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Abstract. The propagation of waves in a magnetic slab embedded in a magnetic environment is 
investigated. The possible modes of propagation are examined from the general dispersion relation, 
both analytically and numerically, for disturbances which are evanescent in the environment. Approxi- 
mate dispersion relations governing propagation in a slender slab of field are derived both from the 
general dispersion relation and from an application of the slender flux tube approximation. 

Several different situations, representative of both photospheric and coronal conditions, are con- 
sidered. In general, the structures are found to support both fast and slow, body and surface, waves. 
Under coronal conditions, for two dimensional propagation, disturbances propagate as fast and slow 
body waves. The fast body waves are analogous to the ducted shear waves of seismology (Love waves). 

1. Introduction 

The magnetically structured nature of the solar atmosphere, as made manifest in 
EUV- and X-ray lines, suggests that the usual picture of the propagation of 
magnetohydrodynamic waves in a uniform medium is inapplicable in the solar 
context. In particular, a sharply structured atmosphere can support magneto- 
acoustic surface waves, which may be classified as either fast or slow modes. 
Additionally, a new characteristic speed of propagation becomes important. 

In a uniform medium, magnetohydrodynamic waves are generally discussed in 
terms of the sound speed Co, Alfv6n speed VA and (perhaps) fast speed (cg + v2) 1/2. 
However,  there is another speed, CT, defined by 

= covAl(c  + ' / 2  , 

which is present in the uniform medium but whose importance has generally been 
overlooked. It is both sub-sonic and sub-Alfv6nic; in the corona, for example, c r  
is slightly below the local sound speed. In a sharply structured medium, though, 
the importance of c r  is readily apparent. In an isolated flux tube, for example, c r  
is the upper bound on the phase-speed of the slow magnetoacoustic wave (Roberts, 

1981b), the bound being attained for modes of long wavelength (Defouw, 1976; 
Roberts and Webb, 1978). 

In Roberts (1981a, b; Papers I and II) we reviewed the equations for wave 
propagation in a structured medium, and investigated those equations for the 
particular cases of a single interface and an isolated magnetic slab (see also Wentzel, 
1979a, b). Our main concern was to illuminate the properties of surface waves. To 
do this it was convenient to pay particular attention to the circumstances of one 
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region of the structured atmosphere being field-free. Such a choice in field distribu- 
tion is of obvious relevance to photospheric conditions, where isolated flux tubes 
represent over 90% of the observed flux distribution, but coronal conditions are 
clearly different. Indeed, in the corona structuring arises principally through spatial 
variations in density and temperature;  field variations are likely to be slight. 
Nonetheless, marked spatial variations in Alfv6n and sound speeds are expected 
and so the possibility of surface waves arises. 

We turn here, then, to an examination of the influence of structuring on wave 
propagation in a medium permeated by magnetic field. Our study extends the 
analysis in Roberts (1981b) to include the effect of a magnetic field external to a 
slab. Such an investigation allows us to shed additional light on the basic physics 
of magnetoacoustic wave propagation in an inhomogeneous atmosphere; further- 
more, it enables us to examine which modes are likely to arise in the solar corona. 
In such a low-/3 plasma, it transpires, two-dimensional disturbances propagate as 
body waves (with oscillatory structure inside the slab of field and evanescent 
structure outside the slab), which may be either fast (Alfv6nic phase-speeds) or 
slow (acoustic phase-speeds). The fast magnetoacoustic body waves of the corona 
are mathematically analogous to the ducted shear waves of seismology first explored 

by Love (1911). 

2. The Dispersion Relation 

Our starting point is the equilibrium state of an ideal gas permeated by a non- 
uniform magnetic field Bo(x )~ ,  where x, y, z denote the usual Cartesian coordinates. 
The density po(x)  and temperature To(x)  are structured, as is the pressure po(x) .  

But equilibrium demands that the total (gas plus magnetic) pressure is uniform: 

dx p0 + O. (1) 

Linear perturbations about the above equilibrium state may be described by the 
equations of continuity, momentum, induction, and isentropic energy. The. effect 
of gravity will be ignored. Considering two-dimensional velocity disturbances v of 

the form 

V : (/gx, 0 ,  / g z ) ,  Vx : V x ( X )  e i~t+ikz , l)z = ~z(X) e i'~ , (2) 

where k is the longitudinal wavenumber and oJ is the frequency, we may show (see 
Paper I; Goedbloed,  1971) that the amplitude ~3~(x) of the disturbance normal to 

the applied field satisfies the equation 

2 2 d Ipo(X)(Co(X)+VA(x))(k c~(x)-o~ ) 
d x [  ( k - ~ ~  d x J  

2 2 2 ^ 
- p o ( x ) ( k  VA(X)--r )Vx=0 ,  (3) 
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where 

yPo 1/2 Bo CoVA 
CO : \ Z  ) , VA--  (/./,00)1/2, CT = (C 2 4- U 2 ) 1 / 2 .  

