect. 3). Rather than reproving such results it is more convenient to 
embed the asymptotically autonomous semiflow, operating on a metric space X, 
into an autonomous semiftow on a metric space [to, or] x X, where on {~} x X 
the new autonomous semiflow is induced by the limit-semiflow (Sect. 2). This 
way, autonomous Butler-McGehee results translate easily into asymptotically 
autonomous ones, and Theorem 1.1 follows immediately from the corresponding 
results for og-limit sets of autonorr)ous semiflows. Combining these results one 
obtains Theorem 1.2 for general semiflows (Theorem 4.1). A more detailed 
presentation and further applications to epidemic models will appear in subse- 
quent publications. 

We wonder whether other Poincarr-Bendixson type results for autonomous 
semiflows (e.g. for competitive or cooperative three-dimensional ODE systems, 
Hirsch 1990; monotone cyclic feed-back systems, Mallet-Parer and Smith 1990; 
or reaction-diffusion equations on the circle, Fiedler and Mallet-Paret 1989) have 
extensions similar to Theorem 1.6. 

2 Embedding of asymptotically autonomous into autonomous semiflows 

Let X,d be a metric space. We consider a mapping ~ :A × X - + X , A  = 
{(t, s); to ~< s ~< t < ~}. • is called a continuous (non-autonomous) semiflow if 4~ 
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is continuous as a mapping from A x X to X and 

q~(t, s, O(s, r, x)) = O(t, r, x), t/> s >i r /> to, 

q~(s, s, x) = x, s >~ to. 

A semiflow is called autonomous if ¢(t  + r, s + r, x) = O(t, s, x). Setting 
O(t, x) = ¢( t  + to, to, x) one obtains O(t, s, x) = O(t - s, x) with an autonomous 
continuous semiflow O : [0, oo) x X ~ X. 

Definition 2.1 Let • be a (non-autonomous) continuous semiflow and O an 
autonomous continuous semiflow on X. Then • is called asymptotically au- 
tonomous - with limit-semiflow 0 - if and only if 

O(tj + sj, sj, xj)--*~9(t,x),  j ~ ,  

for any three sequences t j ~ t ,  s j ~ ,  x j ~ x  ( j ~ o o ) ,  with elements x, x j e X ,  
0~< t, tj < ~ ,  and sj>~to. 

We emphasize that we require ~9 to be continuous rather than finding a 
definition or properties of  • which would imply the continuity. 

The relation to the ordinary differential equations (1.1) and (1.2) is the 
following: Let O(t, to, Xo) be the solution of x(t) to (1.1) satisfying x(to) = Xo and 
tg(t, Yo) be the solution y(t) to (1.2) satisfying y(0) = Yo. A GronwaU argument 
and the subsequent Lemma 2.3 show that • is asymptotically autonomous with 
limit system O in the sense of  Definition 2.1, if (1.1) is asymptotically au- 
tonomous with limit equation (1.2). 

In order to embed (4, O) into an autonomous semifiow we choose the state 
space Z = [to, oo] x X where [to, oo] is compactified in the usual way. Z is then a 
metric space. We define an autonomous semiflow ~ on Z by 

= ~ ( t + s , O ( t + s , s , x ) ) ,  to<<.s<oo 0 ~ < t < ~ .  (2.1) 
d 

~(t, (s, x)) ((oo,  ~9(t, x)), s = o0, 

Proposition 2.2 I f  • is an asymptotically autonomous continuous semiflow with 
continuous autonomous limit-flow ~9, then ~ is a continuous autonomous semiflow 
on Z.  

Sometimes the following version of Definition 2.1 will be easier to check in 
concrete cases: 

Lemma 2.3 • is asymptotically autonomous - with limit-semiflow 6) - i f  and only 
if 

d(O(tj + sj, sj, xj),  ¢9(tj, xj)) ~ 0 ,  j ~ oo, 

for  any three sequences tj o t, sj ~ ~ , xj ~ x ( j o oo ), with elements x, xj e X,  
O <<, t, tj < oo, and sj>~to. 

The benefit of  construction (2.1) lies in the relation between the co-limit sets 
of  • and ~. 

Let a point (s,x) e Z ,  t o ~ < s < ~ , x e X ,  have a pre-compact orbit 
{O(t, s, x); t >i s}. Then the co-limit set of  (s, x), co~(s, x), is defined by 

co~(s,x) = N (O( t , s , x ) ;  t >/ z}. 
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In other words, y is an element of  coe(s,x) if there is a sequence 
s <~ tj ~ ~ , j ~ ,  such that Q(tj, s, x) ~ y , j  ~ ~ .  

