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frequency hydromagnetic waves originating in the magnetosphere in the last decade are reviewed. Topics 
covered include wave generation mechanisms, wave damping, effects of inhomogeneity, signal behaviour 
in the ionosphere and atmosphere. 
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I. Introduction 

The study of hydromagnetic waves in the magnetosphere has been an area of space 
physics where theory has had some notable successes. The fact that many observations 
have been made in space and many crucial studies can and have been done on the 
ground means the field is one where theory and experiment can interact well. The subject 
however is not played out as we hope to make clear in this review. 

The paper is going to concentrate on theory but at all points we shall try to refer to 
appropriate experimental data. We start by discussing the magnetosphere as a hydro- 
magnetic system. We then introduce some basic wave theory and some of the collision- 
less plasma theory that we shall apply later. In the next major section we look at 
continuous sources of energy for the waves. The Kelvin-Helmholtz (wind-over-water) 
instability at the magnetopause appears to act as an effectively continuous source of 
wave energy. A second possible quasi-continuous source is the internal energy of the 
hot plasma trapped in the Earth's field, the ring current plasma. The overall magneto- 
spheric hydromagnetic flow can set up very peculiar distributions of plasma in both real 
space and velocity space (phase space) because there are no interparticle collisions to 
keep distributions close to Maxwellian or to provide cross-field diffusion to eradicate 
steep gradients. Under appropriate circumstances such velocity or real space gradients 
cause low frequency waves to grow. The latter are commonly called drift instabilities. 
The next major section deals with the effect of inhomogeneities in the background 
plasma. First we describe how the hydromagnetic modes couple in a cold plasma. We 
then treat waves in which plasma density and pressure gradients are important. Next 
we look at the interaction of hydromagnetic waves and the ionosphere. First we show 
how the intervening ionosphere and atmosphere inherently limit our capacity to measure 
some types of magnetospheric wave signals. Then we go on to look at the role of 
hydromagnetic waves in the coupling of the ionosphere and magnetosphere. The next 
section describes a third source of energy which is impulsive in nature. Sudden changes 
in the conditions governing the overall convection flow in the magnetosphere result in 
surges in current and pressure which can set up oscillatory transients just as can occur 
in any mechanically or electrically coupled system. As the convection is a hydromagnetic 
flow the transients are hydromagnetic waves. The best known example of such waves 
is the Pi2 geomagnetic pulsation whose appearance correlates with geomagnetic sub- 
storm onset (Rostoker, 1968; Pytte et al , .  1976). We follow our discussion of energy 
sources with an examination of where pulsation energy itself goes. Three processes 
deserve attention, absorption by the ionosphere, collisionless damping or generalized 
Landau damping and lastly, mode conversion. In the latter instance wave energy is first 
deposited into a short wavelength mode (the kinetic Alfv6n mode) and then absorbed 
by very efficient Landau damping. As we shall show, each process potentially leads to 
heating of a different particle population. The last major section highlights some 
problems which still require good theoretical treatments. We discuss pulsating aurorae, 
an intriguing phenomenon on which a wealth of experimental data exists, pitch angle 
scattering of heavy ions and standing waves in high speed flows such as that produced 
by Io in the Jovian magnetosphere. 
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2. Magnetosphere as a Hydromagnetie  System 

Hydromagnetics describes how plasma behave on scales larger than the scales of 
individual particle gyration (i.e., the Larmor period and radius in time and space, 
respectively). It uses several simple ideas. Fundamental is the 'frozen-in' field idea. At 
low frequencies electric field and plasma flow velocity are related by 

E =  - u x B  (2.1) 

just as in a moving perfect conductor. Faraday's law takes the form 

0B 
- curl(u x B) (2.2) 

0t 

and can be used to show that any two particles initially connected by a field line which 
move with velocity u ( i  B) remain connected by a field line. One can describe the flow 
as a flow of field lines or flux tubes. The field line velocity is the perpendicular plasma 
velocity 

