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Abstract. The asymptotic behavior as t--,  oo of  the solutions with values in 
the interval (0, 1) of  a reaction-diffusion equation of the form 

- ~ - A u = m ( x , t , u ) u ( 1 - u )  i n ~ x ( O ,  oo) 

au 
~nn = 0 on al2 x (0, oo) 

is studied. Conditions on m which are satisfied when m is nonincreasing in u 
and which imply that every solution converges to some periodic limit function 
are found. Except in some very special and well-defined circumstances, the limit 
is the same for all solutions, so that it is a global attractor. This global attractor 
may be one of the trivial solutions 0 or 1, or it may be a spatial-temporal cline. 
The linear stability properties of  the trivial states serve to distinguish between 
these cases. 

Key words: Fisher's equation - -  Cline - -  Periodic solution - -  Global  attrac- 
tor - -  Linearized stability 

1. Introduction 

In this paper  we study the behavior as t approaches infinity of  solutions of  the 
partial differential equation with no-flux boundary conditions 

au 
a t  - Au  = re(x,  t, u)h(u) in f2 x (0, m)  

au (*) 
- - = 0  on af2 x (0, oo). 
an 
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We shall assume that t? c R n is a bounded domain, and that the function h 
satisfies the conditions 

h(a) = h(b) = O, 

h > 0  in (a, b) 

h'(a) > 0, h'(b) < 0. 

The function re(x, t, u) is H61der continuous in all its variables and periodic 
of  period T in t, and it may change sign. 

We observe that (*) admits the trivial constant solutions u - a and u - b. We 
shall only be concerned with nontrivial solutions whose initial values lie in the 
interval [a, b]" 

a ~ u(x, O) <<, b in t2; u(x, O) ~ a, u(x, O) ~ b. 

It is well known [9] that such a solution exists for all t, that it is unique, and that 
a < u ( x , t ) < b  f o r x E ~ q a n d  t > 0 .  

We are motivated by the Fisher model [6] of population genetics. In this 
model, the fraction u(x, t) of one of two alleles at a particular gene locus in the 
local population of a migrating diploid species evolves according to the equation 

0u 
- -  - A u  = [ ( f l  + A ) u  - A ] u ( 1  - u), ( 1 .2 )  
~t 

where the ratios of the fitnesses of the three genotypes are 1 +f~ (x, t) : 1 : 1 + 
f2(x,  t). Our results give information when the functions f l  and f2 may vary in 
both space and time, but the temporal variation is seasonal, so that the f~ are 
periodic in t. 

We shall present some conditions on the functions m and h which imply that 
every solution of (*) with values in (a, b) converges to a periodic solution of 
period T. Our principal result is Theorem 1, which is stated and proved in Sect. 
2. This theorem states that when re(x, t, u) and h'(u) are nonincreasing in u, every 
solution of (*) with values in (a, b) converges to a periodic solution. Unless the 
functions rn and h satisfy some easily verified and rather unlikely conditions, 
Theorem 1 yields the existence of a periodic solution which is a global attractor, 
and we show that this attractor is different from one of the trivial solutions if and 
only if both trivial solutions are linearly unstable. 

A nonconstant stationary solution of the Fisher equation with fitnesses 
which depend only on x was called a cline by J. S. Huxley. By extension, we call 
any nonconstant time-periodic solution of (1.2) a spatial-temporal dine. Then 
Theorem 1 gives sufficient conditions for the existence of a spatial-temporal cline 
which is a global attractor. This existence implies that both types of alleles will 
persist in the population for all time. 

We note that the function u ( 1 -  u) in Fisher's equation is concave. Thus 
Theorem 1 can be applied as long as 

f l ( x ,  t) -b fE(x, t) • 0, 

so that the fitness of the heterozygote is at least the mean of the fitnesses of the 
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homozygotes. Moreover, if 5 > - 1 ,  the function h = u ( 1 - u ) / ( 1  +Su)  is also 
concave on the interval [0, 1]. Therefore Theorem 1 can be applied if for some 
6 > - 1  and all (x, t) the function rn = ((fi  +f2)u  - f2 ) (1  + 6u) is nonincreasing 
in u on [0, 1]. The condition for this is that for all (x, t) the point (f~,f2) lie in 
the sector 

(1 q- ~)fl q-f2 ~< -I 1 Ifl +AI. 
Theorem 2 in Sect. 3 shows that the condition m(x, t, u)<~p(t) with the 

integral of  p from 0 to T nonpositive also implies that every solution in (a, b) 
converges to a periodic solution. However, except for some unusual situations, a 
is found to be a global attractor, so that one only obtains the case of  extinction 
of  one of  the alleles. 

