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Before giving any comments on the model of Lanave et 
al. (1984), I would like to clarify a few relevant con- 
cepts--that is, the homogeneity, stationarity, and revers- 
ibility of a Markov process. A Markov process is said to 
be homogeneous if its rate matrix is independent of time; 
for phylogenetic analysis using DNA sequence data, this 
means that the pattern of nucleotide substitution remains 
the same along different parts of the tree. A homoge- 
neous process has an equilibrium distribution, which is 
also the limiting distribution when time approaches in- 
finity. Stationarity means that the process is at equilib- 
r i u m - t h a t  is, nucleotide frequencies have remained 
more or less the same during the course of evolution. 
When base frequencies are quite different in different 
species, these assumptions are clearly violated. The two 
assumptions are made by virtually all methods or models 
currently used in phylogenetic analysis, more for math- 
ematical tractability than for their accurate reflection of 
molecular sequence evolution. The rate matrix for a 
Markov process, Q = {Qij}, where Qij i s  the rate of 
substitution from nucleotide i to j, is restricted by a math- 
ematical requirement that the row sums are all zero 
(Grimmett and Stirzaker 1992, pp 239-246); this is anal- 
ogous to the requirement that the row sums of the tran- 
sition probability matrix over time t, P(t) = exp(Qt), are 
all one. So a model which requires the assumptions of 
stationarity and homogeneity and which places no re- 
striction on the structure of Q involves 12 (= 16 - 4) free 
parameters. [My counting of this number in Yang (1994) 
was 11, as only the relative rates were considered.] 

Reversibility is an extra restriction placed on the 

structure of Q-- that  is, xiQij = xjQji, or I IQ = QH, where 
r~ i is the equilibrium frequency of nucleotide i and 17 = 
diag{rcT~ x c, rc~}. This restriction reduces the number of 
free parameters by three and the model then has 9 pa- 
rameters. In many cases reversibility leads to mathemat- 
ical tractability, especially for the maximum-likelihood 
method which performs simultaneous comparison of all 
sequences (Felsenstein 1981, see also Keilson 1979). To 
the best of my knowledge, Tavare (1986) was the first to 
employ the general reversible process model (i.e., a 
model that places no other restrictions on the structure of 
Q except for reversibility, to nucleotide sequence anal- 
ysis). Yang (1994, see also Zharkikh 1994) improved the 
notation to facilitate the implementation and interpreta- 
tion of the model. 

Lanave et al. (1984) unambiguously stated that their 
model did not make any restrictions about the structure 
of the rate matrix, and so their model was supposed to be 
a 12-parameter model, the same as the "unrestricted" 
model of Yang (1994) but different from the 9-parameter 
general reversible process model. The authors, however, 
made a transformation of the eigenvectors of the rate 
matrix (their equation 11), which, without any extra as- 
sumption, is unwarranted. This implicit assumption, 
which is both sufficient and necessary, is reversibility, 
and was pointed out by Gillespie (1986) and shown in 
more detail by Yang and Goldman (1994) and Zharkikh 
(1994). Lanave et al. (1984) ignored this fact, and the 
estimated rate matrices by their method (Tables 5 and 6 
in Lanave et al. 1984) did not satisfy the mathematical 
requirement, mentioned above, that the sums of rows 



(columns in their notation) in the rate matrix should all 
be zero, although the differences are small. 

Therefore Saccone et al. (1995) seem to have justifi- 

cation in suggesting that Lanave et al. (1984), after the 
corrections made by Gillespie (1986), Yang and Gold- 
man (1994), and Zharkikh (1994), was the first applica- 
tion of the general reversible process model to DNA 
sequence analysis. However, it does not seem to be a 

serious mistake to suggest that Lanave et al. (1984) at- 

tempted to use a more general model without the revers- 
ibil i ty restriction, and their mathematical  treatment 
involved inaccuracies. My discussion (Yang 1994) con- 
cerns the mathematical technicalities of these models, 

which are necessary for their correct implementation in 
the maximum-likelihood framework, where ambiguous 
formulations cannot be allowed. It does not concern the 

performance of the method of Lanave et al. (1994) in 
estimating sequence distances, for which the method was 
designed. In this regard, extensive simulations performed 
by Zharkikh (1994) suggest that Lanave et al. 's (1994) 

method is quite stable in estimating pairwise distances. 
As one might expect, the inaccuracies in their treatment 
have not led to serious bias in distance estimates. A more 

serious problem with their method might be that it is 
based on the assumption that substitution rates are con- 
stant across nucleotide sites, an assumption which is 

known to produce severe underestimation of distances 
when there exists rate variation at sites. 

It may be worthwhile to mention that the reversible 
process, as a special class of Markov processes, is well 
studied in statistics. Keilson (1979) has discussed many 
nice mathematical properties of the reversible process 
and provided a proof that the rate matrix for a reversible 

process has only real eigenvalues and eigenvectors, as 
claimed but not proved by Yang (1994). The proof 
makes use of a matrix, I-II/2Ol-I-l/2, where [ I  1/2 = 

diag{~/~-~l, 4~-22, " /~,  ~/~4}, which is symmetrical under 
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the reversibility assumption and thus has only real eigen- 
values, and which has the same eigenvalues as Q. This 
proof also suggests that efficient algorithms can be used 

to calculate the eigenvalues and eigenvectors of the rate 
matrix for a general reversible process model. 

I believe that my discussion (Yang 1994) of the model 
of Lanave et al. (1984) does not serve to undermine the 
interesting work of the authors, and hope that these ex- 

changes of correspondence will help to promote the use 
of more realistic models in phylogenetic analysis. 
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