U •  = E • B I B  2 . (2.3) 

The next useful notion is based on the Maxwell stress tensor description of the body 
forces exerted by the magnetic field. The field exerts a tension along its direction BZ/lio 
and a pressure B2/21.to which is isotropic. The plasma pressure tensor is also ordered 
by the B field direction because space and time scales exceed the individual particle 
gyration scales, the plasma distribution in velocity space should be close to isotropic 
about the field direction (gyrotropic). Thus, in a coordinate system with an axis along 
B, offdiagonal pressure terms are negligible and the partial pressures, p • perpendicular 
to B are equal. Parallel and perpendicular pressures are not equal as long as collisions 
are unimportant unless there is an efficient way of transferring energy between 
perpendicular and parallel degrees of freedom such as high frequency plasma wave 
scattering. Magnetic pressure, particle pressure and field line velocity are linked by the 
perpendicular hydromagnetic momentum equation 

P--dt = + - P l I - P •  R--' (2.4) 

where ~ is the field line principal normal, R the field radius of curvature, p the plasma 
mass density. 

The overall scale of the Earth's magnetosphere is certainly large compared to the 
Larmor radii of any of the charged particles with significant populations so hydro- 
magnetic ideas give a good overview of magnetospheric convection. This convection 
system is basic to our understanding of the solar wind-magnetosphere interaction (e.g., 
Dungey, 1961; Afford and Hines, 1961; Axford, 1969). In Dungey's widely accepted 
reconnection or open magnetospheric model (Dungey, 1961) antisunward flow occurs 
in the polar cap on field lines that extend into the solar wind. At latitudes below the 
auroral zone there is basically a return flow of closed field lines sunward. Energy to drive 
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the flow is extracted from the solar wind. Equation (2.1) is valid almost everywhere fight 
down to the ionospheric E region. In the ionosphere collisions between ions and neutrals 
become significant and energy and momentum must be fed from the magnetosphere, and 
ultimately the solar wind to maintain the flow. The transfer of momentum and energy 
is done by field aligned currents as we shall discuss further later. 

Throughout the magnetosphere, hydromagnetic waves are present. They occur in a 
variety of plasma regimes at frequencies from just above 1 mHz to the local proton 
gyrofrequency (>  1 Hz). In this, the ULF band, magnetic signals are commonly called 
geomagnetic pulsations and are classified by period and character (irregular or con- 
tinuous) into pil, 2 pc 1-5 classes (Jacobs et al., 1964). The waves may not always be 
directly associated with the background convection but many are and it is worthwhile 
recognizing possible connections. For instance any change in conditions at one point 
of a flux tube (e.g., a sudden increase in the drag exerted by the ionosphere) requires 
a modified distribution of stress along the entire flux tube and hydromagnetic waves 
should propagate back and forth to accomplish this. Another type of direct link is when 
convection sets up extreme hot plasma distributions in real space or phase (e.g., inverted 
energy populations) and in doing so provides a source of wave free energy. Other types 
of pulsation, such as those associated with geomagnetic quiet times, may have no very 
direct link with magnetospheric convection. At the very least low frequency waves and 
the background convection have in common the fact that hydromagnetics is a very good 
starting point for developing theory. 

Hydromagnetics is however an approximation. We know it does break down in 
describing the overall magnetospheric convection. In auroral arcs, in the tail neutral 
sheet and in the magnetopause fields and plasma distributions vary on a scale 
comparable to a thermal ion Larmor radius and (2.1) no longer holds. In some of these 
regions strong parallel electric field components occur. A less serious limit to the 
hydromagnetic description occurs in the inner magnetosphere. A large fraction of the 
plasma (that with energy ~ 1-10 keV) in the inner ring current region has grad B and 
curvature magnetic drifts as large as the electric drift, (2.3). In this case Equation (2.1) 
holds only if u is the cold plasma velocity. Equation (2.4) also holds but hot ring current 
particles make the dominant contribution to the pressure. 