For  the Fisher equation the condition of Theorem 2 is that there exist a 
function p(t) such that 

f l  (x, t) <~ p(t), f2 (x, t)/> --p(t), p(t) dt <~ O. 

The interchange o f f l  and f2 makes 1, rather than 0, the global attractor. 
If  the function re(x, t, u) is independent of  t, it is, of  course, periodic of  all 

periods. Thus our results immediately lead to the existence of clines which are 
global attractors. 

The problem of  the existence of  clines has been studied by many authors 
(e.g., [3, 5, 7, 8, 10, 13, 15]) for a special case of  the Fisher equation. If  the ratio 
of  the functions f i  and f2 in the Fisher equation remains constant, and these 
functions are independent of  t, one obtains an equation of  the form 

8u 
8 t  - Au = 2s(x)[(1 - ~t)u + ~t(1 - u)]u(1 - u). 

Most of the above studies deal with this equation in one space dimension and on 
the whole real line. However, Fleming [8] applied variational considerations to 
this equation with no-flux boundary conditions in an N-dimensional domain. 
For  the one-dimensional case he showed that if 1/3 < ~t < 2/3, then there is 
a nonnegative critical value 21 such that one of  the trivial solutions is a 
global attractor if 0 < 2 < 21, and there exists a stable cline for 2 above 21. 
The condition 1/3 < ~ < 2/3 is just the condition that the function h(u)= 
[( 1 - ct)u + 0t( 1 - u)]u( 1 - u) is strictly concave, and our Theorem 1 shows that 
for all 2 > 21 there is a cline which is a global attractor. 

For • < 1/3 we can apply Theorem 2 if and only if s(x) <~ 0 to show that 0 
is a global attractor, but we are not able to treat the case when s changes sign. 
In fact, Fleming showed that in one dimension when 0 < ct < 1/3 an unstable 
periodic solution appears, so that our results cannot hold in this case. 

Our results serve to strengthen a number of other results in the literature. 
Henry [11], chap. 10.1, has used bifurcation theory to study the nontrivial 
solutions which can occur in the autonomous problem where m is independent of 
t and u. The existence of at least one stable periodic solution of  the problem (*) 
was proved in [4], but there seem to be no results about the asymptotic behavior 
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of  solutions even in the special case where m depends only on t. The results of 
[1] on discrete order-preserving semigroups cannot be applied in this case, 
because one does not have the orbital stability which is assumed there. 

While we have confined our results to convergence in the maximum norm, 
convergence in stronger norms then follows from standard parabolic estimates. 

We remark that the Laplace operator on the left of (*) can easily be replaced 
by any uniformly elliptic operator of the form 

~,2 oxi axj 

in all our results. 
We are grateful to a referee, whose suggestions have led us to a simpler and 

clearer presentation of  the statement and proof of Theorem 1. 

2. Sufficient conditions for convergence 

In this section we shall show that when m(x,  t, u) and h'(u) are nonincreasing in 
u, every solution of (*) with values in (a, b) converges to some periodic solution. 

In order to make more precise statements about the convergence, we look at 
the linearization 

- -  - Aek = re(x, t, a)h '(a)$ in fl x (0, o0) 
~t 

(2.1) 
60 
~--~ = 0 on ~ a  x (0,  oo) 

of the equation (*) about the constant solution a. We define the period map Q~ 
of this equation as 

Q,[~b(', 0)1 :=  0 ( ' ,  T). 

This operator is the Frechet derivative at u - a of the period map of (*). 
The maximum principle [9, 14] and the regularity theory for parabolic 

equations show that this map is a compact positive operator on the space of  
continuous functions of x. The Kre in -Rutman  Theorem then states that Q~ has 
a positive eigenvalue #, the principal eigenvalue, with a positive eigenfunction 
~b(x, 0). The corresponding solution $(x, t) of (2.1) is positive and satisfies the 
relation $(x, t + T) = #~b(x, t). 

We say that the solution a of (*) is linearly stable if # < 1, linearly unstable 
if # > 1, and neutrally stable if # = 1. Analogous concepts are defined for the 
solution b. 

