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Abstract. An SIR disease transmission model is formulated under the as- 
sumption that the force of infection at the present time depends on the number 
of infectives at the past. It is shown that a disease free equilibrium point is 
globally stable if no endemic equilibrium point exists. Further the endemic 
point (if it exists) is globally stable with respect to the whole state space except 
the neighborhood of the disease free state. 
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1 Introduction 

An SIR model was proposed by Cooke (1979) for epidemics which are spread 
in a human population via a vector (such as a mosquito); i.e. susceptible 
individuals receive the infection from infectious vectors, and susceptible vec- 
tors receive the infection from infectious individuals. It is assumed that when 
a susceptible vector is infected by a person, there is a time z > 0 during which 
the infectious agents develop in the vector and it is only after that time that the 
infected vector becomes itself infectious. It is also assumed that the vector 
population is very large and at any time t the infectious vector population is 
simply proportional to the infectious human population at time t - z. Thus, if 
we denote by S ( t )  the human susceptible population and by I ( t )  the human 
infective population, the force of infection at time t is assumed to be given by 

f l S ( t ) I ( t  - -  r) . (1) 
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However, it may be more realistic to assume that • is a distributed parameter 
and the force of infection (1) has to be substituted by )f+o  

f i S ( t  f ( z ) I ( t  - z)  dz  , (2) 
o 

where f(~) represents the fraction of vector population in which the time 
taken to become infectious is v. Further, f (z)  is assumed to be non-negative, 
square integrable on R + o = [0, oe ) and satisfies 

f ( z ) d z  = 1, ~ f ( z ) d ~  < + m . (3) 
0 

Beretta et al. (1988) assumed the delay kernel f to be a 7-distribution (see, 
Sect. 3) and considered the system of ordinary differential equations obtained 
from the original set of delay-differential equations by using so called linear 
chain trick (see, McDonald, 1978). They gave a sufficient condition for 
a positive equilibrium state of the system to be globally asymptotically stable 
and also proved that the system with a "weak delay" is always globally 
asymptotically stable. 

In this paper, we consider the stability properties of SIR-models expressed 
by delay-differential equations with distributed delays for which we do not 
assume the concrete form. The next section gives the model equations and 
introduce also the nomenclature. In Sects. 3 and 4, we consider the local and 
global stability respectively of the equilibria which express a disease free state 
and an endemic state. In Remark 3 of Sect. 4, it is underlined how the method 
of Liapunov functionals presented for the model with distributed delays can 
be applied to the case of discrete delays. 

2 Model equations and nomenclature 

The SIR model with vital dynamics (Hethcote 1976) is given by 

S( t )  = - f i S ( t ) I ( t ) -  # S ( t )  + # ,  

l ( t )  = f i S ( t ) I ( t )  - M ( t )  - 21(0,  (4) 

[~(t) = ) . l ( t )  - f i R ( t ) ,  

where a population is divided into three classes denoted by S, I, R: suscep- 
tibles, infectives and recovered. The assumptions on the model are 

a) The population considered has a constant size N and the variables are 
normalized to N = 1, that is, S ( t )  + I ( t )  + R ( t )  = 1 for all t; 

b) Births and deaths occur at equal rates # in N. All the newborns are 
susceptible./~ is called a da i l y  dea th  r e m o v a l  rate;  

c) fl is the dai ly  c o n t a c t  rate ,  i.e., the average number of contacts per 
infective per day. A contact of an infective is an interaction which results in 
infection of the other individual if it is susceptible; 
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d) 2 is the daily  recovery  removal  rate of the infectives. Of course, 
f l , # ,2  ~ R+.  

If the force of infection (2) is inserted into the SIR model  (4), we obtain 

fo S(t )  = - ~S( t )  f ( s ) I ( t  - s )ds  - #S( t )  + # ,  

fo i ( t )  = f lS( t )  f ( s ) I ( t  - s )ds  - # I ( t )  - 21 (0 ,  (5) 

R( t )  = 2I ( t )  - I~R(t) . 

