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Abstract. The models considered for the spread of an infectious disease in a 
population are of SIRS or SIS type with a standard incidence expression. The 
varying population size is described by a modification of the logistic differential 
equation which includes a term for disease-related deaths. The models have 
density-dependent restricted growth due to a decreasing birth rate and an 
increasing death rate as the population size increases towards its carrying capacity. 
Thresholds, equilibria and stability are determined for the systems of ordinary 
differential equations for each model. The persistence of the infectious disease and 
disease-related deaths can lead to a new equilibrium population size below the 
carrying capacity and can even cause the population to become extinct. 
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1 Introduction 

The asymptotic behavior of solutions of an infectious disease transmission model 
depends not only on the epidemiological formulation, but also on the demo- 
graphic process incorporated into the model. The simplest epidemiological models 
often assume that the total population size is constant. For  epidemics (rapid 
short-term outbreaks of a disease) the population is often assumed to be fixed and 
closed. For modeling an endemic situation (long-term persistence of  a disease), 
there are often births and balancing deaths so the total population size remains 
constant. See Hethcote (1976, 1989) for results on basic models with fixed 
population size; surveys on epidemiological modeling are given in Hethcote et al. 
(1981) and Hethcote and Levin (1989). Sometimes there are a significant number 
of deaths caused by infection with the disease, which affect the population size. 
Sometimes the population size is growing or decreasing significantly due to other 
factors. In these cases it is not reasonable to assume that the population size is 
constant so that the model must incorporate demographic features which allow 
the population size to vary. 
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Some epidemiological models with varying population size assume constant 
immigration and deaths proportional to the population size so that the popula- 
tion approaches an equilibrium size. Other models assume a more natural 
demographic process where the birth and death rates are proportional to the 
population size. Anderson and May (1978, 1979) and May and Anderson 
(1978, 1979) proposed a variety of models for infectious diseases with varying 
population sizes and applied some of these to data on diseases in laboratory 
populations of mice. Several epidemiological models with varying population 
size are analyzed mathematically in Busenberg and van den Driessche (1990), 
Busenberg and Hadeler (1990) and Mena-Lorca and Hethcote (1992). Many 
models for AIDS have varying population size (Hyman and Stanley 1988, 
Jacquez et al. 1988, May et al. 1988, Anderson et al. 1988, Castillo-Chavez et 
al. 1989). 

A disadvantage of the models with birth and death rates proportional to 
the population size are that the population size decreases or grows exponen- 
tially except in the special case when births exactly balance deaths. Extinction 
of the population by exponential decay is demographically unlikely; also expo- 
nential growth to infinity is unrealistic in human and animal populations since 
finite resources always eventually limit the growth. Models with restricted 
growth due to density dependence have been considered by Anderson et al. 
(1981), Brauer (1989, 1990), Bremerrnann and Thieme (1989) and Pugliese 
(1990). New epidemiological models with density-dependent growth are ana- 
lyzed here. 

A demographic structure with density-dependent restricted population 
growth is given by the logistic equation 

dN/~ = r (1--N/K)N (1.1) 

where N(t) is the total population size as a function of time t, r is the positive 
growth rate constant and K is the carrying capacity of the environment (see 
Edelstein 1988 for a discussion of the logistic equation). All of the epidemiolog- 
ical models in this paper are built from the logistic equation (1.1). The substitu- 
tion u = 1/N converts (1.1) to a linear differential equation. From the explicit 
solution it is found that all solutions with positive initial population size No 
approach the carrying capacity K; of course, the population size remains at 
zero if No is zero. Although it is less common, it is possible to consider (1.1) 
with r = 0 or r < 0. For r = 0, the Eq. (1.1) is trivial and the population size 
N(t) remains at No. For r < 0, solutions N(t) with No > K grow to infinity and 
solutions with No < K decrease to zero. When r < 0, only solutions with No < K 
are considered in this paper since the others are inconsistent with the concept 
of density-dependent restricted growth. 

An epidemiological model is of SIRS type if susceptibles become infectious, 
then removed with immunity after recovery from infection and then susceptible 
again when the temporary immunity fades away. The numbers of individuals 
who are susceptible, infectious and removed at time t are denoted by X(t), Y(t) 
and Z(O, respectively. All individuals are in one of these classes so that they 
add up to the total population size N(t). 

The incidence in an epidemiological model is the rate at which susceptibles 
become infectious. Thus the incidence is the number of new infections per day 
or per other time unit. The daily contact rate 2 is the average number of 
adequate contacts of an infective per day. An adequate contact is a contact 
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with another individual which is sufficient for transmission of infection if the 
other individual is susceptible. Since X(t) /N(t)  is the susceptible fraction of the 
population, 2X(t)/N(t)  is the average number of infection transmissions per 
infective per day. The incidence is 2X(t)Y(t)/N(t) ,  which is the average number 
of infection transmissions per day by all infectives Y(t). This same incidence 
also results if 2 is the average number of adequate contacts of a susceptible, 
since Y(t)/N(t) is the infectious fraction of the population. 