Here  3' is the ratio of specific heats and/x the magnetic permeability. 
For future reference, we may note that the component of velocity along the field, 

t3z (x), and the total pressure perturbat ion/~r are related to G (x) by (see Paper I, 
Equations (17) and (18)) 

ikc 2 , ,  d~. pT(X)m--~iP~ +V 2 ) ( k 2 c 2 -  w 2) d~3~ 
Vz(X ) = (k 2c~) - r dx ' (k 2c2 - w2) dx (4) 

In a uniform medium, the coefficients of (3) are all constants and so it may be 
written in the form 

d2t3x 2 ^ 
dx 2 movx : 0 ,  

where 

2 ( k 2 c 2 - w 2 ) ( k 2 v  2 -~02)  
m o -  (e~  ~ ~ ~ +VA)(k  c ~ - ~  ) 

(5) 

If the uniform medium is also 
A i n x  
Vx(X)--e , for wavenumber n 
satisfying the equation 

unbounded, then a normal mode of the form 
transverse to the field, is permissible, with o) 

n 2 + m  2 = 0 .  (6) 

Written out in full, (6) is immediately recognisable as the usual dispersion relation 
(in two-dimensional form) for fast and slow magnetoacoustic waves. 

Returning to (5), we consider now an example of a structured medium. We 
suppose that the equilibrium consists of a slab of uniform field Bo~ confined to a 
region Ix I< x0, outside of which the field is Bfi,, the gas pressure Pe, and the density 
Pe (see Figure 1). Thus, the equilibrium state may be described by 

po(X ), po(X ), Bo(x ) = f { Po, po, Bo, 
t Pe, Pe, Be, 

Equation (1) shows that 

2 2 

which may be combined with the ideal gas law to give 

Pe C 2 1 2 + ~ T V A  
- -  2 1 2 

Po ce +gTVAr 

] X I ~ X o ,  

Ixl>xo. (7) 

(8) 

(9) 
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Fig. 1. The equilibrium structured atmosphere. 

w h e r e  c e = (Tpe/Pe) 1/2 and VAe = Be/(tZPe) 1/2 are the sound and Alfv6n speeds in the 

'external '  (Ix] > Xo) medium. 
Since both Ix l>xo  and Ixl<xo are uniform media, perturbations about  the 

equilibrium (7)-(9) may be described by Equat ion (5). We will confine our attention 

to disturbances that are laterally evanescent  in Ix] > Xo, so that z3x -> 0 as Ixl-, oo and 
the energy of the disturbance is essentially confined to the interior of the slab. 

Equation (5) then gives 

f 
or e e-m'(x-x~ x > Xo 

~3x(x) = a o c o s h m o x + 1 3 o s i n h r n o x ,  Ixl<xo, (10) 
He e me(x+x~ , x < - -Xo ,  

where ao, ~o, ae, [~e a r e  arbitrary constants, and me is given by 

2 2 2 ( k 2 c 2 - t ~ 1 7 6  2 C e V A e  

m e  = 2 2 ~ e ~ 2  2 2\  ~ C T e -  2 2 �9 
( C e  "Jr- ( C e  + V A e )  V A e ) [ I s  C T e - - ( . O  ) 

In writing (10) we have supposed that me is positive, corresponding to evanescent 
solutions outside of the slab. However ,  rn 2 may be positive or negative. (If the 
condition me > 0 is not imposed, then the slab may act as a radiator  of waves which 
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corresponds to me (and to) being complex. Some discussion of these circumstances 
may be found in Roberts  and Webb (1979) and, more  fully, in Spruit (1982).) 

The constants in (10) are related by requiring that ~3x(x) and PT(X) be continuous 

across x = +x0. For a non-trivial solution under these conditions we must have 

/ , 2  2 2, [tanh/ 
p ~ t x  V A e - - t o  )m0/coth/moxo+oo(k2v~-to2)me = O ,  (11) 

where the tanh/co th  terms correspond to the sinh/cosh solutions in (10). Equation 

(11) is the dispersion relation governing disturbances in a slab of field Bo embedded  
in an external field Be. It applies for me > 0 only. 

3. Surface and Body Waves 

We consider now the properties of the dispersion relation. Since (11) is transcenden- 

tal, we expect it to possess a rich spectrum of solutions. To classify these normal 
modes,  we shall refer to solutions with m 2 > 0 as surface waves, and those with 

m 2 < 0 as body waves (see Papers I and II  for further discussion). Additionally, 

waves may be classified as sausage modes or kink modes, accordingly as the ' tanh'  
or 'coth '  functions are used in (11), corresponding to 13x being an odd or even 
function of x. 