Because of the conservat ion law S(t)  + R( t )  + I ( t )  = 1 for any t e R, we can 
consider any pair  of variables within three variables S, I, R. For  example, let 
us consider x ( t )  = (S(t), I ( t ) )  e (2, where 

f2 = {(S,I) e R2+0 IS + I =< 1} . (6) 

According to Kuang  (1993), we denote  C(( - oo, 0], Re) ,  the Banach space of 
cont inuous  functions mapping the interval ( - ~ ,  0] into R 2 with the topol-  
ogy of uniform convergence; i.e., for q~ ~ C(( - ~ ,  0], R2), the norm of q5 is 
defined as [[ ~b [I = sup0~_ oo. 011~b(0)], where ]. [ is a norm in R 2. Fur thermore ,  
for b > 0 ,  x e C ( ( - o o , 6 ] , R  2) and t e [ 0 , 6 ] ,  we define x t e C  as 
xt(O) = x ( t  + O) = (S(t  + 0), I ( t  + 0)) for 0 ~ ( - oo, 0]. Then, system (5) can 
be written as 

At(t) = f ( x t )  , (7) 

i.e., as an au tonomous  system of  delay differential equations,  where R( t )  is 
given by R( t )  = 1 ,  (S(t)  + l ( t ) )  for any t ~ [0, 6). 

Denote  by Q~ the set of non-negative functions q~(0) = (q~l(0), Oz(O)) 
C(( -- oo, 0], R 2) such that  ][ ~b [I < H, H ~ R+ and ~b(0) > 0. 

In this paper  we will consider stability properties of system (7) with an 
initial values ~b ~ Qn at time t = 0. The following propert ies of system (7) are 
easy to check: 

(i) The function f is Lipschitzian. This implies the local existence, 
uniqueness and cont inuous  dependence on the i.c. 4) e Qn of the solution of (7) 
for all t e [to, to + 6). 

(ii) If there exists t* e [to, to + b) such that  xi ( t*)  = 0, then f~(xt.) > 0, 
i = 1, 2. This p roper ty  implies that, if ~b E QH is a vector function with positive 
components ,  then the solut ion x ( t )  will remain positive for all t e (0, 6). The  
p roof  of this p roper ty  can be performed similarly to the proof  given in 
Beretta and Takeuchi  (1993). In particular,  if ~b(0)= (S(0) , I (0))e  f2, then 
x ( t )  = (S(t), I ( t ) )  ~ f2 for all t e (0, 6). 

(iii) Posit ive invariance of~2 implies boundedness  of the solutions of(7) for 
all t e [0, 6). This in turn implies continuabil i ty  of the solutions of(7), together  
with their propert ies  of uniqueness and cont inuous dependence on i.c. up to 
3 = + oo, i.e., for all t ~ [0, + oo ). 
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(iv) The equilibria of (5) satisfying S(t) = S*, I(t) = I*,  R(t)  = R* for all 
t e R are as follows: 

(iv-a) The endemic equilibrium point is given by E+ = (S*, I*) = ((/~ + 2)/fl, 
#(1 - S*)/fiS*) provided that fl > # + 2; 

(iv-b) The disease free equilibrium point is given by E0 = (S* = 1, I* = 0) 
which exists for all parameter values. 

Let us remark that the equilibrium component for R of the endemic state is 
simply given by R* = 1 - (S* + I*) or equivalently, by R* = 21"/#. 

In the following, we study the stability properties of the equilibria of (5) by 
using the method of Liapunov functionals. Since (5) can be set in the form (7), 
if we centre the variables on the equilibrium (E+ or Eo), we obtain an 
autonomous system of delay differential equations 

So(t) = f ( x t )  , (8) 

where the equilibrium is x = 0. Then, we will use the following result (Kuang 
1993; Corollary 5.2, p. 30): 

Theorem 1 Assume that co1(.) and co2(.) are nonnegative continuous scalar 
functions: R + o ~ R + o  such that 6 0 1 ( 0 ) = O ) 2 ( 0 ) = 0  , l i m ~ + ~ m l ( r ) =  + oo 
and that V : C ~ R is continuous and satisfies 

g(gb) >= col(IqS(0)l), l?(~b)[(8 ) < -- o92([qb(0)l ) . (9) 

Then the solution x = 0 of  equation (8) is uniformly stable and every solution is 
bounded. I f  in addition, co2(r) > 0 for r > O, then x = 0 is globally asymp- 
totically stable. 

Concerning the various definitions of stability, we refer to the recent book 
by Kuang (1993). 

3 Local stability 

We consider the local asymptotic stability of the equilibria. 

Theorem 2 Whenever E+ of (5) exists, it is locally asymptotically stable. 