Wave descriptions using hydromagnetics can be limited in the same way. As we shall 
see explicit treatment of grad B and curvature drifts is needed to describe some effects 
(e.g., wave-particle resonance) and in some cases we need to consider what happens 
when scale lengths are comparable with the thermal Larmor radius. Parallel electric 
fields can then be significant (as in the kinetic Alfv6n wave). 

3. Low Frequency Plasma Waves 

3.1. C O L D  P L A S M A  W A V E S  

Hydromagnetic wave theory in a uniform cold plasma is straightforward. The only body 
force on the plasma is due to the magnetic field but it turns out there are two wave 
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Fig. 1. Relationship between the directions of the ambient magnetic field, B, and the hydromagnetic 
wave parameters for (a) a fast mode and (b) an Alfvdn mode in a uniform, cold plasma. 

(After Dungey, 1968). 

modes. One is like a wave on a stretched string where the field lines are the strings and 
the Maxwell tension is the dominant force. The wave magnetic perturbation is trans- 
verse to the ambient field so the magnetic pressure does not change in the wave. This 
is the transverse mode, also called the Alfv~n, shear or guided mode. It has the property 
that the wave Poynting flux is always along B and the magnetic field guides the energy 
flow. The second mode is the fast (or compressional) mode. Magnetic pressure is 
dominant. The field strength does change. The Poynting flux is in the direction of 
propagation (hence it is also called the isotropic mode). The transverse mode dispersion 
relation depends only on the component of k I[ B, kll, 

co 2 = k ~ A  z , (3.1) 

where A is the Alfv6n speed, B / ( l ~ o P )  1/2.  The fast mode dispersion relation is 

co 2 = k 2 A  2 . (3.2) 

Figure 1 (taken from Dungey, 1968) illustrates the differences in polarization of the two 

modes. 
A typical wave frequency for a geomagnetic pulsation is 10 mHz. A typical value for 

A in the equatorial plane is 300 km s-1. Such values give a wavelength of about 5 R E 

(RE: Earth radius = 6.4 x 103 km). It is immediately clear that uniform plasma theory 
is an imperfect description. Non-uniformity in B couples the two modes. The full wave 
solution has no tye t  been done in even a dipole field. 

Much attention has been devoted to the coupling problem and to the particular cases 
when modes decouple in the special case of a dipole background field (Dungey, 1963a; 
Radoski, 1966, 1967; Radoski and Carovillano, 1966; Lanzerotti and Southwood, 
1979). Like the field the plasma is assumed to be axisymmetric and waves are taken to 
vary as exp (imq~) in longitude. Only when m = 0 do modes strictly decouple into a fast 
compressional mode polarized in meridians and a transverse toroidally polarized mode. 
In the limit rn ~ co a poloidal transverse wave solution can be obtained (Dungey, 1968). 
We shall not discuss the dipole background field case further but shall describe another 
approach to weakly coupled transverse waves in a later section. 
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Fig. 2. Ideatised picture of the two lowest frequency modes of standing oscillations on a field line, assuming 
perfectly conducting ionospheres. Electric field E, is proportional to field line displacement, and magnetic 
perturbation b, to field line tilt. Note that the electric field perturbation is symmetric about the equator 
in the fundamental mode but antisymmetric in the second harmonic. The opposite is true for b. 

(After Southwood and Kivelson, 1981). 