The incidence above assumes that the mixing patterns and contact rate are 
independent of population size. It also assumes that the population is uniform, 
homogeneous and randomly mixing. This random mixing corresponds approxi- 
mately to the collision of "susceptible and infectious" molecules in an excited 
gas. Although the incidence expression above seems to be the standard one, 
other bilinear and nonlinear expressions have been used (Anderson and May 
1979, Liu et al. 1987, Hethcote and van den Driessche 1991, Mena-Lorca and 
Hethcote 1992). 

In the epidemiological models here the recovery rate is V Y, the rate of loss 
of immunity is 6Z and the disease-related death rate of infectives is ~ Y. Linear 
terms in a differential equation correspond to residence times in a state with 
negative exponential distributions (Hethcote et al. 1981). Thus if the natural 
death rates were d Y  and dZ, then the mean (death-adjusted) infectious period 
would be 1/(V + ~ + d) and the mean (death-adjusted) period of temporary 
immunity would be 1/(6 + d). 

An SIRS model for a population satisfying the logistic equation with 
disease-related deaths is formulated and analyzed in Sects. 2-5. Three thres- 
hold quantities determine the appearance and stability of four equilibria. 
The results for this model are summarized in Table 1. Section 6 states 
results for an extension of the SIRS model which includes vertical transmission. 
The analogous SIS model is analyzed in Sect. 7. The discussion in Sect. 8 
emphasizes how the epidemiological and demographic processes affect each 
other. 

2 The SIRS model with density-dependent demographics 

The epidemiological model formulated here has population dynamics corre- 
sponding to the logistic equation where the restricted growth is due to density- 
dependence in both the birth and death rates. The birth rate decreases and the 
death rate increases as the population size increases towards its carrying capac- 
ity. Vertical transmission from infected females to thier offspring before, during 
or just after birth is not included here, but is incorporated into the model in 
Sect. 6. Thus all newborns are susceptible. It is assumed that infection does not 
affect fertility so that the birth rates are the same for women in all three 
epidemiological states. 

The transfer diagram for the numbers X, Y and Z of susceptibles, infectives 
and removed individuals, respectively, is 

[b -- arN/K]N 

2XY/N 7 Y ~Z 
X , Y , Z , X  

I [d+(1--a)rN/K]X I [ct+d+(l--a)rN/K]Y I [d+(l--a)rN[KlZ 
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The parameters in the model are: 

a = convex combination constant 

b = natural birth rate constant 

d = natural death rate constant 

r = b - d = growth rate cons tan t  

K = carrying capacity of  the environment 

2 = daily contact rate 

= disease-related death rate constant 

= recovery rate constant 

6 = loss of  immunity rate constant. 

We are following the convention of  using Roman  letters for demographic 
parameters and Greek letters for epidemiological parameters. We assume that b, 
d, K, 2, and 7 are positive, a is in the interval [0, 1], and ~ and 6 are nonnegative. 

The autonomous differential equations corresponding to the transfer diagram 
are: 

X ' ( t )  = [b - a r N / K ] N  - 2 X Y / N  - [d + ( 1 - a ) r N / K ] X  + 6 Z  

Y ' ( t )  = 2 X Y / N  - [7 + ~ + d + ( 1 - a ) r N / K ]  Y 
(2.1) 

Z ' ( O  = ~ Y - [~ + d + ( 1 - a ) r N / K ] Z  

N ' ( t )  = r[ 1 -- N / K ] N  - ~ Y 

where one of  the equations is redundant since N = X + Y + Z. In the absence of  
disease the differential equation for N is the logistic equation (1.1); the second 
term in this differential equation for N corresponds to disease-related deaths. For  
0 < a < 1 the birth rate decreases and the death rate increases as N increases to 
its carrying capacity K; these are consistent with the limited resources associated 
with density-dependence. The birth rate is density independent when a = 0 and 
the death rate is density independent when a = 1. 

First consider the case where r > 0  so the logistic equation (1.1) really 
does describe restricted growth. The birth rate in the model does not make 
sense if it is negative so we consider the positively invariant subset of  the first 
octant in X Y Z  space where N < bK/ar .  Since N'( t )  < 0 for N > K, all solution 
paths in the subset above approach,  enter or stay in the subset where 
N = X + Y + Z ~< K. Solution paths with N o > K which do not enter the region 
N ~< K in finite time must have their omega limit sets on the N = K plane. Thus 
for r > 0 it suffices to analyze solution paths and omega limits sets in the subset 
of  the first octant where N ~< K. I f  r = 0 and there is no disease, then the 
population size remains constant. Thus if r = 0, we consider (2.1) in the entire 
positively-invariant first octant in X Y Z  space. I f  r < 0 and there is no disease, 
then the population size decreases to zero if No < K and increases to infinity if 
No > K. Here we consider only the subspace of  the first octant where N < K 
when r < 0. 

It  is convenient to reformulate the model (2.1) in terms of  the fractions 
I = Y / N  and R = Z / N  of  the population, which are infectious and removed, 
respectively. The susceptible fraction S = X / N  satisfies S = 1 - I - R. The last 
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three differential equations in (2.1) become 

I '(t) = [2 - (~ + ~ + b) - (2 - ~)I - 2R + arN/K]I,  

R ' ( t )  = ~I - (6 + b)R + a r N R / K  + aiR,  (2.2) 

N'(t) = [r(1 - N / K )  - ~I]N. 