Proof  System (5) is centred on E+ by introducing ul = S - S*, u2 = I - I* 
and its linear part becomes 

fo t l l ( t  ) = - -  ( i l l *  + #)U 1 - -  fiX* f (s)u2(t  -- s )ds ,  

ft2(t) = flI*ul -- (2 + #)u2 + flS* f (s)u2(t  - s)ds . (10) 

Let us consider the Liapunov functional 

1 2 1  2 ; o ~  fz +~ V(ut) = ~  u2( t  ) + ~W(Ul(t ) + Uz(t))  2 + flS* f ( s )  u~(v)dvds (11) 
-$ 
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where w > 0 is a constant .  Let  us observe that  

V(ut) > c01([u(t)l) = ½u~(t) + ½w(ul(t) + u2(t)) 2 , (12) 

where ~01 is a posit ive definite quadra t ic  form of ul and ua, since w > 0. Hence,  
091 > 0, 091 = 0 iff lu(t)[ = 0 and  limi,(,)l~ + ~ e)x(lu(t)l) = + oe. 

Fur thermore ,  the t ime derivat ive of  V(u,) along the solut ion of system (10) 
becomes 

~ ( u , ) l . o )  = - ~ w ~  - (~ + ~)(1  + w)u~ + ½~S*u~ 

+ iS*u2 f(s)u2(t - s)ds + Ji l l*  - w(2p + 2)]UlU2 

- ~ f l S *  f o ° ° f ( s ) u 2 ( t -  s)ds 

< - #wu 2 - (2 +/0(1 + w)u~ + flS*u 2 

< - pw(u~ + u~) = - co2([u(t)l) (13) 

where the first inequali ty of(13) is ob ta ined  by choosing w as t 1 "  = w(2p + 2) 
and  co2(lu(t)[) = I~W(U 2 + uZ2) = I~wlu(t)[ 2. Note  that  i S *  = # + 2 and 

+ ~  1 , 2 ! S* + o ~  lS*U2 fo f ( s ) u 2 ( t -  s)ds < 2 1 S  u2 + 2 i  fo f ( s ) u ~ ( t -  s)ds . 

This and  T h e o r e m  1 comple te  the proof.  [ ]  

N o w  let us consider  the local asympto t ic  stability of  Eo of (5). It  is 
convenient  to choose the variables (I, R) instead of (S, I )  and  to consider  the 
linearized system of (5) a round  Eo = (I = 0, R = 0) as follows: 

h t )  = - (~ + x ) I ( t )  + l f ( s ) I ( t  - s)cls  

(14) 
R ( t )  = ,~I(t)  - ~ R ( O  . 

Since the equa t ion  for I(t) is decoupled  f rom tha t  for R(t), the characterist ic 
equat ions  for (14) becomes 

(A + #)(A + I~ + 2 - flF(A)) = 0 ,  (15) 

where F(A) is the Laplace  t rans form of f(s). Of course, one characterist ic roo t  
is A = - # < 0. Therefore,  to derive a necessary and  sufficient condi t ion for 
the asympto t ic  stabili ty of  E0, we need to consider the equat ion  

A + I~ + 2 -- flF(A) = 0 ,  (16) 

associated with the stability p rob lem of the trivial solut ion I = 0 of  the first 
equa t ion  in (14): 

f0 J(t) = -- (g + 2)I(t)  + I f (s)I( t  -- s)ds.  (17) 
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We can prove the following: 

Theorem 3 A necessary and sufficient condition for Eo of  (14) to be asymp- 
totically stable is 

ri < ~ + 2 .  (18) 

Proof  Since ~b(0)>0  for any 0 ~ ( -  oo ,0]  and qS(0)>0,  I ( t ) > 0  for all 
t > 0, where l(t)  is any solut ion of (17). Therefore,  it is enough to consider the 
Liapunov functional 

V(I,)  = I(t) + ri f ( s )  I (v)dvds  (19) 
- - $  

which satisfies that  V(It)  > I(t)  = II(t)l for any t > 0. Fur thermore ,  

l)(It)[¢lv) = (ri - (# + 2 ) )1 (0 .  (20) 

Therefore,  if (18) holds true, E0 is asymptotical ly stable. 
Next,  we will prove the necessity part. First  let us consider the case 