There  are a number  of immediate  deductions f rom (11). For example,  it is clear 
that surface waves (m 2 > 0) can only arise if the longitudinal phase-speed to/k of 
a disturbance lies between the two Alfv6n speeds, VA and VAe. Much the same 

feature arises at a single magnetic interface (Wentzel, 1979a) and, as for the single 
interface, the possibility of two surface waves arises (Paper I). Finally, we observe 

that the condition me 2 > 0 implies that (11) possesses solutions only for 

co < kCTe, or min (kVAe, kce) < to < max (k?AAe, kce).  

In the limit of zero external field (VAe = 0), (11) reduces to (10) of Paper  II. In 
Paper  I I  it was shown that the dispersion relation permits slow magnetoacoustic  

surface waves which propagate  with longitudinal phase-speed below CT. If, however,  
there is an external magnetic field present, so that (11) above applies, waves with 
phase-speeds below CT arise only if VAe < CT(<VA), for otherwise we would violate 
the requirement  that the phase-speed lie between the two Alfv6n speeds. Of course, 
even the possibility of phase-speeds below CT is ruled out if both VAe and ce are 
less than CT (because for m 2 > 0  there are no solutions for to > m a x  (kl)Ae, kce)). 
There  are thus a number  of important  modifications to be made to the dispersion 
diagrams presented in Paper  II. To present these new findings it is convenient to 
treat  a number  of special cases. 

3 . 1 .  I N C O M P R E S S I B L E  M O T I O N S  

For an incompressible fluid, corresponding to 3/~ oo in (11), both mo and me tend 

to k; the modes are thus Alfv6n surface waves. The dispersion relation governing 
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Alfv6n surface waves is 

2 + 2 ~tanh] 
2 /9OVA peVAe~coth~kXo 

oJ (12) 
k 2 - f tanh)  

P0 + Pe ~ co th /kxo  

(For the cylindrical equivalent of (12) see Uberoi  and Somasundaram (1980).) 

For long waves in a slender slab, kx0<< 1, (12) reduces to 

2 2 2 2 2 
w -~ k VA{1 - [ - p e / P 0 ( / ) A e / / ) A  - -  1)kx0} (13a) 

for the sausage mode,* and 

2 k2V2e{1 2 2 w = +po /Pe(VA/VAe- -  1)kxo} (13b) 

for the kink mode.  In a wide slab, kxo >> 1, both modes have phase-speeds given by 

2 2 + p o v 2  
w pevAe (14) 
k 2 - -  Pe +PO 

It  is clear f rom the above that the general behaviour of the phase-speeds of the 
sausage and kink modes interchanges, accordingly as VAe is greater  or less than VA. 

The  phase-speed as a function of kxo is sketched in Figure 2 for the cases VA > VAe 

and VA </)Ae. 

3.2. C O M P R E S S I B L E  M O D E S  

Returning to the general dispersion relation (11), we consider the spectrum of 

compressible waves. These are more  difficult to investigate than the incompressible 
modes,  mainly because of the transcendental  nature of (11) with m0 and me functions 
of oJ. One special case of particular interest, that is also amenable  to an analytical 
investigation, is the slender slab, corresponding to kxo<< 1, i.e., to waves with 

wavelengths very much greater  than the width of the slab. This is of interest for 
both  photospheric  and coronal applications. In the photosphere,  most  of the 
magnetic flux occurs in isolated, thin flux tubes, the environment  of a tube being 
essentially field-free (VAe = 0). In the corona, the observed loop structure suggests 

narrow regions of inhomogeneity:  photographs of coronal loops indicate structures 
that are (say) one- tenth  as wide as they are long (corresponding to aspect ratios 
of about  10). We consider the slender slab in Section 3.2.1, treating a slab of finite 
dimension in Section 3.2.2. 

3.2.1. Slender Slab 

Consider, then, the reduction of (11) in the limit of small kxo. We suppose that 
moxo-~ 0 as kxo-~ O, so that tanh moxo ~-moxo for kxo << 1. (The results derived by 

* It may be noted in passing that (13a) indicates a faster fall-off in phase-speed with increasing kxo (<< 1) 
than occurs in a cylindrical flux tube (see Roberts and Webb, 1978). 
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Fig. 2. The phase-speed ~/k as a function of kxo for Alfv~n surface waves in an incompressible 
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such an analysis must be checked a posteriori; see Roberts and Webb (1979) and 
Wilson (1980).) Under  such circumstances, (11) reduces to 

po(k2v2__o92)me4_pe(k2v2e__ 2 2 o9 )moxo = 0 (15) 

for the sausage mode ('tanh' function), and this has approximate solutions: 

�9 , 2 / 2 2 \ 2 /  2 2~ 2 2 2{ [Pe~ ~eo--eeJ[UAe--Ce)Ce } o9 =k2c 1+ - -  - - f ~ - - ~ - ~  (kx0) 2 (16a) 
\Po] (CT--C~) (Co+VA) 