It is appropriate to introduce here the idea of standing structure along the magnetic 
field. The transverse mode dispersion relation only depends on parallel wave number 
and so the lowest frequency signals can have arbitrary structure perpendicular to B but 
because of the requirement of slow variation along B such signals will have standing 
structure along B. Figure 2 shows the field configuration a field line would adopt for the 
two lowest harmonics if the ionosphere is treated as a perfectly conducting boundary. 
The symmetry or antisymmetry predicted for field perturbations did much to order early 
studies at magnetically conjugate locations (e.g., Sugiura and Wilson, 1964). As early 
as 1954 Dungey suggested geomagnetic pulsations had this standing structure. Particle 
measurements in space have confirmed this now (Kivelson 1976; Kokubun et al., 1977; 
Cummings et al., 1977). As a result of the standing structure the wave field should exhibit 
some symmetry about the field line equator. If we assume north-south symmetry in the 
background field, the fundamental structure should have the electric field, field displace- 
ment and plasma velocity perturbation symmetric about the equator while the transverse 
magnetic field perturbation is antisymmetric. In contrast, the next higher harmonic has 
a transverse magnetic perturbation that is symmetric about the equator and E field, field 
displacement and velocity perturbation that are antisymmetric. Figure 2 shows the field 
line configuration at extremes of the oscillations and illustrates this point. As Figure 2 
makes clear such statements are dependent on the field displacement being small in the 
ionosphere (fixed field line end condition). The ionospheric boundary condition has 
received some attention (see e.g., Hughes and Southwood, 1976a; Newton et  al., 1978; 
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Allan and Knox, 1979a, b); at times the conductivity may be so low that a free end 
condition may be more appropriate. We will discuss this more fully later. 

3.2. F I N I T E  P R E S S U R E  E F F E C T S  

Allowance for thermal motions of particles introduces a variety of modifications to the 
low frequency waves that can occur in a plasma. It is fair to say we do not understand 
them all and one exciting part of spacecraft observations of waves is that they have 
shown unexpected features in both field and plasma behavior which theory can follow 
up. Complications multiply when introducing particle thermal motion because the 
absence of collisions means particles retain long 'memories' of past motion. Particles 
of different energies can respond in very different ways and phenomena like Landau 
damping or its inverse can occur. We reserve discussion on these latter effects for the 
next section. 

In collisional magnethohydrodynamics allowing for pressure variations introduces a 
third type of wave, the sound wave. For strictly parallel propagation, the hydromagnetic 
waves and the sound wave are uncoupled but for any other direction of progation the 
compressional wave couples with the sound wave to give two hybrid modes known as 
the fast and slow. Both gas and magnetic pressure vary in these waves. In the fast wave 
they vary in phase, in the slow wave in antiphase. The transverse wave produces an 
incompressible (7. u = 0) flow perturbation (Figure 1), and so does not couple to the 
sound wave. 

Properties of the slow mode based on compressible MHD are of questionable 
application in a collisionless plasma. Because there are no collisions particles moving 
much more slowly than the wave react in a different way to those moving faster than 
the wave. As the slow wave phase velocity should be generally of order the ion thermal 
speed, the distribution of ions does not react uniformly to the wave and treating the 
plasma as if it had a simple compressibility is inaccurate. Even more important is that 
the wave is heavily damped in many circumstances precisely because if there are a large 
number of particles travelling at the wave phase speed Landau damping is very effective. 
Unless the plasma • (ratio of gas to magnetic pressure) is high (>  1) the absence of 
collisions has much less effect on the fast mode whose phase velocity is always in excess 
of the Alfv6n speed. 

Discussion of slow modes might be academic were it not that very low frequency 
compressional magnetic signals are commonly reported in the ring current region 
(Sonnerup et al., 1969; Barfield et al., 1972; Barfield and McPherron, 1972; Hedgecock, 
1976, amongst others) and more recently in the tail (Saunders et  al., 1981). We argue 
below that the apparently localized nature of these signals and their long periods (as long 
as 10 rain) suggest they are unlikely to be fast mode waves. Somewhat sparse informa- 
tion on thermal particle behavior does show magnetic and particle pressures oscillate 
in antiphase (Hughes et  al., 1979; Saunders et  al., 1981) and it is clearly important to 
establish the physics behind this behavior. 