/3 >/~ + 2. Assume that  I = 0 of (17) is stable. This means that  for any e > 0 
there exists a 6(e), c~ <= e such that  I(t)  < e for any t > 0 and for any q~ ~ Q~. 
Since qS(0) is continuous,  nonnegat ive  and not  identically vanishing for any 
0 e ( - o o , 0 ] ,  V ( I o ) = c ~ > O .  Fur thermore ,  for t > 0 ,  V ( I t ) < - _ I ( t ) + f i T  
max{e,6} = I(t)  + riTe, where 0 < T = SJ~°f(s)sds < + oo by (3). Let  us 
consider now (20) where I(t)  >_ V(I , )  - riTe. We obtain 

(Z(lt) >- (ri - (t ~ + 2) )V( l t )  - (ri - (# + 2))riTe, V(Io)  = c~, 

which gives rise to the following inequality: 

V(It)  > riTe + (~ - riTe)exp{(ri - (l~ + 2))t} 

for all t > 0. Hence 

I(t)  >_ V(I t )  - riTe > (c~ - f iTe)exp{(ri  - (~ + 2))t} (21) 

for all t >__ 0. Therefore,  if we choose 0 < e < e/(riT),  we obtain that  
limt_~ + ~ I(t)  = + oo, giving rise to a contradic t ion with stability of I = 0. 

For  the case ri =/~ + 2, we observe that  A = 0 is a characteristic root  of 
(16), since F(0) -- 1. Therefore,  Eo is not  asymptotical ly stable for this case. 
This completes the proof. [ ]  

Remark 1. To  appreciate the usefulness of L iapunov  functionals, let us try to 
prove the necessity part  of Theorem 3 by using only the characteristic 
equat ion (16). We know that  A = 0 is a characteristic root  of (16) when 
ri = # + 2. Fur thermore ,  from (16), ReA = - 2 - # + r iReF(A) .  Therefore,  

0 R e A  A=o ~?ri = ReF(0) = 1 > 0 ,  (22) 

i.e., for ri =/~ + 2 one characteristic roo t  of (16) crosses the imaginary axis at 
the origin and (for ri >/~ + 2) enters in the right hand  side of the complex 
plane. In general, (since we do not  suppose the concrete form of F (A)), only by 
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using the characteristic equat ion (16), we cannot  exclude the possibility that  
for some fl >/~ + 2 the characteristic roots  of (16) again cross the imaginary 
axis entering in the left hand side of the complex plane and restabilizing Eo. Of  
course, because of(22), if such a cross occurs, this must  be for some A = + ico 
for co > 0. 

W e  can exclude the possibility that  such a cross with the imaginary axis 
occurs if we specify the analytical form of the delay kernel (in agreement  with 
the result of Theorem 3). Fo r  example, let us assume that  f ( s )  is a 7-distribu- 
tion, i.e., 

sP-1 
f ( s )  - (p _ 1)i °~Pe-~S ' (23) 

where e > O, s > 0 and p e { i, 2 . . . . .  }. Its Laplace t ransform is 

Then, we can prove 

Corollary I f  the kernel f is a 7-function (23), then A = +_ ico, co > 0 cannot be 
characteristic roots o f  (16). 

Proo f  Consider  the characteristic equat ion (16) for A = ico, co > 0 and with 
F ( A )  given by (24). We obtain 

(c~ + ico)Pico + (/2 + 2)(~ + ico) p - fl ap = 0 .  (25) 

Let  us introduce the auxiliary angle variable 0 with t an0  = co/~, for 
0 < 0 < ~r/2. F r o m  (25), we obtain 

elP°(ico + /2  + 2) = fl(cos 0) p, p = 1, 2 . . . .  (26) 

The imaginary par t  of (26) is expressed as co cos(p0) + (# + 2)sin(p0) = 0 
and we have pO = - arctan{co/(2 +/2)}. F r o m  the definition of 0, we have 
p a r c t a n { c o / e ) ) = - a r c t a n { c o / ( / 2 + 2 ) ) ,  which has no solution for any 
p = 1, 2 . . . .  and co > 0. The same p roof  can be performed for A = - ico and 
co > 0. This completes the proof. [ ]  

4 Global stability 

Now let us consider the global asymptot ic  stability of  the equilibria. 

Theorem 4 The positive equilibrium point E+ o f  (5) is 91obally asymptotically 
stable with respect to the set £2 = {(S,I)  E £2[S < S* + I*}. 