We shall prove the following result: 

Theorem 1. I f  h(u) is concave, and re(x, t, u) is nonincreasing in u, then as t 
approaches infinity every solution o f  (*) with values in (a, b) converges, uniformly 
in x, to a solution which is periodic in t o f  period T. Moreover, 
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(a) i f  a is linearly stable, then every solution of (*) with values in (a, b) 
converges to a, so that a is a global attractor; 

(b) i f  a is neutrally stable, then either a is a global attractor or the set of  limits 
of  such solutions is a uniformly continuous one-parameter family U(x, t; L) of  
distinct periodic solutions of (*) which converges to a uniformly as L ~ - c~; the 
latter case occurs i f  and only i f  there is a one-sided neighborhood of a in which 
either both h" and m are independent of u, or m is independent of  both u and x and 
its integral form 0 to T is zero; 

(c) the analogues of (a) and (b) are valid for the trivial solution b; 
(d) i f  a and b are linearly unstable, then either there exists a unique periodic 

solution v* of (*) with values in (a, b) which is a global attractor, or there is a 
continuous one-parameter family U(x, t; L) of  distinct periodic solutions which is 
bounded away from a and b, and every solution with values in (a, b) converges to 
a member of this family. I f  the latter case occurs, then for each value tl o f t  either 
U(x, tl; L) is independent of  x for all L and m(x, tl, U(x, tl ; L)) is independent of  
both x and L, or m(x, tl, U(x, tl; L)) and h'(U(x, tl; L)) are independent of  L for 
all x. 

Proof. We shall obtain these results in a series of lemmas. 

It is easily seen that if ul and uz are any solutions of (*) with values in (a, b), 
then the nonnegative function 

z(x, t) (2.2) 

satisfies the equation 

t3z Az -h ' (Ul )  [ Vu2 Vul '~ 
o-7-  + ) " vz  

= 2[m(x, t, uO - m ( x ,  t, u~)] , h(~) 

÷21 [Tu2 2[h'(u2)-h'(ul)] fu2 JU 1 hO1) 2 ] 17 ~u2 1 h(q) (2.3) 

Clearly, the conditions that m and h'  be nonincreasing in u imply that the 
right-hand side is nonpositive. Since the normal derivative of z vanishes on the 
boundary, the maximum principle then shows that z remains bounded as t goes 
to infinity. This fact has three immediate consequences. 

Lemma 2.1. I f  m(x, t, u) is nonincreasing in u and h(u) is concave and if  not all 
solutions of (*) with values in (a, b) are bounded away from a and b, then as t --, ov 
either every such solution converges to a, uniformly in x, or every such solution 
converges uniformly to b. 

Proof. If  u(x, t) is a solution with values in (a, b) and u is not bounded away 
from a, then there is a sequence (xj, tj) such that u(xj, tj) approaches a while tj 
increases to infinity. We then define the sequence nj such that nj <~ t i lT  < nj + 1. 
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It easily follows from simple a priori bounds for the heat equation that the 
sequence of  translates u(x, nj T + t) is equicontinuous and bounded. Therefore it 
has a subsequence u(x, n j T +  t) which converges, uniformly in bounded t- 
intervals, to a limit function v(x, t), which is easily seen to be a solution of  (*). 
Because of  our construction of  the sequence nj, v must be equal to a somewhere 
on the set t2 x [0, T]. Because a is a solution of  (*), it follows from the 
comparison theorem for parabolic equations ([9], §3.6) that v = a. Since the 
comparison theorem also shows that u(x, T) is bounded away from a, and since 
u(x, nj T + t) converges to a uniformly for 0 ~< t <~ T, there is an integer J such 
that u(x, T) >>, u(x, n~T + T) for all x ~ t2. We then see from the comparison 
theorem that 

u(x, n'.1 r + t) <~ u(x, t) 

for all t i> T. Because the sequence u(x, n~ T + t) converges to a uniformly on 
bounded t-intervals, there is for any preassigned e > 0 an integer K such that 
u(x, n'KT + t) <~ a + ~ for 0 <~ t <<. n'sT. This together with the above inequality 
u(x, n'sT + t) <<. u(x, t) implies that u(x, t) <~ a + e for t >>. n'xT. Thus, if the 
solution u is not bounded away from a, it converges to a, uniformly in x, as 
t ---~ ~ .  

Similarly, if u is not bounded away from b, it converges to b uniformly in x. 
Now if there is a solution ul which converges to a uniformly in x, then 

because the function z defined by (2.2) is bounded, all other solutions u2 with 
values in (a, b) must also converge to a uniformly. A similar statement holds for 
b. Since the only other possibility is that every solution is bounded away from a 
and b, the lemma is proved. 