The following statement is an obvious consequence of the definition of 
co-limit sets, the definition of 7 t in (2.1), and Proposition 2.2. 

Lemma 2.4 y is an element o f  the co-Q-limit set o f  (s, x) i f  and only i f  ( ~ ,  y) is 
an element o f  the co-TJ-limit set o f  (s, x). I f  one of  these two equivalent state- 
ments holds, then 7J(t, ( ~ , y ) ) = ( ~ ,  O(t,y)).  

Via Lemma 2.4 we can derive the following properties of  co-Q-limit sets 
from the properties of  co-limit sets of  autonomous semiflows and generalize 
Markus 's  Theorem 1.1. We say that a point y in X lies on an entire (or full)  
O-orbi t  if there exists a continuous function q~ on R satisfying q~(0) = y and 
~o(t + s) = e ( t ,  ~o(s)). 

Theorem 2.5 co-Q-limit sets o f  points (s, x) with pre-compact ( forward) orbits 
are non-empty, compact, and connected. Further they attract the orbits, i.e., 

dist(Q(t, s, x), co~(s, x)) ~ 0 ,  t ~ ~ .  

Finally they are invariant under the limit-semiflow O, in particular any point y o f  
co~(s, x) lies on an entire O-orbit in co~(s, x). 

This proposition as well as others to come can be derived directly, of  
course, without using the semiflow ~ defined in (2.1), see p.5. But it would be 
boring to repeat all the work done for autonomous semiflows in the case of  
asymptotically autonomous semiflows, the more so as the notation becomes 
much clumsier. 

Finally we want to see how some other important  dynamical systems 
concepts translate back and forth between Q and O on one side and ~ on the 
other. We use the notation 

Q~'(x) = Q(t, s, x), O , (x )  = e(t, x). 

Definition 2.6 A subset M of  X is called forward O-invariant if and only if 
Or(M) _ M, t > 0, and O-invariant if and only if Or(M) = M, t > O. 

M is called forward Q-invariant if and only if Qt (M)  ~ M for all t ~> s t> to, 
and Q-invariant if  Q~(M) = M for all t /> s /> to. 

Let Y be a forward O-invariant  subset of  X. A O-invariant  subset M of 
Y is called an isolated compact O-invariant subset of Y, if and only if there 
is an open subset U of  X such that there is no compact  O-invariant  set )Q 
with M ~ h~ r ___ U n Y except M. U is called a O-isolating neighborhood of  M in 
Y. 

Lemma 2.7 With the above definitions the following holds: 
(a) A subset M of  X is forward Q-invariant i f  and only if[to, oo) x M is forward 

-invariant. 
(b) M is forward O-invariant i f  and only i f  {~}  × M is forward 7J-invariant. 
(c) M is forward Q-invariant and forward O-invariant i f  and only i f  [to, ~ ]  × M 
is forward 7J-invariant. 
(d) A subset M of[to, ~] x X  is 7t-invariant i f  and only i f ~ r  = {c~} x M  with a 
O-invariant subset M o f  X. 
(e) Let Y be a forward O-invariant subset o f  X. Then M is an isolated compact 
O-invariant subset o f  Y i f  and only i f  {~}  x M is an isolated compact ~-invari- 
ant subset o f  {~}  x Y. 
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3. Butler-McGehee type lemmas and eyclicity results 

Let • be a continuous asymptotically autonomous semiflow on the metric space 
X and O its continuous limit-semiflow. Using the embedding of (4, 8 )  into an 
autonomous semiflow outlined in the previous section, one can easily derive the 
following Butler-McGehee type result from the autonomous theory (Butler and 
Waltman 1986; Hale and Waltman 1989, Lemma 4.3; Thieme, preprint a, Sect. 
4): 

Lemma 3.1 Assume that the point (s, x), s >~ to, x ~ X, has a pre-compact ~-orbit 
and that 03 = roe(s, x) is its 03-~-limit set. Further let M be a O-invariant set such 
that M ~ ro ~ ~ ,  but 03 ~ M. Finally assume that M n o9 is an isolated compact 
O-invariant subset o f  03. Then M has a non-empty stable and a non-empty unstable 
manifold in 03 in the following sense: 

There exists an element u ~ 03\M with 03o(u) ~_ M and an element w E 03\M 
with a full O-orbit in co whose ~-O-limit set is contained in M. 

u can be chosen such that its forward O-orbit is arbitrarily close to M. w can 
be chosen such that its backward O-orbit is arbitrarily close to M. 