2{ (__~_0) --CT)(vAe-cT) 'eeq-UAe) ' cTe-c2T)I/2 } 2=k2c 1 +  De ( c 2  2 2 2 \ 1 / 2 , "  2 2 x l / 2 ,  2 (kxo). 
O9 (C 2 2 , 1 / 2 ,  2 2 2 ' --CT) (Co +VA)CT 

CTe > CT, (16b) 

{ (-~0) --CT)(IdAe--CT)I/Z(Ce"}-IdAe)I/L(CT"--CTe) (kXo)l 2~k2e2  1--}- De ( c 2  2 2 2 1 /2  2 2 1 /2  2 2 1 /2  

(,0 2 2 1 /2  2 2 2 , (CT--Ce) (Co +IdA)CT J 
VAe > Cr > Ce, (16C) 

and 

2 2{ (P__~O0) ( e2 2 2 2 \ 1 / 2 g 2 - - 2 , l / 2 9 2  1/2  ) }  --Cr)(Cr--Vge) ~Ce tidae) L, CT--C2e) (kxo 
o9 ~-- k2c 1 - -  (Ce  2 2 , 1 / 2 /  2 2 2 ' ' 

- c r )  tCo+VA)Cr 
Ce > Cr > Vae- (16d) 

It may be noted that (16a) and (16d) for the special case VAe = 0 agree with the 
results in Paper II. 

It is clear from Equations (16) that the sausage modes in a slender slab are only 
weakly affected by the presence of an external field. The mode described by (16a) 
corresponds to a fast disturbance, those in (16b, c, d) to a slow disturbance; the 
external pressure perturbation is negligible for the slow mode but not for the fast 

mode (Roberts, 1981b; Webb, 1980). 
In the limit of kx0<< 1, the reduction of (11) for the kink mode leads to 

pe(k2id2Ae -- O92) +po(k2v 2 - co2)meXo = 0 ,  (17) 

which may be solved to give 

2 

O92=k2V2Ae{1- - (~e)2(1- -41(1- -?Ae  IdAe" (18a) 

provided VAe/VA is not O(kxo), and 

( } -- IdA) ~.Ce C2Te)(kxo) 2 o92 = k2c 1 -  Po , (18b) \ 2  ) -4 2 - CTe>IdA" I) Ae c Te 

If VAe/VA is O(kxo), and thus VAe << IdA for kx0<< 1, then Equations (18) do not hold. 
Instead, solving (17) in this limit gives 

2 { P o  v2 } 
O9 ~- k2V2Ae 1 + - -  --5-- (kxo) , I d A e  + 0 .  (19) 

De Id Ae 
This is the case discussed in Paper II. 
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Thus, provided the slab is sufficiently narrow its behaviour in the kink mode is 
dictated by the external, non-zero, magnetic field, the narrow band of field lines 
being vibrated by the surrounding medium. If the combined effects of external gas 
and magnetic pressure are sufficiently weak, so that Cre < vA  and (18b) is in- 
applicable, then only one mode occurs (given either by (18a) or (19)). If the external 
magnetic field is negligible, only the mode (19) is pertinent. 

We should note that equations equivalent to (15)-(18) have also been obtained 
by Chakraborty (1968) in the context of investigating a two-dimensional compress- 
ible jet. However,  Chakraborty's  analysis was primarily concerned with the stability 
aspects of the jet rather than the wave structure which is of chief concern here. 

It is interesting to observe that the approximate dispersion relations for the 
sausage and kink modes, namely, (15) and (17) respectively, may be derived directly 
by adopting the slender flux tube equations in an ab initio approach. The details 
of such an argument, which are similar to those given in Paper II for the slab in a 
field-free environment,  are outlined in the Appendix. 

The dispersion relations (15) and (17), for the sausage and kink modes in a 
slender slab, do not exhaust all the possible modes in a slab. Indeed, a scrutiny of 
the general dispersion relation, in the special case VAe = 0 (see Roberts and Webb, 
1979; Roberts, 1981b), reveals that there are solutions with moxo~ 0 as kxo~O. 
Such modes correspond to body waves which, in general, oscillate rapidly across 
the width of the slab. Some analytical results for these modes may be found (as in 
Paper II), but the results are generally unwieldy. Instead, it is convenient to turn 
to a computational solution of the dispersion relation; we examine, in general, the 
structure of waves in a slab of finite width. 

3.2.2. The Finite Slab 

The computer solution of the general dispersion relation (11) is presented in Figures 
3-7, chosen to cover a number of illustrative cases that are either of particular 
relevance to solar applications or illuminate an aspect of the basic physics of slab 
waves. In general, a slab may support both fast and slow surface waves and fast 
and slow body waves. 