Lemma 2.2. I f  re(x, t, u) and h'(u) are nonincreasing in u, and i f  the solution u(x, t) 
o f  (*) is bounded away from a and b, then there is a solution ~ o f  (*) which is 
periodic o f  period T in t and such that u(x, t) - ~(x, t) converges to zero as t ~ ~ ,  
uniformly in x. 

Proof. Let u be a solution of  (*) with values in (a, b) which is bounded away 
from a and b. 

As in the proof  of  Lemma 2.1, the sequence u(x, nT + t) is bounded and 
equicontinuous. Therefore there is a subsequence u(x, niT + t) which converges 
to a solution ~(x, t) of  (*), uniformly on bounded sets. 

We now define the function 

z ( x ,  t)  = 
J.., o h ( t  J 

by (2.2) with ul(x, t )=  u(x, t) and u2(x, t )=  u(x, t + T). As we have already 
observed, z satisfies the equation (2.3) with the right-hand side nonpositive. It 
follows from the maximum principle that the quantity 

max z(x, t) 
x e ~  

is nonincreasing, so that it has a limit K 2 as t--* ~ .  
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Because u is bounded away from a and b, the function 1/h(~/) in the definition 
of z is uniformly bounded. Therefore the sequence of translates z(x, niT + t) 
converges to the function 

e(x , t )  [Ja~x, ,) h(r/) J 

uniformly on bounded sets. This function satisfies the equation (2.3) with Ul and 
u: replaced by ~(x, t) and ~(x, T + t), and we again see that the right-hand side 
is nonpositive. 

Moreover, since maxx z(x, t) converges to K 2, we see from our construction 
that maxx 2(x, t) = K 2 for all t. The strong maximum principle then implies that 
2 = K 2. Thus the function ~ satisfies the equation 

~(x, r + 0 dq 

K, 
(x, ,) h(~) 

where K is a suitable square root of K 2. Therefore 

Ia(x,,T + = nK t) d. 
j~x, o h(n) 

for every positive integer n. Because ~ is bounded away from a and b, the 
left-hand side of this equation is uniformly bounded. We conclude that K = 0. 
This implies that ~(x, T + t) = ~(x, t), so that ~ is a periodic solution of (*). 

We now define the function 

z * ( x ,  t) = 3 " 
Lda(x,  t) 

This function again satisfies an equation of the form (2.3) with ul replaced by 
and u2 by u. The right-hand side is again nonpositive so that z* satisfies a 
maximum principle. Because the function 1/h(r/) in the definition of z* is 
uniformly bounded on the range of integration, we see that z*(x, niT) ap- 
proaches zero uniformly. It follows from the maximum principle that z*(x, t) 
approaches zero uniformly in x as t---, ~ .  Since 1/h is uniformly positive, u 
converges to the periodic solution ~ uniformly in x, and the lemma is established. 

While it is possible to have more than one nontrivial periodic solution of (*), 
the following lemma shows that this can only happen under special circum- 
stances. 

[ ,emma 2.3. Suppose that m(x, t, u) and h'(u) are nonincreasing in u. I f  there are 
two distinct solutions u~ and u2 of  period T o f (* )  with values in (a, b), then 

(a) ul - u2 is bounded away from zero; 
(b) ul and uz are members of  a uniformly continuous one-parameter family 

U(x, t; L) o f  distinct periodic solutions; 
(c) for each value tl o f  t either U(x, fi; L) is independent o f  x for all L and 

m(x, fi, U(x, t~; L)) is independent o f  x and L, or the functions m(x, t~; U(x, tl; L)) 
and h'(U(x, tl; L)) are independent o f  L for all x. 
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Proof. The proof of Lemma 2.2 shows that there is a constant K # 0 such that 

ff 2d~ 
, h(~l)  = K .  

This immediately yields statement (a). Moreover, it shows that the function z 
defined by (2.2) is constant, so that the right-hand side of (2.3) is zero. Because 
the first two terms are nonpositive, they must both be zero. Since m is 
nonincreasing in u, this implies that m(x, t, u) must be independent of u for u 
b e t w e e n  u I (x,  t) and u2(x, t). 

We also see from the vanishing of  the right-hand side of (2.3) that if 
h'(ul(x, tl)) v~ h'(u2(x, tl)), then the gradient of u2 must vanish at (x, h). The 
above integral equation shows that the gradient of u~ must also vanish there. A 
simple continuity argument then shows that Ul(X, t~) and u2(x, t~) must be 
independent of x. Thus at those values of t where u~ and u 2 are not independent 
of x, h'(u) must have the same value for all u between Ul (x, t) and UE(X, t). 