In IRN space the positively invariant subset corresponding to the subset 
X + Y + Z ~< K in the first octant of X Y Z  space is 

D = { ( I , R , N ) I I > ~ O , R > ~ O , I + R < ~ I , O < ~ N ~ K } .  (2.3) 

The continuity of  the right side of  (2.2) and its derivatives implies that unique 
solutions exist on maximal time intervals. Since for r > 0 solution paths ap- 
proach, enter or stay in D, these paths are always bounded and continuable so 
they exist for all positive time (Hale 1969, pp. 18-27). Thus the initial value 
problem for system (2.2) is mathematically well-posed and is epidemiologically 
reasonable since the fractions I and R remain between 0 and 1. It is also 
well-posed in the first octant when r = 0 and in the subset where N < K if r < 0. 

3 Thresholds and the four equilibria 

In the absence of disease the population size approaches its carrying capacity K 
if r > 0 and No > 0. If  disease is initially present, then the population size can go 
to zero, approach an equilibrium size below the carrying capacity or approach 
the carrying capacity, and the disease can die out or persist (remain endemic) 
depending on the values of several threshold quantities. The contact number is 
the average number of adequate contacts of an infective during the infectious 
period. In a totally susceptible population the contact number is the average 
number of  new infections (secondary cases) produced per infective, so it is 
sometimes called the reproduction number (Anderson and May 1979). Here the 
contact rate is 2, and the average infectious period when the population is at its 
carrying capacity is 1/(~ + ~ + d + (1 - a)r) where r = b - d so that the contact 
number is 

a = 2/(7 + ~ + b - ar). (3.1) 

A closely-related threshold quantity is the modified contact number 0 given by 

0 = 2/(e + ~ + b). (3.2) 

Note that a and 0 coincide when a = 0. When r > 0 and the disease persists, the 
net growth threshold 

= + ~ (3.3) ~[2 - (~ + ~ + d)]  1 

determines whether the population size decreases to zero or approaches a 
constant size. The net growth threshold ~b primarily reflects the relative effects of  
the disease-related death rate constant ~ and the growth rate constant r. 

The system (2.2) can have up to four equilibria in the subregion D of  IRN 
space defined by (2.3). They are found by setting the right sides of  (2.2) equal to 
zero. System (2.2) always has the equilibria P1 = (0, 0, 0) and Pz = (0, O, K)  
corresponding to fadeout of the disease with the population size at zero or at the 
carrying capacity K. 
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For  N = 0 the right sides of  (2.2) are equal to zero if 

I = [2 -- (y + ~ + b) - 2R]/(2 - ~), 
(3.4) 

I = (6 + b)R/ (7  + ~R).  

Analysis of  the graphs of  these equations shows that they intersect and yield a 
distinct equilibrium P3 = (13, R3, 0) in D iff the modified contact number 0 
defined by (3.1) satisfies 0 > 1. Note that P3--+P1 as 0--+ 1 + 

For  nonzero I and N values at equilibrium, use r N / K  = r -  ~ I  in the 
equilibrium equations for I and R to obtain 

I = [2 - (7 + ~ + b - ar) - 2R]/(2 - (1 - a)=), 
(3.5) 

i =  (6 + b - ar)R/[~, + (1 - a)~R]. 

The graphs of  the equations in (3.5) intersect at a nonzero point in D iff the 
contact number tr satisfies a > 1. The Eqs. (3.5) imply that R4 is the positive root  
of  the quadratic 

2(1 -- a)~R 2 + [(1 - a)~(y + ~ - 6 - 2) + 2(7 + 6 + b - ar)]R 

+ ~(], + ~ + b - ar - 2) = 0. (3.6) 

To obtain an equation for N4, we find equations for X4, I"4 and Z4 in terms of 
N4 and set their sum to N4. In (2.1) the X4 equation comes from the second 
equation, the I"4 equation comes from the fourth equation and Z4 in terms of  Y4 
comes from the third equation. The resulting quadratic equation for X = r N 4 / K  

is 

(1 - a ) [ 2  - ( 1  - a)=]X= + [2(2 + 6  + a )  - ( 1  - a)~(y + =  + 6  + 2 d )  

+,~(1 -a) (~  -r)]z  +~(a - ~  - ~  - a ) ( 6  +d)  - ,~r(~ + 6  + a )  =0. (3.7) 

The Eq. (3.7) has a positive solution if the left side is negative at Z = 0 which is 
equivalent to 4~ > 1 where the net growth threshold ~b is defined by (3.3). Thus 
P4 = (14, R4, N4) is a distinct equilibrium in D iff a > 1 and q~ > 1. Note from 
Eq. (3.5) that P 4 + P 2  as a--+ 1 +. Note from (3.7) and (3.6) that P4--+P3 as 
~b --+ 1 + for a > 1. Note also that the equations in (3.4) are the same as those in 
(3.5) with a = 0. Thus R 3 in the equilibrium P3 is the larger root of  the quadratic 
equation (3.6) with a = 0. 

In the special case when a = 1 so that the birth rate is density dependent and 
the death rate is density independent, the coordinates of  the equilibrium P4 are 
found explicitly as 

14 = (1 - 1/a)(6 + d) / (y  + 6 + d),  

84 = (1 --  1/cr)])/(y -q-c5 -+-d), 
(3.8) 

Na = K( 1 - 1/~b), 

a = 2/(~, + = + d). 