Proof  For  the p roof  it is convenient  to choose the variables (I, R) instead of 
(S, I )  in order  to have only one integro-differential equation. Let us consider 

](t)  -- fl(1 -- I -- R)  f ( s ) I ( t  - s)ds - f lS*I 

(27) 
/~(t) = 21 - - /~R ,  
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where (R, I)  e f21 --- {(R, I )  ~ R2+ IR + I < 1}. We centre (27) on E+ = (I*, R*)  
by int roducing Ul = I - I*  and  u2 = R - R* with (ul, u2) 6 f2 = {(u> u2) 
R21 - I*  < u l ,  - 9 ,  < u2, ul  + u2 <= S*}. We obta in  

fo /,~l(t) ~--- f i ( S *  - -  u 1 - U2) f ( s ) u l ( t  -- s )ds  - f lU* + S * ) u l  - BI*u2 , 

(28) 
l,i2(t ) ~--- ~L~ 1 - -  //b~ 2 , 

for which we consider the L iapunov  functional  such as 

w21,f[ ft' V(ut)  = ~-w' u2 + ~ u  2 + ~ w l f l ( I  + S*)  f ( s )  -~ u 2 ( u ) d u d s  , (29) 

where we > 0 f o r / =  1, 2 are positive constants. Then V(ut)  >= k(u2(t)  + u2(t))/2, 
where k = min{wl ,  w2} > 0. If we choose - Wlf i I*  + w22 = 0, then the t ime 
derivat ive of V(u t )  along the solut ion of system (26) becomes  

1 , 
12(ut)1{26) = - w21m~ - ~ w l f i ( I  + S* )u  2 

+ w l f i ( S *  - ul  - u2)ul  f ( s ) u l ( t  - s )ds  

- ~ w l f l ( I *  + S*)  f ( s ) u 2 ( t  - s )ds  

1 (.+oo 
= - w i / ~ u ~ - ~ w ~ / ~ J o  f(s)D(t,s).a(Ov(t,s)]ds (30) 

where v(t, s) = col(ul(t) ,  Ul(t - s)) and 

( I*+S* -(S*-(ul+u2))) 
A( t )  = - -  ( S *  - (/A 1 q- u 2 )  ) I *  J-  S *  ' 

the matr ix  A is posit ive definite if 

- I *  < Ul  + u2 < I *  + 2 S *  , (31 )  

where the inequali ty of the right hand  side in (31) is trivially true in f2,,  since 
U 1 -~ 1"/2 ~ S *. Now,  for any e > 0, consider ~ 1,e = {/,i[ (~ ~'~ 1 [ U 1 "j- U2 > - -  I*  + ~}. 
Then  for any u e f2~, ~, there exists a m i n i m u m  eigenvalue of A which is strictly 
positive. Let  us denote  such an eigenvalue as X~. We have 

[v(t, s ) .A(t)v( t ,  S)] ~ ~(u2 ( t )  + u2(t -- s)) . (32) 

By subst i tut ing (32) in (30), we obta in  

g ( u t ) l ( 2 8  ) ~ - -  w2fiu22 - -  ~ w 1 / ~ A e / u  1 --~ f ( s ) u 2 ( t  - -  s ) d s  

< - 6(u 2 + u22), (33) 

where c5 = min[w2B, wlf i2~/2} .  
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Now note that the set u~ + u 2 > - -  I* corresponds with I + R > R*, 
which is identical with ~. Since S(t)  = 1 - (I(t)  + R( t ) )  for all t > 0, this 
completes the proof. [] 

R e m a r k  2. For  the linearized system, it has been proved that the endemic state 
E+ is always locally asymptotically stable without any restriction on the 
variables space, if E+ exists (Theorem 2). Further, Theorem 3 implies that the 
disease free state Eo is not locally asymptotically stable when E+ exists. On 
the other hand, Theorem 4 ensures the global asymptotic stability of E+ only 
for the restricted variables space ~. This suggests that the global asymptotic 
stability of E+ is true for whole space ~ defined by (6). This is an open 
problem. 

Let us consider now the global asymptotic stability of Eo. For  this case, we 
can prove it without any restriction on the variable space: 

Theorem 5 W h e n e v e r  (18) is true, equil ibrium Eo o f  (5) is 91obally asymp-  
tot ical ly  stable wi th  respect  to f2. 