Some indication of which waves are present in each case may be gained from 
consideration of the general dispersion relation (11) in the limit of large kxo. For 
both kink and sausage modes this results in the relation 

mope ( k Zv ~e - o)2) + mePo( k 2v2 _ o2) = 0 ,  (20) 

which may be reduced to a cubic and solved to determine which modes are present. 
Equation (20) is also considered by Wentzel (1979a); it describes the situation 
pertaining at a single interface between two non-zero magnetic fields. 

We consider first, in Figure 3, the effect of a small, non-zero, external magnetic 
field. The harmonics of slow body waves are present and are confined to the region 
Cm < w / k  < Co. There are two surface waves in the sausage mode, as for the case of 
zero external field, but there are also two in the kink mode. The slow kink mode, 
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Fig. 3. T h e  p h a s e - s p e e d  oJ/k as a funct ion  of kxo, s h o w i n g  that,  for smal l  ex ter ior  m a g n e t i c  field (here  
i l lustrated for VAe = 0.5 CO, ce = 1.5C0 and VA = 2.0C0), tWO sets of  surface  w a v e s  (rno 2 > 0) exist.  T h e r e  
is a b a n d  of  b o d y  w a v e s  (too 2 < 0) for  CT < oJ/k < co of w h i c h  on ly  two  typical  m o d e s  are shown.  H a t c h i n g  

indicates  reg ions  w h e r e  w a v e s  do  not  occur.  : S a u s a g e  m o d e ;  . . . .  : K i n k  m o d e .  

for a slender slab, is given by Equation (19). The fast kink mode appears to change 
in character from a body to a surface wave as the phase-speed passes through the 
slab's sound speed. (The form of the velocity component ~3x with variation in slab 
width, for this fast kink wave, was plotted in this transition region and shows that 
for both body and surface waves near ~o/k  = Co the profile is approximately uniform 
across the slab. Of course, for w / k  = Co the longitudinal velocity is arbitrary along 
the slab instead of being determined by Equation (4).*) 

* E q u a t i o n  (11)  possesses  d e g e n e r a t e  so lut ions ,  O 9  2 = k2c 2, k2ce,2 k202 and k2{92 e. 
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Figure lb  (Paper II), which describes the limiting case of /-)me = 0 ,  and Figure 3 
are similar except that a fast kink surface mode,  arising from a body wave,  was 
over looked  in Paper II and should in fact have appeared in Figure lb  of that paper. 
The slender slab approximation does not predict this fast kink surface wave,  which 
has a phase-speed equal to the sound speed at an i n t e r m e d i a t e  value of kxo. In 
fact, this value of kxo may be deduced from Equation (10) of Paper II (Equation 
(11) with VAe = 0 here); the surface wave arises at 

kxo ~- (c~ + 2 2 2 2 2 3'VA/2)Co/(VA - eo)(Ce --C2)1/2Ce �9 

In Figure 4 we have sketched a case typical of coronal conditions with low plasma 
fl both inside the slab and in its environment.  As  a result of decreasing/3 in the 

~ '  ,~-- '  " ' - q ' v '  " " / - + , , ' - - ' - ~  ' - q ' ~  ' -  " ,  
"!  \\ ',,', \ \  

: \ \  ',',, \ , \  ; 
\ \ , ' ,  \ \  , 
\ \ , , \ \ I 

', \ \ ' ,  ,, \ , ,  
, \ \ , ,  \ ,  
', \ \ , , ' ,  , 
', \ \ , , - .  : 
\ \ \ \ " ,  I 

k \ " I 
\ . - -  N. ~I~AS ] " 

\ ~ " .. BODY 
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C T _ ~ _ ~ = ~  . . . . . . . . . . . . . . . . . .  - . . . .  BODY 
Ce , - CWAVES 

0 'S 1 '0  'T .5 2 0  2 5  "-KX o 

Fig. 4. The phase-speed oJ/k as a function of kxo under circumstances (here illustrated for VAe = 5Co,  

ce = 0 . 5 C o  a n d  VA = 2C0)  representative of coronal conditions. The results show that only the two sets 
of body waves ( r n ~  < 0 )  exist. The narrow band of slow waves contains infinitely many harmonics of 
which only two are shown. Hatching denotes regions in which there are no waves. : Sausage 

mode; . . . .  : Kink mode.  
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slab's exterior we now have a quite different situation to that described in Figure 
3. There  are now no surface (m~ > 0) waves; but harmonics arise in the two regions 
C T < o) /k  < Co and ~)A < w / k  </)Ae, corresponding to slow and fast body (m 2 < 0) 

waves respectively. The same result holds if the external tempera ture  is the higher 

one, that is if the sound speeds are interchanged. However ,  if the internal Alfv6n 

speed is the higher, so that the Alfv6n speeds are interchanged, only the slow 

harmonics remain.  
The ext reme Ce = CO = 0, the cold plasma approximation,  is of interest. This 

eliminates the narrow band of slow body waves in the lower part  of Figure 4, but 

the fast waves are described by 

m e {  tan / Poqo  
Pe ~ -  qoxo = - - - ,  (21) 

V A - c o t J  V 2 e  

where 

2 _ k  2 2 k 2 to 
q o  = , m e  = -- 

Both q2o and m 2 are positive for DA< t o / k  </)Ae. Thus the fast sausage modes are 

the roots of 

tan q0x0 = - q o / m e ,  

and the fast kink modes are given by 

tan qoxo = r n e / q o .  