We recall that the e-B-limit set of  a full O-orbit qfft) is defined by 

= N o o , - d ) .  
t > . O  

We follow Hale and Waltman (1989) in the following definitions: 

Definition 3.2 We call a union M = U ~'= 1 Mk a @-invariant covering of  a set 
if M contains t~ and if the sets Mk are pairwise disjoint O-invariant subsets of 
i,.. 

A set M c_ y c_ X is said to be O-chained (in Y) to another (not necessarily 
different) set N ___ Y, symbolically M ~-~ N, if there is some y ~ Y, y ~ M u N, and 
a full O-orbit  through y in Y whose ~-limit set is contained in M and whose 
03-limit set is contained in N. 

A finite number of sets M1, • • •, Mk, k >/1, is called O-cylically chained to 
each other (or a O-cyclical chain) in Y __c_ X if the following holds: In case that 
k > 1, Mj is chained to Mj + 1, J = 1 . . . . .  k - 1, and Mk is chained to M1, in Y. 
If  k = 1, M1 is chained to itself in Y. 

A finite covering M = U ~'= 1 Mk of subsets in Y c__ X is called O-cyclic in Y 
if, after possible renumbering, the sets M1 . . . . .  Mk are cyclically chained to each 
other in Y for some k ~ { l , . . . , m } .  M is called a O-acyclic covering in Y 
otherwise. 

The following result can be easily derived from Lemma 3.1. 

Proposition 3.3 Let 03 be the 03-limit set of  a pre-compact ~-orbit. Let 
M = U'~= l Mk be a O-invariant covering of  ~2, 

= U 03o(y), 
y E r o  

such that, for all k, 03 is not contained in Mk and 03 n M k is an isolated compact 
O-invariant subset o f  03. 

Then M is B-cyclic in 03. 
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Lemma 3.1 and Proposition 3.3 are the main tools (together with the 
autonomous Poincarr -Bendixson theorem) to prove Theorem 1.6. (See Thieme, 
preprint b.) We mention that, by the embedding in Sect. 2, one can also derive 
persistence results. Details will be explained elsewhere. 

4 Convergence of pre-compact orbits 

Let • be an asymptotically autonomous continuous semiflow on the metric space 
X and O its continuous limit-semiflow. 

We recall that a O-equilibrium (or f ixed point) is an element e e X such that 
O(t, e) = e for all t ~> 0. We first generalize Markus 's  Theorem 1.2. 

Theorem 4.1 Let e be a locally asymptotically stable equilibrium of  0 and 
Ws(e ) = {x ~ X; O(t, x) ~ e ,  t ~ oo} its basin of attraction (or stable set). Then 
every pre-compact O-orbit whose co-O-limit set intersects Ws(e) converges to e. 

Proof Let co be an co-O-limit set which has a point x in common with W~(e). By 
Theorem 2.5, coe(x) is contained in  co. On the other hand coo(x) just consists of  
e. Hence e ~ co. As e is locally asymptotically stable, {e} is an isolated compact  
O-invariant  set. I f  co also contains elements different from e, by Lemma 3.1, co 
contains a full orbit through a point different from e whose ~-O-limit set is {e}. 
This contradicts the local stability of  e. 

In order to answer Question 1.4 we make the following assumption (recall 
the definition of  an isolated compact  invariant set in Definition 2.6): 

(E) The equilibria of O are isolated compact O-invariant subsets of  X. Further the 
co-O-limit set of  any pre-eompact O-orbit contains a O-equilibrium. 

Theorem 4.2 Let (E) hoM and the point (s, x), s >1 to, x ~ X, have a pre-compact 
O-orbir Then the following alternative holds: 
• O(t, s, x) ~ e, t ~ c~, for some O-equilibrium e. 
• The co-O-limit set of(s, x) containsfinitely many O-equilibria which are chained 
to each other in a cyclic way. 

Proof As the co-O-limit set of  (s, x), let us call it co, is O-invariant,  it contains 
an equilibrium. Assume that co is no singleton. Let e l , . . . ,  era, m I> 1, be the 
B-equilibria contained in co. Set Mj = {ej} and apply Proposition 3.3. Then the 
Mj form a cyclic covering. 

Example 1.5 warns us that the second possibility can occur even for planar 
ODE systems and has to be excluded in order to guarantee convergence towards 
an equilibrium. 

Corollary 4.3 Let (E) hoM and assume that there is no O-cyclical chain of 
O-equilibria. Then any pre-compact forward O-orbit converges towards a 8 -  
equilibrium for t ~ oo. 

Remark 4.4 The results of  this section remain true if equilibria are replaced by 
compact  O-invariant  subsets of  X. 
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