We now define the function U(x, t; L) by the equation 

Suppose without loss of generality that u~ < u2 so that K > 0, and let 0 ~< L ~< K. 
Because this equation implies that VU/h(U)=Vul/h(ul) and because 
Ul <~ U <~ u2, the above conditions satisfied by m and h show that the function 
U(x, t; L) is a periodic solution of (*). We also see from the above conditions 
that the function m(x, t, U(x, t; L)) is independent of L, and that the same is true 
of h'(U(x, t; L)) at those t at which u~, and hence U, is not independent of x. If  
U(x, t~; L) is independent of x, the equation (*) shows that the same is true of 
m(x, tl, U(x, tl; L)). Thus we have established all parts of  the lemma. 

The following example shows that the statement of Lemma 2.3 is sharp in the 
sense that for any positive concave function h(u) with h(a) = h(b) = 0 there is a 
function m which depends only on t such that the equation (*) has a one-parame- 
ter family of  disjoint solutions which depend only on t, and that if h is linear on 
an open interval, one can choose an m(x, t) in such a way that the equation (*) 
has a one-parameter family of disjoint periodic solutions which depend on x as 
well as t. 

Example. Choose any smooth function v(x, t) with values in (a, b) and period T 
which satisfies the condition Or~On = 0, and which has the following property: If  
the given concave function h is linear in some open subinterval (r, s) of (a, b), v 
is independent of x except for a finite set of t-intervals, in which the values of  v 
lie in (r, s). I f  h is strictly concave, let v be a function of t only. Define 

m(x, t) := [~t -- Av; /h(v), 

so that v is a solution of (*). Define the function U by 

f v(x, t) dtl 
(x,t) h-~) = L. 
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Because VU/h(U)= Vv/h(v) and because h' is constant in (r,s), it is easily 
verified that U is a periodic solution of (*) for all sufficiently small values of the 
parameter L. 

Lemma 2.4. I f  m(x, t, u) and h'(u) are nonincreasing in u and i f  a is linearly stable, 
then all solutions of  (*) with values in (a, b) converge uniformly to a as t ~ oo. 

I f  m and h" are nonincreasing in u and a is neutrally stable, then either all 
solutions with values in (a, b) converge uniformly to a or every such solution 
converges uniformly to a member of a uniformly continuous one-parameter family 
U(x, t; L) of  distinct periodic solutions which converge uniformly to a as L ~ - oo. 

The latter case occurs i f  and only i f  there is a constant ~ > a such that either 
m(x, t, u) and h'(u) are independent of  u for a <~ u <<. 7, or the function m(x, t, u) 
is independent of  x and u for a <<. u <~ 7 and the integral of  m(x, t, a) from 0 to T 
is zero. 

Proof. Let 4, be the solution of (2.1) with initial value equal to the positive 
eigenfunction of Qa. Choose a d in (a, b) and a constant K, and define the 
function ~ by the equation 

~f (x. ,; K) d~l l 
h(n )  - h'(a-----) log tk(x, t) + K. (2.4) 

An easy computation shows that 

d~ 
- -  - A a  - r e ( x ,  t, ~ )h (a )  = Ira(x ,  t, a )  - m ( x ,  t, a)]h(a) 
~t 

-+ I V~b12 [h'(a) - h'(a)]h(a). 
h'(a)2~b 2 

Because m and h'  are nonincreasing in u, the right-hand side is nonnegative. We 
see from the comparison theorem that if u(x, t; K) is the solution of (*) such that 
u(x, 0; K) = ~(x, 0; K) then u(x, t; K) <<. ~(x, t; K). 

Since ~b(x, t + T) = #tk(x, t), we see that if a is linearly stable so that/z < 1, 
then 4, goes to zero uniformly in x as t ~ ~ .  Therefore ~ approaches a uniformly 
in x, and it follows that u(x, t; K) also goes to a uniformly in x. Lemma 2.1 now 
shows that every solution with values in (a, b) goes to a, uniformly in x. 

If/z = 1, then the function ~b, and hence also ~, is periodic of  period T, and 
hence ~ is bounded away from a and b. Since we have shown that the solution 
u(x, t; K) with the initial values ~(x, 0; K) is bounded above by ~, it is bounded 
away from b. If  for some K = Kl the function u(x, t; K1) converges to a, we again 
see from Lemma 2.1 that all solutions of (*) with values in (a, b) converge to a, 
uniformly in x. 