(22) 

(23) 

It  is a curious fact that Equat ion (23) is precisely Love 's  equation (Love, 1911; 
see also Ewing et al., 1957, p. 210). Love 's  equation, it will be recalled, arises in 

the propagat ion of waves in a layered elastic material  such as the Ear th ' s  crust. 
Fur thermore ,  an equation analogous to (22) for the sausage mode  may also be 

found in seismic studies (see Ewing et al., p. 138). 
The situation Ce > CO > VA, VAe = 0 was discussed in Paper  II. Since we now have 

the means to include a non-zero  magnetic field exterior to the slab, we consider 

the effect of the speed VAe lying in the region between Co and v A - a  region which 
had no modes for the slab in a field-free environment.  Thus Figure 5 illustrates 
the configuration, Ce > CO > VAe > VA. Though there are body waves confined to the 
region between the two sound speeds there is now no fast surface kink mode (cf. 
Figure 3). There  are no modes in the region between Cre and Co. The slow sausage 
surface wave exhibits a similar proper ty  to that ment ioned earlier, of appearing to 
change in character f rom a body to a surface wave as the phase-speed passes 

through the slab's Alfv6n speed. 
Again, we may draw an analogy with Love waves by using the approximation 

Va = VAe = 0, for it is clear that in such circumstances there are only fast body waves, 
occupying the region Co < co/k  < ce. Now with vA = Vhe = 0, the general dispersion 
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C e 
1 I I I I ( I / . /  I / I I I Ird_ I _ ~ ,  

" l a S T  

+ 

f CTe . 

S L O W  
- ~ _ _ I S U R F A C E  

- - - -  . . . . . . . . . . . . . . . . .  :WAVES 

VA ~ - - ~  
. . . . . . . . . . .  , ,SLOW 

- ,BODY 
C T ~ - - ' - - "  - - -  _ _  , # # V A V E S  

o f / 7 7 7 / / - / Y / 7 / V / / / / / .  
"5 1 "0 1 "5 2 "0 2 "5 3 '0 3 "5 "KX o 

Fig. 5. The phase-speed w/k as a function of kxo (illustrated for VAe = 0.95C0, ce = 1.5C0 and VA = 0.6C0). 
Only two typical body waves (m 2 < 0) of the infinite number occurring in cr < ~o/k < VA are shown. 
The hatching denotes regions in which modes do not occur. - - :  Sausage mode; . . . .  : Kink mode. 

r e l a t i o n  r e d u c e s  to  (see  a lso  E q u a t i o n  (22) in P a p e r  II) 

( c~] m__t (24) 
t a n  noxo = \~o /  no 

fo r  t h e  s a u s a g e  m o d e ,  a n d  

(co .o (251 t a n  noxo = - \ - ~ 1  me 

f o r  t h e  k ink .  In  (24) a n d  (25), 

, ,o ~ =  - k  2 ,  . , ~ =  _ , 

a n d  b o t h  a r e  p o s i t i v e  (so Co<oJ/k <Ce). E q u a t i o n  (24) is e q u i v a l e n t  to  L o v e ' s  
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equation for seismic disturbances. Thus Love's equation arises in both extremes 
of the internal and external plasma/3's. 

Figure 6 shows that for large exterior magnetic field and for large plasma fl inside 
the tube both fast and slow surface waves exist. We note that here the slab is 
warmer than its surroundings. Body waves are also present, corresponding to the 
harmonics described in Paper II and to those described by generalising Equations 
(22) and (23). From the figure it may be seen that for this situation the Alfv6n 
velocity inside the slab is not itself significant, except insofar as it determines the 
'tube' speed CT inside the slab. The slow surface waves are confined to a region 
between the 'tube' speeds in the interior and exterior regions. The transverse kink 
mode, which has phase-speed approximately equal to VAe for a slender slab, is here 
a fast surface wave described by Equation (18a), in contrast to the VAe mode of 
Figure 3, where, for small exterior field, Equation (19) gives the behaviour. 