4 Asymptotic behavior for the SIRS model 

In proving the stability results summarized in Table 1, recall from Sect. 2 that it 
suffices to analyze the stability in region D. For  r > 0  the equilibrium 
P, = (0, 0, 0) is always a saddle whose unstable manifold includes the N axis. The 
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Table 1. Stability results* in I R N  space for model  (2.2) with r > 0 
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P ,  = (0, O, O) P2 = (0, O, K)  P3=(I3, R3,0) P4=(14, R4, N4) 

0 ~< 1 ~r ~< 1 saddle GAS 1 N I D ;  N I D  2 
cr > 1 saddle saddle N I D  2 LAS 3 

0 > 1 ~ < 1 saddle saddle LAS 3 N I D  2 
~b = 1 saddle saddle N A S  4 N I D  2 
q~ > 1 saddle saddle saddle LAS ~ 

* All stability results hold globally if a = 0 or ~ = 0 
GAS means  globally asymptotically stable 

2 N I D  means  not  in D or  no t  a distinct equilibrium in D 
3 LAS means  locally asymptotically stable 
4 N A S  means  numerical  calculations suggest asymptotic  stability 

equilibrium P2 = (0, 0, K) is locally asymptotically stable (LAS) if a < 1 and is 
a saddle if cr > 1 with the unstable manifold in the I direction and the I = 0 plane 
as the stable manifold. The theorem below completes the results for the equi- 
libria P1 and P2 in Table 1 by proving that P2 is globally asymptotically stable 
(GAS) if a ~< 1. Note that a ~< 1 implies that 0 ~< 1. 

Theorem 4.1 I f  a <~ 1, then the set D except  the N = 0 face  is an asymptot ic  
stability region f o r  P2 = (0, O, K) .  

Proof. The cases y + ~ + b - ar >1 2 > a and 2 ~< a are treated separately. In the 
first case consider the Liapunov function V---I  with Liapunov derivative 

V" = [2 - (~ + ~ + b - ar)]I - ar(1 - N / K ) I  - (2 -- ~)I 2 - 2IR  <~ O. 

The Liapunov-Lasal le  theorem (Hale 1969, p. 296-7) implies that all paths in 
D approach the largest positively invariant subset of  the set E where V ' =  0. 
Here the set E is the ! = 0 face of  D which is positively invariant. Although the 
R axis is in the stable manifold for the saddle PI, all paths in E with No > 0 
approach the equilibrium P2. Uniqueness and continuous dependence on the 
initial data imply that all paths in the set D except the N --- 0 face must approach 
P 2 .  In the second case when 2 ~< ~, consider the Liapunov function V = I + R 
with Liapunov derivative 

V" = - (I + R)[b( 1 - aN~K)  + adN/K]  - (oc - 2)1(1 - I - R)  - 6R <<, O. 

Here the set E is the N axis where I = 0 and R = 0. All paths on the N axis with 
No > 0 approach P2 so that all paths in the set D except the N = 0 face must also 
approach P2- [] 

Now consider the equilibrium P3 = (13, R3, 0) where 13 and R3 satisfy (3.4). 
Recall that P3 is a distinct equilibrium in D if 0 > 1. The local stability of P3 is 
given in the theorem below; numerical calculations suggest that P3 is always 
asymptotically stable when ~b = 1. 

Theorem 4.2 For 0 > 1 the equilibrium P3 = (13, R3, 0) in D is locally asymptot i -  
cally stable (LAS)/f~b < 1, and f o r  dp > 1 it is a saddle with the N = O face  as the 
two-dimensional stable manifold and a one-dimensional unstable manifold whose 
tangent at P3 is in the N direction. 
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Proof  The Jacob ian  o f  system (2.2) at  Ps is 

-- (2 -- ~)I3 -- 213 arI3/K] 

J(P3) = ~ "~ 5 R  3 - -  ~ -- b + ~13 arR 3~If[" 
0 0 r -- 513J 

T w o  eigenvalues o f  J (P3)  are roots  o f  the quadra t ic  equat ion  

(4.1) 

x 2 + px  + q = 0, 

p = (2 -- 5)13 + 6 + b - 513, (4.2) 

q = (2 -- 5)I316 + b - 513] + 213(? + 5R3). 

N o w  0 > 1 implies tha t  2 > 5 and  (3.4) implies tha t  (6 + b - 513)R3 = 713 so that  
6 + b - ~I3 > 0. Thus  p and  q are bo th  positive so that  bo th  roots  o f  (4.2) have 
negative real parts .  