If, on the other hand, u(x, t; 1<1) does not converge to a, we see from Lemmas 
2.1 and 2.2 that it converges to a T-periodic function Ul(X, t), and that every 
solution of (*) with values in (a, b) is bounded away from a and b and con- 
verges to some T-periodic solution, uniformly in x. In particular, if we choose 
K2 < KI so small that ~(x, t; K2) < u~(x, t), we see that u(x, t;/<2) converges to a 
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T-periodic function u2 < Ul. We see from the proof  of  Lemma 2.3 that the 
equation 

fu 
v(x, ,; L) d~ 

L 
~(x,O h(~) 

defines a continuous one-parameter family U(x, t; L) of  T-periodic solutions of  
(*) for / -2  ~< L ~< 0, where U(x, t; L2) = u2(x, O. 

We observe that as K 2 ~ - o% ~(x, t; K2), and hence also u2(x, t) decreases to 
a uniformly. Therefore the family U(x, t; L) of  periodic solutions is defined for 
all nonpositive L and approaches a uniformly as L ~ - ~ .  (The set of  L-values 
for which U(x, t; L) is a periodic solution is easily seen to be an open interval, 
so that it also contains some positive values of  L.) 

We now see from Lemma 2.3 that if we define 

= rain u~ (x, t), 
XEi'2,0<~t<~ T 

and if h'(u) is not constant for a ~< u ~< 7, then m(x, t, u) must be independent of  
x and u for x ~ t2 and a ~< u ~< ~. In this case it is easily seen that the condition 
# = 1 is equivalent to the vanishing of  the t-integral of  m(x, t, a) from 0 to T, and 
that the formula 

m d t + L  

defines a one-parameter family of  periodic solutions for all sufficiently negative 
L. 

Alternatively, both h'(u) and re(x, t, u) are independent of  u for a ~< u ~< 7- In 
this case the family U is defined for sufficiently small L by the formula 

U(x, t; L) = a + e'~h'(a)~(x, t) 

where 4~ is a periodic solution of  (2.1) which corresponds to the eigenvalue # = 1 
of  Q,. 

Thus Lemma 2.4 is established. 
We now turn our attention to what happens when the linear problem (2.1) is 

unstable. 

Lemma 2.5. Suppose that m and h" are nonincreasing in u. Also suppose that the 
principal eigenvalue o f  the operator Q, is greater than one. Then every solution of  
(*) with values in (a, b) is bounded away from a. 

Proof. Let ~b be a positive solution of  (2.1) whose initial value is an eigenfunc- 
tion of  Q~ corresponding to the eigenvalue/~ > 1. Then 4~(x, t + T) = #q~(x, t). 
Define the function 

v(x, t) := a + ~4>(x, t)l~-'/L 

which is positive and periodic of  period T. If  e is small, we find that 

c3v e 
Ot - Av -- re(x, t, v)h(v) = - - T  ¢># - , /r  log # + O(eZ). 
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Thus there is an ~ > 0 such that v(x, t) ~ (a, b) and v is a subsolution of (*). The 
comparison theorem now shows that if ~(x, t) is the solution of (*) with the 
initial conditions v(x, 0), then ~(x, t) > v(x, t), which is bounded away from a. 
The statement of the lemma now follows from Lemma 2.1. 

We are now in a position to prove Theorem 1. Lemmas 2.1 and 2.2 show that 
every solution of (*) with values in (a, b) converges to a T-periodic solution. 

Lemma 2.4 immediately yields statements (a) and (b). 
To prove statement (c) we observe that the change of dependent variables 

u ~ a + b - u  interchanges the end points a and b and replaces the equation (*) 
with an equation of the same form with h(u) replaced by h(a + b - u) and m 
replaced by - re(x ,  t, a + b - u). These changes preserve the concavity of h and 
the monotonicity in u of m. 

We obtain statement (d) by applying Lemma 2.5 to u and a + b -  u and 
using Lemmas 2.2 and 2.3, and the theorem is established. 

Remarks. (1) By applying Lemmas 2.1, 2.2, and 2.3 to u and to a + b -  u, we 
see that if there is a point (x, t) at which re(x, t, u) is strictly decreasing, then 
there is a global attractor. 

(2) We also see from Lemmas 2.1, 2.2, and 2.3 that if the function h is strictly 
concave, then there is a global attractor unless there is a one-parameter family of 
spatially homogeneous periodic solutions. Since such solutions satisfy a first- 
order ordinary differential equation, it is relatively easy to check whether or not 
this is the case. 