P r o o f  We choose again the variables ( I , R )  and consider the space 
s~ = {if, R) e Ra+oIR + I < 1} which corresponds to Q. The equations for 
(I, R) are 

i ( t )  = - (~ + ;OI( t )  + i l s ( t )  f ( s ) I ( t  - s ) d s  

(34) 
/~(t) = 21(0 -- t~R( t ) ,  

where 0 < S < 1 and (I, R) ~ ~. Whenever (18) is true, the positive equilibrium 
E+ is not feasible and equilibrium Eo = (S* = 1, R* = 0, I* = 0) in ~ simply 
becomes Eo = (0, 0) for (34). 

Let us consider the following Liapunov functional 

V(x , )  = I ( t )  + w R ( t )  + il f ( s )  I ( u ) d u d s  , (35) 
- - S  

where w > 0. Then V(x t )  > min{1, w } ( I ( t )  + R ( t ) )  for any t > 0. Further, 

l?(xt)[(34) = - (p + 2) I ( t )  + i l l ( t )  + w2I ( t )  - w p R ( t )  

+ i lS(t)  f ( s ) I ( t  - s )ds  - fl f ( s ) I ( t  - s )ds  

< - [(kt + 2) - i l ] I ( t )  + w2I ( t )  - w k t R ( t ) .  (36) 

Here the last inequality is true because that 0 < S < 1. Choose 
w = [(kt + 2) - il]/(22) which is positive, since (18) is true. Then we have 

I?(xr)](34) < - ½[(kt + 2) - i l ] I ( t )  - w # R ( t )  

< - k ( I ( t )  + R( t ) )  = -- klx(t)[1 , (37) 

for any t > 0, where k = min{(kt + 2 - fl)/2, w#}.  Hence, the global stability 
of Eo follows. 
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Remark  3. If we insert the force of infection (1) into the SIR model with vital 
dynamics (4), we obtain 

S(t)  = - f iS( t ) I ( t  - z ) -  #S( t )  + # ,  

J(t) = f iS ( t ) I ( t  - z) - t d ( t )  - 21(0 ,  (38) 

R ( t )  = , Z I ( t )  - ~ R ( t )  . 

We claim that all the stability properties of the endemic equilibrium point 
E+ for I > # + 2 and of the disease free equilibrium point Eo proved for the 
model with distributed delays still hold true for the discrete SIR delay model. 
This claim can be checked by the Liapunov functionals obtained from ones for 
the distributed delay model simply by substituting in them f ( s )  with 6(s - r), 
i.e., with the delta Dirac function, and applying Theorem 1. We will check this 
claim just for Theorem 2, the other results can be proved similarly. 

By using the change of variables Ul = S -  S*, uz = I -  I*  in (38) and 
considering their linear parts, we obtain 

6l( t )  = - ( i l l*  + t~)ul - f iS*u2(t  - z ) ,  
(39) 

~ ( t )  = ~ I * u l  - t S * u ~  + ~ S * u 2 ( t  - ~ ) ,  

which are to be compared with (10), where E+ has been transformed into the 
trivial solution u, = u2 = 0 of (39). Then we can prove: 

Theorem 6. W h e n e v e r  it exists, the positive equilibrium point E+ o f  (38) is 
locally asymptot ical ly  stable. 

P r o o f  (11) suggests to consider the Liapunov functional 

1 2 1 1 i t  
l/(Ut) = ~ U z ( t  ) + ~W(Ul(t) + u 2 ( t ) )  2 + -2 iS*  Jt uZ~(v)dv (40) 

-z 

where w > 0 is a constant. 
According to Theorem 1, let us remark that 

g(ut) ~ ( D l ( i U ( t ) l )  ~- l u 2 ( t  ) -.~ 1 W ( U l ( t )  ~- u 2 ( t ) )  2 , 

where cos is a positive definite quadratic form, if w > 0. Furthermore, 

l)(ut)l{39) = - #wuZ(t)  + [ l I *  - w( f lS* +/ . / )]Ul( t )u2( t  ) 

- iS*(1 q- w)u2(t)  + i S * u z ( t ) u 2 ( t  - z) 

+ ½1S*u~(t )  - ½fS*u~( t  - "c). (41) 

If we choose w > 0 satisfying l I *  - w ( I S *  + #) = 0 and we observe that 
uz( t )u2( t  - z) < u2(t) /2  + u2(t - r)/2, then from (41) we obtain 

V ( u , ) I ( 3 9 )  < - l~wu2(t)  - I S * w u 2 ( t )  < - k l u ( t ) l  2 , (42) 

where k = w rain {/,, fiS* }. Then, Theorem 1 assures the asymptotic stability 
of U 1 ~--- U 2 = 01 
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