% 

&e 

Co 

' (LLL /_ Z L I  / A 

A S T  
\ ~ BODY 

\ ~ ~ WAVES 

\ I 
\ 

- ,5 

" ~ ~ FAST 
- ~ - SURFACE 

- - - WAVES 

 /TG v o. 7 7 
/ i  , ' 

_L/ /~ / / /_ ~' ;' J J _ / _ /  L /_  _ .S /_.• / ~ _ ,  _~ 
CTe . . . . . . . . . . . . . . . . . . . .  SLOW 

~ -  SURFACE 

VA . . . . . . . .  _-~LOW 
. . . . . . . . . . . . .  BODY 

CT " , / 7 - / ; ,  : /  , /-1, - /  7- /  
0 "5 1 "0 1-5 2 "0 2"5 3"0 3 '5 KX ~ 

Fig. 6. The phase-speed ~/k as a function of kxo, showing both fast and slow surface (m~ > 0 )  and 
body (too 2 < 0) waves; here VAe = 1.5C0, Ce = 0.75C0 and VA = 0.5%. Only two typical body waves of the 
infinite number occurring in CT <tolk < / ) A  are illustrated. The hatching denotes regions in which modes 

do not occur. : Sausage mode;  . . . .  : K i n k  mode.  
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Notice that for ~olk < cre Figures 5 and 6 illustrate the same behaviour. Only 
the relative values of the sound and Alfv6n speeds in the exterior have been 

interchanged. As a result, the fast surface waves are present in the large external 
magnetic field situation described in Figure 6 but not in that described in Figure 5. 

Finally, Figure 7 illustrates a large exterior field situation in which three bands 
of body waves occur. Besides the familiar slow body waves confined to the region 
between Co and cr, we have two bands of fast waves. For a slender slab, presumably 
because the exterior magnetic field is the dominant feature, these fast waves are 

XI,' 
' L/_L/J /J_//LLLLLLL 

~1~ FAST 

B 

C T ~ ~ / / ~ , ~ , S / / ~ . 7 - ~  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 .5 1.0 1-5 2.0 2.5 3"0 3.5 "KX o 

Fig. 7. The phase-speed talk as a function of kxo, showing three bands of body (m~ < 0) waves; here 
VAe = 5.0Co, ce = 4.0C0 and VA = 2.0C0. The narrow band of slow waves contains infinitely many modes 
of which only two are shown. Hatching denotes regions in which modes do not occur. : Sausage 

mode;  . . . .  : Kink mode. 
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the transverse modes, VAe and Cre, being given by Equations (18a) and (18b) 
respectively. It may be noted that the fast waves of Figure 6 would exhibit a similar 
two-band feature were the slab cooler than its surroundings. 

Figures 1 to 7 obviously do not exhaust all possibilities for the relative magnitudes 
of Ce, VAe, CO, and VA, SO in Table I we summarise the possible modes which could 
occur in a given solar context. It must be remembered that these results apply only 
to waves which are evanescent in the exterior of the slab. 

4. Concluding Remarks 

The possible normal modes of vibration of a uniform magnetic slab of field 
embedded in a uniform magnetic atmosphere are many and varied. As a result of 
categorising them into slow and fast, body and surface, waves it is seen that for 
certain configurations, for example Vge > Co > Ce > VA, it is possible for all four classes 
of waves to be present. For propagation along such a field, provided the width of 
the magnetic slab is very much less than the longitudinal wavelength, the kink 
mode oscillates transversely with a slow phase-speed close to CTe and a fast phase- 
speed close to the Alfv6n speed Vae in the surrounding medium. The sausage mode, 
as described by Roberts (1981b), vibrates with a slow phase-speed near Cr. The 
faster mode, with phase-speed close to the sound speed Ce in the surrounding 
atmosphere, is also present but for a non-zero magnetic exterior the limitation, 
expressed in Paper II, that the slab be cooler than its environment is no longer 

necessary. 
Under  circumstances representative of the corona (e.g. V A ~ > V A > C O > C e ) ,  

however, only the slow and fast body waves are present for this two-dimensional 
situation. The modes of vibration of a slender slab of field under these coronal 
conditions are a pulsation propagating with phase-speed close to CT and a transverse 
motion moving with phase-speed near to that of the exterior's Alfv6n speed. 

A numerical investigation of the transcendental equation governing the body 
waves describes their general form but various simplifications, such as the cold- 
plasma approximation, show that these waves are mathematically analogous to the 
Love waves of seismology, which propagate as a result of multiple reflections along 

a layer of the Earth 's  surface. 
The importance of the ' tube'  speed CT is again apparent. For small (or zero) 

magnetic field external to the slab, CT forms the upper bound to the slow mag- 
netoacoustic wave, but once the magnitude of the exterior field is sufficiently 
increased, waves can no longer propagate at phase-speeds below CT and it becomes 

the lower bound for propagation. 
In summary, then, wave propagation in a magnetically structured atmosphere 

(such as the slab in a magnetic environment,  as discussed here) exhibits a complex 
array of modes, involving both body and surface waves. No simple description of 
the allowable modes seems possible, each case requiring investigation in its own 
right. We have presented here a guide to some of the allowable wave structures, 
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exhibiting wave diagrams for a number of cases of solar interest including both 
photospheric and coronal extremes. Detection and identification of such mag- 
netoacoustic waves will be far from easy (but see Giovanelli (1975) for a possible 
identification, and comments by Wentzel (1979b)), but we await with interest 
developments in this area. 
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Appendix: Dispersion Relations for a Slender Slab 

The dispersion relations (15) and (17) for the sausage and kink modes in a slender 
slab of field, valid for longitudinal wavelengths much greater than the width of the 
slab, and weak transverse variations, may be derived by using the slender flux tube 
equations ab initio. 