We note that if ~b is the solution of (2.1) with ~(x, 0) a positive eigenfunction 
of Q, corresponding to the principal eigenvalue #, then 

O(x, t) = ~(x, 0 ~ - ' / ~  

is a periodic solution of the equation 

0q, 
Ot A~ - re(x, t, a)h'(a)~ = 2q/ in t2, 

0~ 0 on 0~, 
On 

where 2 = - log/~.  This is the form in which the eigenvalue problem was treated 
in [2] and [4]. 

Because the Theorem I assumes knowledge of the linear stability properties 
of a and b, it is useful to find some simple conditions under which these can be 
predicted. 

Proposition 2.1. If 

or i f  

o r fa re(x, t, a) dx dt > 0 

f o r f a m ( x , t , a ) d x  d t = O  
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and m(x, t, a) is not independent of x, then a is linearly unstable. I f  the integral is 
zero and m(x, t, a) is independent of x, then a is neutrally stable. 

Proof. We see from (2.1) that if tk is positive, 

-- A log tk = re(x, t, a)h'(a) +IV log tk 12. 

Let 4~(x, O) be the eigenfunction of  Qa which corresponds to the principal 
eigenvalue #, and integrate both sides to find that 

fo fo ;o fo If2[ log # = h'(a) m(x , t , a )dxd t+  IVlogckl2dxdt. 

The integrals on the right are nonnegative. Thus, a is linearly unstable unless 
they are both zero. This can only happen if the first integral is zero and tk is 
independent of  x. Then (2.1) shows that m is independent of  x. If  this is the case, 
we have 

d~=explh'(a) fotm(z,a)dT ], 

which shows that # = 1. 

Remark. This proposition implies that if a is linearly stable, then the period 
integral of  m(x, t, a) is negative. Since m is nonincreasing in u, and h'(b) < 0, it 
follows that the corresponding integral for b is positive, so that b is linearly 
unstable. 

A partial complement to Proposition 2.1 is the following, which was proved 
in [2] and [4]. 

Proposition 2.2. I f  m(x, t, a) <.p(t) and the integral of p from 0 to T is negative, 
or if this integral is zero and m(x, t, a) is not independent of x, then a is linearly 
stable. 

If we apply standard perturbation theory to the eigenvalue #, we find that if 
m(x, t, u) is replaced by ym(x, t, u), and if the integral of  m(x, t, a) over 
f2 x [0, T] is negative, then a is linearly stable when 7 is positive and sufficiently 
small. 

3. A second sufficient condition 

The aim of this section is to prove the following result: 

Theorem 2. Suppose that the function 

p(t) = max m(x, t, u), 
X ~  

U ~ [a, b] 

satisfies the inequality 

fo rP(t) dt <<. O. 

(3.1) 

(3.2) 
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I f  u(x, t) is any solution o f  (*) with values in the interval (a, b), then as t approaches 
infinity, u(t, .) converges uniformly to a spatially homogeneous T-periodic solution 
c(O of  (*). 

Unless equality holds in (3.2) and the maximum of  m(x, t, u) with respect to 
u ~ [a, b] is independent o f  x for all t, this limit is the constant a. 

Proof For fixed constants • > 0 and d ~ (a, b) we define the new dependent 
variable 

{ j ' ]} w(x, t) = exp • p(z) dz (3.3) 
LJa h(rl) o 

An easy computation shows that if u is a solution of (,),  then 

aw 
w _ A w  = - ~ { p ( t )  - m ( x ,  t, u) + [~ - h ' ( u ) ] h ( u ) - 2 1 V u l 2 } w .  
at 

We choose ~ larger than the maximum of h' on the interval [a, b]. It then follows 
from the definition (3.1) of p that the right-hand side is nonpositive, so that 

aw 
a--7 - Aw <<, O. (3.4) 

It is easily seen that the normal derivative of w vanishes on a/2. 
If  u(x, t) ~ (a, b) in f a x  (0, oo), then u(x, 1) is bounded away from a and b, 

and hence w(x, 1) is uniformly bounded. Because w satisfies the differential 
inequality (3.4) and homogeneous Neumann boundary conditions, we conclude 
from the maximum principle that it is uniformly bounded in ff  x [1, oo). 