Thus  the stability o f  P3 depends on the sign o f  the third eigenvalue r - 5 1 3 .  
We now prove  that  this eigenvalue has the same sign as ¢ - 1. The  first equat ion  
in (3.4) implies tha t  

r - 513 = (2r + 5(? + 5 + d - 2) + 25R3)/(,~, - 5), (4.3) 

where  2 > 5  since 0 > 1 .  Suppose  r - ~ I  3 > 0 ,  then r > ~ I 3  and 
6 + b - ~ I 3 > 6  + d  so that  

~I3(6 q- d) 5R3(~ + d) 
1 > = ( 4 . 4 )  

r(6 + b - ~I3) ?r 

Using ~b < 1 and  the est imate (4.4) in (4.3) implies tha t  r - ~I3 < 0 which is a 
contradict ion.  Thus  ~b < I implies tha t  r - ctI3 < 0 so that  all eigenvalues have 
negative real par ts  and  P3 is LAS. Similarly, ~b > 1 implies tha t  r - 513 > 0 and 
P3 is a saddle whose unstable  mani fo ld  has a tangent  at  P3 in the N direc- 
tion. [] 

Recall  tha t  P4 = (14, R4, N4) is a distinct equil ibrium in D iff tr > 1 and  
q~ > 1. Since r = b - d > 0, then a > 0 so P4 exists (see Table  1) for  0 > 1 and 
~b > 1. Also 0 ~< 1 and tr > 1 imply that  ~b > 1 because ~b can be changed to 

2 b - d  ? + 6 + d  
0 =  5 2 - ( ? + 5 + d )  6 + d  

where each fac tor  has one as a lower bound.  Thus  P4 also exists (see Table  1) for  
0~<1 and a > l .  

Theorem 4.3 The equilibrium P4 = (/4, R4, N4) is locally asymptotically stable 
( L A S ) / f  a > 1 and ~b > 1. 

Proof  The Jacob ian  o f  system (2.2) at  P4 is 

F - -  (2 -- 5)I4 -- 2/4 arI4/K ] 
J(e4) = / ? "~ 5R, --714/R4 arRa/K I "  

L - 5N4 0 - rN4/K_] 
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The cubic characteristic equation is 

x 3 + c2 x2 + c l x  + Co = 0, 

c 2 = (2 - Gt)I 4 q- 714/R4 -k rN4/K > O, 

Cl = ?(,~ - o012 /R4 -t- (2 - oOI4rN4/g Jr ?rI4N4/KR4 

+ aarlaN4/K + 214(? + ~tR4) > 0, 

Co = (2 - ct)r?I]N4/KR4 + 214( ? + ctRa)rNa/K 

+ a~r?I]Na/KR4 - 20traI4RaNa/K > O. 

Thus all roots have negative real parts iff c2c ] - Co > 0 by the Rou th -Hurwi t z  
criteria (Miller and Michel 1982). Here all terms of c2 and c~ are positive and the 
three negative terms in -Co are cancelled out by term 1 in c2 times term 3 in c~, 
term 3 in c2 times term 5 in c] and term 2 in c2 times term 4 in c]. Thus c2c~ - Co 
is positive. [] 

I f  ~ = 0 and No > 0, then N ~ K  and the system (2.2) reduces in the K 
plane to a basic system in IR  space (Hethcote 1976, 1989) with (I, R) ~ (0, 0) if 
tr ~< 1 and (I, R)  ~ (Ie, Re) if I0 > 0 and tr > 1. Note that the Liapunov-Lasa l le  
theorem with V = ( K -  N)2/2 implies that these stability results in the N = K 
plane are global in D. Thus if the disease-related death rate constant ~t is zero, 
then (k = o0, N4 = K and the LAS results for P4 in Table 1 are GAS results for 
P4 in D minus the N = 0 and I = 0 faces. 

The special cases when r < 0 and r = 0 

For  r < 0 we only consider solution paths with No < K. In this case solution 
paths of  model (2.2) satisfy N ( t ) ~ 0  as t ~ o o .  Moreover all paths approach 
PI = (0, 0, 0) if 0 ~< 1 and approach P3 = (13, R3, 0) if 0 > 1. To prove this use 
the Liapunov function V- - -N so the Liapunov derivative satisfies V'~< 0 with 
equality only if N = 0. Then all solutions with No < K approach the largest 
positively invariant subset in the N = 0 plane by the Liapunov-Lasal le  theory 
(Hale 1969, p. 296-7).  The result above follows since if N = 0, then the system 
(2.2) for I and R reduces to a system where all solutions approach (0, 0) 
if 0 ~< 1 and (•3, R3) if 0 > 1 and I o > 0 (Mena-Lorca and Hethcote 1992, 
Sect. 4). 

I f  the growth rate constant r = b -  d is zero, then the nonlinear terms 
involving K disappear so the model (2.2) reduces to a model with balanced 
exponential births and deaths (Mena-Lorca and Hethcote 1992, Sect. 4). I f  the 
disease-related death rate constant ~ is zero, the population size remains at N o. 
For  ~ = 0 and 0 = tr ~< 1, the line (0, 0, No) of  equilibria in I R N  space is 
neutrally stable. For  ~t = 0 and 0 = a > 1, the line (0, 0, No) is neutrally un- 
stable and the line (Ie, Re, Ne) is neutrally stable. When the disease-related 
death rate constant ~ is positive and 0 = a < 1, the line (0, 0, Are) of  equilibria 
is neutrally stable. For  ct > 0 and 0 = a = 1, numerical calculations suggest that 
the equilibrium P1 = (0, 0, 0) is globally asymptotically stable (GAS). For  ~ > 0 
and 0 = a > 1, the equilibrium P3 = (13, R3, 0) is GAS. In these last two cases 
the population size would remain constant if there were no disease, but the 
presence of the disease and disease-related deaths cause the population size to 
go to zero. 
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5 The SIRS model with density-dependent deaths 

In the special case of  the SIRS model in Sect. 2 where a = 0, the birth rate is 
density independent and the death rate is density dependent. In this case the local 
stability results for P3 and P4 in Table 1 can be proved globally. This is possible 
because the differential equations for I and R in system (2.2) do not involve N 
so they are completely uncoupled from the population size N. The contact number 
a is the same as the modified contact number 0 if a = 0 so the case 0 ~< 1 and a > 1 
in Table 1 does not occur. Thus if a = 0, the modified contact number above 
determines whether the disease dies out (0 ~< 1) or remains endemic (0 > 1). 