Consider first the sausage mode. Longitudinal disturbances in a slender slab of 
field are governed by (see Paper II, Section 3) 

0 r (A1) a%z 1 
Ot 2 CT oz 2 -  P0\~A/// 19z Ot 

Here 8p~e dy) refers to the total (gas plus magnetic) pressure perturbation evaluated 
on the boundary of the slab. 

Denoting the velocity in Ix[ > Xo by ve and the external gas pressure variation by 
6p,, Equation (A1) may be written 

192Vz 2 192Vz l ( CT) 21192~.e +B2e 19 ( 19Ve ) l ~b''> 
19t' c T OZ-----r = - E  " K '  t ~  ~ -  ~zz \--0-~s ' (A2) 

where we have used the z-component of the induction equation to eliminate the 
external magnetic field variation. 

If we also consider the x-component of the momentum equation in the exterior 
medium Ix] >Xo, differentiate with respect to t and use the x- and z-components 
of the induction equation, then we obtain 

19 2 U e x 1 9 2  2 2 __ 2 f 19 Uex 19 Uex l 
Pe 19t 2 C3X 19t ( t ~ P e ) + I ) A e P e I ~ x 2  + T J "  ( A 3 )  

We now Fourier analyse using the expressions 

l)z = ~z ei(~ Ve x -~- ~ex(X)  e i(~ , 8pc = P c ( x )  e i(~ , 

where Pe and 13~ have the form e -m'(x-x~ for x >Xo (see Equations (2) and (10) of 
the main text). In addition, we require that the normal component of velocity be 
continuous across the boundary and, for a slender tube, that vx vary from 0 at x = 0 
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to vx (x0) at x = x0 in an approximately linear fashion, 

dvx 
vx(Xo) = Xo ~x  x=0 (A4) 

Utilising Equation (4) of the main text, we may thus write 

~ ( k ~c~ - o~)Xo 
Ve.l~=~o = Vx[ . . . .  -- ikc 2 (A5) 

Thus, Equation (A2) becomes 

2 ^ z 1 2  2 
(k~c~_ ~)~ Cr T - P e ( x o ) w k  - . (A6) -'~ -- - -  -~- U AePeme 

pOI) A CO 

Finally, applying Equation (A3) at the slab boundary x = x0, in conjunction with 
Equation (A5), and eliminating r3z and Pe(XO) between the resulting equation and 
(A6), gives the dispersion relation (15) of the main text. Thus we have recovered 
the equation governing the sausage mode by a much simpler argument than that 
needed in deriving (15), but at the expense of considering only a slender slab. 

The dispersion relation for the kink mode follows by applying the argument of 
Parker  (1979) to a slender slab. If we consider the transverse motions of an element 
of slab width 2Xo and unit lengths in the y- and z-directions, the equation of motion 
for small disturbances ~: in the x-direction is 

a2~ 3" 
po2x0 ~-~ = 2x0 R-7-[ape (Xo)- ape (--Xo)], (A7) 

where 3 is the tension in the magnetic field and Rc is the radius of curvature 
(=02~/az 2 to linear order). Here  we have assumed that for small disturbances, 

<< x0,  the pressure at the disturbed boundary, pe(~+Xo), equals ape(xo) to linear 
order,  with a similar assumption for the boundary x = -Xo. 

Now, using Equations (4) and (10) of the main text, we may express (A7) in the 

form 

02~  ,',, 2 02~  
p o 2 X 0  ~ - ~  = Z, XoPoV A ~Z 2 --{ape ( X o ) -  ape ( - - X o ) } ,  ( A 8 )  

where 

__ipe r ~ 2  2 2 2 2 ~K CeVAe-- tO (Ce-'~-/)2e)} 
~pe(XO)--aPe(--Xo)=-- tO (k  2c2e - 09 2) me(Ole + fle) " 

Since vx = O~/Ot, for ~: = ~(x) e g(~'t+kz) we have v, = iws e. Now if both sides of the 
slab are displaced by equal amounts ~o, say, continuity of the normal component  
of velocity across its boundaries means 

O~e At- Be : 2i~o~o. (m9) 
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If we  now use (A9) together with the information in (A8) we  recover dispersion 
relation (17) of the main text for the kink mode  of oscillation in a slender slab. 
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