We now consider two cases: 
(i) I f  the inequality (3.2) is strict, then the indefinite integral of p(t) ap- 

proaches - oo as t goes to infinity. We then see from the definition (3.3) of  w and 
the boundedness of w that the first integral in the exponent must approach - o o  
uniformly in x. We conclude that if the inequality (3.2) is strict, the solution 
u = a is a global attractor. 

(ii) If  equality holds in (3.2), we introduce the mean value 

lfo #(t) = ~-]  w(x,t) dx. 

We see from (3.4) and the Neumann boundary condition that # is nonincreasing. 
Since it is also nonnegative, it must decrease to a limit w* as t goes to infinity. 
For an arbitrary positive e choose t, so that 

£ 

#(t~) ~< w* + s ia l .  

Let q(x, t) be the solution of the problem 

aq 
at Aq =O i n g a x ( t , , o o )  

a q = 0  o n a f a x ( t , , o o )  
an 

q(x, t,) = w(x, t,) in O. 
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By the comparison theorem w(., t) ~< q(. ,  t) for t i> to. It follows from separation 
of variables that q converges uniformly to the mean value ff,(t~) of its initial 
values as t goes to infinity. Thus there exists a ~ 1> to such that 

w(' ,  t) ~< q( ' ,  t) ~< ~(t~) + 5[a-~ 

2~ 
~ < k ( t ) + ~  for t1>~. (3.5) 

If  w* = 0, this argument shows that w(x, t) approaches zero uniformly. Since 
the integral of p is bounded above, we conclude from the transformation (3.3) 
that in this case u(x, t) converges uniformly to the constant solution a. 

Suppose now that w *  > 0. Because ~ is the mean value of w, it follows from 
(3.5) that 

I lw( . ,  t) - w*llL, lal(  - w*) + 2 .fa [w --  # l+dx  

~<e for t ~>~. 

That is, w converges to w* in L1. This clearly implies that w converges to w* in 
m e a s u r e .  

We now define the periodic function ~(t) implicitly by the formula 

ff ( ° d r l f o '  1 h(~l) = p(~)  dt + -~ log w*. (3.6) 

We then see from the transformation (3.3) that the convergence in measure of w 
to w* implies the convergence in measure of u(., t) - ?(t) to zero. Since both u 
and ? are bounded, this, in turn, implies that u - ~ converges to zero in Lp for 
all p. 

We note that ~ satisfies the equation 

Ot - AS = p(t)h(c"). 

We define the translate 

u,(x,  t) :=  u(x, t + n T) 

for t >f 0. I f  F(x, y, t) is the Green's function for the Neumann problem of the 
heat equation on [2, we easily obtain the integral equation 

u,(x, t) - ~(t) = ~a F(x, y, t)[u(y, nT)  - 5(0)] dy 

fo;o + r(x,  y, t -- s)[m(y, s, u ,)h(u,(y ,  s)) -p(s)h(~(s))] dy ds. (3.7) 

We confine our attention to the interval T ~< t ~< 2T. As can be seen from the 
form of the fundamental solution of the heat equation, both IlF(x,., t))IlL, and 
the integral 
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fo IIr(x, t ) d t  ][Lq ° ~ 

are uniformly bounded when q < n/(n - 2 ) .  Since m and h are Hflder  continu- 
ous, the convergence of u - ? in measure implies that as n ~ oo the first integral 
goes to zero, while the limit of the second integral is obtained by replacing Un by 
?. Thus 

f0;o lim un(x, t) - ~(t) = - F(x, y, t - s)[p(s) - re(y, s, c")lh(~(s)) dy ds. (3.8) 

We see from the fact that h(~ > 0 and the definition of p(t) that the right-hand 
side is nonpositive. If  it is negative, (3.8) contradicts the fact that u - ~  
approaches zero in measure. We conclude that w* can only be positive and hence 
the constant solution a can fail to be a global attractor only if the right-hand side 
is zero. Since the integrand is nonnegative, this can only happen if 

m(x, t, ~(t)) =_ p(t). (3.9) 

In this case, the right-hand side of (3.8) is zero, so that Un -- ~ converges to 
zero uniformly for T~< t ~<2T. This is equivalent to the statement that 
u(x, t) - ?(t) approaches zero uniformly in x as t approaches infinity, so that the 
theorem is established. 

Since the change of dependent variable u ~ a + b -  u takes (*) into an 
equation of the same form, we immediately obtain the following corollary: 

Corollary. I f  

fo r min m(x, u) dt >t O, t, 
xEf f  

uE[a,b] 

then the conclusion o f  Theorem 2, with the solution a replaced by the solution b, is 
valid. 
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