The differential equations for I and R in (2.2) with a = 0 also occurred in 
models analyzed by Busenberg and van den Driessche (1990) and by Mena- 
Lorca and Hethcote (1992, Sect. 4). Let T be the triangle in the first quadrant of  
IR space where I + R ~< 1. If  the modified contact number 0 satisfies 0 ~< 1, then 
(0, 0) is the only equilibrium in T and is globally asymptotically stable (GAS). If  
0 > 1, then (0, 0) is a saddle and the equilibrium (Ie, Re) is GAS in T except 
along the I = 0 edge where paths go to (0, 0). Since the Eqs. (3.5) for 14 and R4 
coincide with those in (3.4) for /3  and R3 when a = 0, we use le and Re here for 
these common equilibrium values. In order to analyze the asymptotic behavior of  
N(t) in D, we need the following lemma on the perturbed logistic equation. 

Lemma 5.1 Consider N ' ( t ) = g ( t ) N - c N  2 where c is a positive constant, 
g(t) ~ C[0, ~ )  and the limit goo o f  g(t) exists as t approaches infinity, l f  goo < O, 
then all solutions with No >>- 0 approach 0 as t --* oo. I f  goo > O, then all solutions 
with No > 0 approach goo/c as t ~ oo. 

Proof. The change u = I /N  leads to a linear differential equation u' = - g ( t ) u  + c 
whose solution is 

[ C 1 ( I z ) ] /  (;0 t ) u ( t )=  Uo+C exp g(v)dv dz exp g(v) dv . (5.1) 
j0 \do 

If  go~ < 0, then there is a to such that g(t) ~< g~o/2 for t ~> to and 

( S o )  (fo o ) 0~<exp g(v)dv ~<exp g(v)dv + g o ~ ( t - t o ) / 2  ~ 0  

as t ~ o o .  Since the numerator in (5.1) has a finite positive limit and the 
denominator goes to zero, u(t) ~ co and N(t) --, 0 as t ~ oo. I f  goo > 0, then there 
is a to > 0 such that g(0 I> go~/2 for t t> to and 

( ; o )  qo ° ) exp g(v) dv ~>exp g(v) dv + go~(t - to)/2 ~ oo 

as t ~ oo. Since the nume!:ator and denominator in (5..1) both approach infinity, 
we apply L 'Hrpi ta l ' s  rule to obtain u(t)~c/goo and N(t)~goo/C as t--* oo. [] 

Lemma 5.1 is now used to prove the global asymptotic stability (GAS) for 
the equilibria Pz , / ' 3  and P4- Lemma 5.1 does not apply when 0 > 1 and ~b = 1, 
but numerical calculations in this case suggest that D except the I = 0 face is an 
asymptotic stability region for P3- 
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Theorem 5.2 Consider the model (2.2) with a = O. I f  0 <. 1, then D except the 
N = 0 face is an asymptotic stability region for P2. I f  0 > 1 and ~b < 1, then D 
except the I = 0 face is an asymptotic stability region for P3. I f  0 > 1 and c~ > 1, 
then D except the I = 0 and N = 0 faces is an asymptotic stability region for P4. 

Proof. When 0 <~ 1 so that I ( t ) ~ 0 ,  Lemma 5.1 applies with g~ = r > 0 and 
c = r /K so that N(t) ~ K. Thus P2 = (0, 0, K)  is GAS in D minus the N = 0 face. 
For  0 > 1 and q~ < 1 so that I(t) ~ I e if I0 > 0, we use go~ = r - o~Ie < 0 (see Sect. 
4) and c = r /K so that N(t) ~ 0 .  Hence P3 = (Ie, Re, 0) is GAS in D minus the 
I = 0 face. For  0 > 1 and ~b > 1 so that I(t) ~ I~ if I0 > 0, we use g~ = r - ~Ie > 0 
and c = r /K so that N(t) ~ K ( 1  - ~I~/r) = N4 as t ~ o0. Thus P4 = (Ie, Re, N4) is 
GAS in D minus the I = 0 and N = 0 faces. [] 

6 Modification of  the SIRS model to include vertical transmission 

For  some diseases there may be vertical transmission of  infection from some 
infected mothers to their offspring before, during or just after birth. However, 
vertical transmission is usually less important  than horizontal transmission since 
infectiousness and parturition usually occur at different times. In Sects. 2 - 5  we 
focussed on the interactive effects of  horizontal disease transmission and density-de- 
pendent demographics without complications such as vertical transmission. 
However, a model with vertical transmission can be easily formulated and analyzed. 

Let Q be the fraction of  newborns who are not infected by an infectious 
mother  so 1 - Q  is the fraction who are infected by vertical transmission. The 
transfer diagram in Sect. 2 is now modified to 

~ (b--arNIK)(X+oY+Z) ~ (b--arNIK)(l--e)Y 
AXY/N ~ Y fiZ 

X > Y > Z >X. 
l ta+(l--~),NtKlx l [~+d+(l--a)rNIK]Y l ld+(l--a)rNIK]Z 

The differential equations corresponding to this transfer diagram are similar to 
those in Sect. 2. The contact number a, modified contact number 0 and growth 
threshold q~ are 

a = [2 + (1 - Q)(b - ar)]/(? + ~ + b - ar), (6.1) 

0 = [2 + (1 - Q)b]/(? + ~ + b), (6.2) 

+ ~ (6.3) ~ b = a [ 2 + ( l _ e ) / ~ - ( ? + a + d ) ]  1 ~ . 

As in Sect. 2, these expressions have epidemiological intepretations. For  example, 
the mean infectious period at the carrying capacity K is 1/(? + ~ + b - ar), the 
horizontal transmission contact rate is 2 and the vertical transmission rate 
constant when N = K is ( 1 -  Q ) ( b -  ar), so that the contact number  a is the 
average number of  horizontal and vertical adequate contacts of  an infective 
during the infectious period. 

The details of  the analysis of  this SIRS model are not given since the essential 
ideas and proofs can be seen for the simpler model with only horizontal 
transmission. Indeed, every threshold, equilibrium, equation and theorem in 
Sects. 2 - 5  can be proved with obvious modifications for this SIRS model with 
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both horizontal and vertical transmission, but the algebraic expressions are more 
complicated. Thus all of  the results in Table 1 hold for this new model with a, 
0 and tk given above. 

7 The SIS  model  with density-dependent demographics 

Infection with some diseases does not confer any immunity so that infectives 
become susceptible again upon recovery. Using the notation and definitions in 
previous sections, the transmission diagram for an SIS disease with both 
horizontal and vertical transmission is 

[b--arN/KI(X+QY) ~ (b--arN/K)(1--o)Y 
2XY/N 7 Y 

X > Y >X. 

[ [d+(l--a)rN/g]x [ [~+d+(1--a)rN/gW 

The differential equations analogous to (2.7) for the fraction I = Y / N  and the 
population size N are 

F ( t )  = [2 - (r + 0t) - (2 - ~ ) I  - o(b - a r N / K ) ] I ,  
(7.1) 

N ' ( t )  = [r( 1 - N / K )  --  ~I]N.  

As in Sect. 2 it can be shown that this model is well-posed and that it suffices to 
consider solutions in 

D = {(LN)[0~<I~< 1 , 0 ~ < N ~ K } .  (7.2) 

The contact number o- and modified contact number 0 are still given by (6.1) 
and (6.2), but the net growth threshold q~ is now given by 

r2 
4) = ~[2 + (1 - 0)b - (Y + ~ + d)]" (7.3)  

Note that this is the limit of  4) in (6.3) as 6 ~ 0% corresponding roughly to 
instantaneous movement through the removed class. This SIS model as the 
intuitive limit of  an SIRS model is consistent with the model reduction in Table 
1 in Liu et al. (1987). 

The analysis of  model (7.1) is quite similar to that of  the SIRS model except 
that there is no removed class. The four equilibria in IN space are P~ = (0, 0), 
P2 = (0,  K ) ,  P3 = (13, O) where 

13 = (? + ~ + b)(O - 1)/(2 - ~), (7.4) 

and P4 = (14, N4) where 

/4 = (? + ~ + b --  ar)(a - 1)/[2 - ~(1 -- Qa)], 
(7.5) 

N4 = K ( 1  - -  ~I4 / r ) .  

As in Sect. 3, P3 is a distinct equilibrium in D iff 0 > 1 and P4 is a distinct 
equilibrium in D iff cr > 1 and q5 > 1. 

For  the two dimensional system (7.1) with r > 0, it is possible to prove all 
stability results globally. 
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Theorem 7.1 / f t r  ~< 1, then the set D except the N = 0 side is an asymptotic 
stability region fo r  P2 = (0, K).  

Proof. Tl~s proof is similar to that of Theorem 4.1. Using the Liapunov function 
V = / ,  the Liapunov derivative is 

V" = [,~ - (~ + ot + Q(b - ar))]I - Qar(1 - N / K ) I  - (2 - ~)i2 

= - ( ~  - 2)1(1 - I) - eI[b(1 - aN~K) + adN/K].  (7.6) 

The first expression for V' is nonpositive if 2 > ~ and the second is nonpositive 
if 2 ~< ~t. The largest positively invariant subset where V' = 0 is the I = 0 face and 
paths in this face with No > 0 approach P2. Thus paths in D with No > 0 also 
approach the equilibrium/'2. [] 

Theorem 7.2 For 0 > 1 and (9 < 1, D except the I =  0 face  is an asymptotic 
stability region fo r  P3 = (/'3, 0). For 0 > 1 and qb > 1, D except the I = 0 and N = 0 
faces  is an asymptotic stability region f o r / ' 4  = (I4, N4). 

Proof. Using 2 > ~t which follows from 0 > 1, it can be shown that there are no 
limit cycles or cycle graphs in D by Dulac's test (Jordan and Smith 1987) with 
multiplying factor ( IN)  -1. For 0 > 1, 4, ~< 1 and I0 > 0, paths cannot approach 
the repeller P~ or saddle P2, so that they must approach the locally asymptoti- 
cally stable equilibrium/'3 by the Poincarr-Bendixson theory. For 0 > 1, 4, > 1, 
I0 > 0 and No > 0, paths in D except the I = 0 and N = 0 faces cannot approach 
the repeller P~, or the saddles /'2 and /'3 so they must approach the locally 
asymptotically stable equilibrium P4- [] 

Note that 0 ~< 1 and tr > 1 imply that q~ > 1. Thus all of the stability results 
in Table 1 hold globally for the SIS model. 

8 Discussion 

The epidemiological and demographic processes in a dynamic model affect each 
other. Mena-Lorca and Hethcote (1992) studied epidemiological models with 
two demographic processes: immigration with the death rate proportional to the 
population size, and both the birth and death rates proportional to the popula- 
tion size. Using the same notation and terminology, this paper considers 
infectious disease models with density-dependent restricted growth correspond- 
ing to the logistic equation. The models here are really an entire range of models 
with 0 ~< a ~< 1 where, roughly speaking, the fraction a of the density-dependence 
is allocated to reducing the birth rate and the fraction 1 -  a is allocated to 
increasing the death rate. We find that the demographic and epidemiological 
aspects of the models affect each other by altering the expected asymptotic 
behaviors. 

The population size in a logistic demographic model usually approaches the 
carrying capacity K, but in all except the first case in Table 1, the persistence of 
the disease and the disease-related deaths either lower the asymptotic population 
size or cause the population to approach extinction. The competing effects of the 
positive growth rate constant r and the disease-related death rate constant ~ are 
measured by the net growth threshold ~b given by (3.3), (6.3) or (7.3). If  0 > 1 
and ~b ~< 1, then the disease-related deaths overcome the intrinsic growth rate 
corresponding to positive r and cause the population size to decrease to zero. In 
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this case the equilibrium Pa = (13, R3, 0) corresponds to population extinction 
due to disease-related deaths and the persistence of the disease. If tk > 1, the 
intrinsic growth rate corresponding to r is large enough so that the population 
persists, but the disease-related deaths cause the asymptotic population size N4 to 
be lower than the carrying capacity K. Hence the equilibrium P4 = (•4, R4, 0) 
corresponds to a decreased equilibrium population size due to disease-related 
deaths and the persistence of the disease. In the two cases above, the infectious 
disease dynamics clearly affect the population size dynamics. 

The population size dynamics also affect the infectious disease dynamics. In 
the model of Mena-Lorca and Hethcote (1992, Sect. 4) with exponential growth 
demographics, the modified contact number 0 always determines whether the 
disease dies out (0 ~< 1) or remains endemic (0 > 1). This is generally true for the 
models here with logistic growth demographics, but for tr > 1 in the models in 
Sects. 2, 6 and 7, the disease remains endemic even though the modified contact 
number 0 satisfies 0 ~< 1. In this case the logistic demographic structure causes 
the disease to persist even though it would normally have died out with the 
exponential growth demographic structure. Thus the demographic aspects affect 
the epidemiological aspects. Note that the epidemiological thresholds are also 
affected by the logistic demographics since the contact number a, the modified 
contact number 0 and the net growth threshold q~ given by (3.1) to (3.3) or by 
(6.1) to (6.3) involve the demographic parameters a, b, d and r. 

The net growth threshold ~b plays a similar role here and in the SIRS model 
with exponential growth demographics (Mena-Lorca and Hethcote 1992, Sect. 
4). In these models with r > 0 and 0 > 1, the population size would normally 
approach the carrying capacity or grow exponentially, but in both models the 
disease-related deaths cause the population to become extinct if ~b < 1. For tk > 1 
the disease-related deaths cause the population size to grow at a slower rate in 
the exponential demographic model and to approach a size below the carrying 
capacity in the logistic demographic models here. 

Based on numerical calculations with a variety of parameter sets and our 
global stability results in the special cases when a = 0 or a = 0, we conjecture 
that for the SIRS model the local stability results in Table 1 are actually global. 
Proofs of these global stability results would be of some interest, but our results 
here have already revealed the main concepts about density-dependent demo- 
graphics in infectious disease models. The SIRS model reduces to an SIR model 
when the immunity loss rate constant t5 is zero and both the SIRS and SIS 
models reduce to an SI model when the recovery rate constant ~ is zero. All of 
the results in Table 1 hold for these special cases provided b is positive so that 
there is some inflow into the susceptible class. 

Brauer (1989, 1990) has used density-dependent demographics described by 
N'(t) = [B(N) -  D(N)]N in disease models where B(N) --D(N) has properties 
which make the solutions behave like solutions of the logistic equation. The 
results in this paper could have been obtained using this more general formula- 
tion, but we have chosen to consider the logistic equation since our results for it 
are more complete, concise and understandable. The analysis of SEIRS models 
with logistic demographics has not been done here because the details are very 
complicated. Analyzing these SEIRS models is probably not a good open 
problem since the results are predictable from those for the SIRS model and the 
details would be too complicated to be interesting. 
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