One can see why one expects magnetic and plasma pressure oscillations to be in 
antiphase in a low frequency signal by looking at the perpendicular momentum equation 
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in a uniform field in a hot plasma. The linearized form of (2.4) for a wave with 
frequency co and wave vector components kll, k•  parallel and perependicular to B is 

- p c o 2 r 1 7 7  ap• ;;-)-k~ + P •  r (3.3) 

where ~ is the plasma displacement, b is wave magnetic field and, 6p• the pressure 
perturbation. If the signal is relatively localized perpendicular to B, k• must be finite. 
In the magnetosphere many of the compressional signals have been seen within a few 
hours of dusk (Barfield and McPherron, 1972; Hedgecock, 1976) which suggests the 
signal is localized much more across B than it need be parallel to B (where it may occupy 
the whole field line). Values of k• should be large for such a signal, i.e. k• >> k. Now 
B" b and ~ are related by the parallel component of (2.2) 

B . b  = i ( k x . r  2 .  (3 .4)  

Immediate inspection of (3.3) shows that unless the pressures tend to cancel (ie., are 
in antiphase) a signal with k• large will have a frequency much in excess of a standing 
transverse mode (co 2 ~-, k~A2). 

Next let us ask how we expect the pressure to vary in a low frequency compressional 
wave in a uniform plasma. We can calculate perpendicular and parallel energy changes 
using notions from adiabatic orbit theory. Conservation of magnetic moment, # shows 
that the change in particle perpendicular energy bW• must be 

bW• = # (b .B /B) .  (3.5) 

The mirror force due to the wave acts to change Wl[, the parallel energy. The guiding 
center equation of motion is 

dWi[ #B" b 
- ikllvil - -  , (3 .6)  

dt B 

where vii is the particle velocity in the direction of B. 
If the particle travels rapidly enough through the signal that 

k[i vii > co, 

(3.6) integrates approximately to give the change in W as 

(3.7) 

5Wll = - # B ' b / B .  (3 .8)  

The particle distribution function change is given by the Liouville theorem that states 
particles remain on contours of f .  This means 

of of 
bf = - bWii - -  - bWz - -  (3.9) 

OWII OW• 
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If the distribution is a bi-Maxwellian one has 

Taking moments gives 

5P•177 

Substitution in (3.3) gives a dispersion relation 

(3.10) 

092 k ~ _ A 2 ( l + f l •  TT~_~) ) ( f i •  = - +k~A 2 1 + ~  , (3.11) 

where 8• , fill = 2t~oP• 21~oPll/B2, respectively. 
This treatment can explain a slow mode type pressure response if T• > 1 which 

is true in much of the magnetosphere but there is a further requirement that the frequency 
given by (3.11) is small enough that (3.7) holds for the bulk of the plasma. 

Inspection of (3.11) shows one requires 

1+8. ~ o  (3.12) 

for the frequency to be small when k• is large. This requirement (3.12) shows the plasma 
is nearing the MHD mirror instability threshhold (see e.g., Hasegawa, 1969). Checking 
back to the momentum equation (3.3) one finds that magnetic and particle pressure 
perturbations just balance when (3.12) applies. 

The physics behind Equation (3.8) and the approximation of (3.7) is that plasma is 
being squeezed out of regions where the magnetic field is increased. The mirror effect 
is dominant. A higher frequency wave (for which (3.7) did not hold) would change W• 
by betatron acceleration without much change in WI[. In such conditions the pressure 
perturbation would be in phase with the magnetic field increase and thus with the 
magnetic pressure change. 

Getting the magnetic and particle pressures to cancel in a wave thus requires rather 
special conditions in a collisionless uniform plasma. One can however show non- 
uniformity can give rise to such a 'slow mode' signature. We can simply illustrate this 
by looking at what happens to an incompressible (V. ~ = 0) Alfv6n wave near a plasma 
pressure gradient. We can assume the field is straight but there will be a corresponding 
gradient in magnetic field so 

dx P •  O, (3.13) 
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where x is a coordinate perpendicular to B in the direction of non-uniformity. 
Rearranging b = curl(~ x B) gives 

B .  b = - r  v g ~ / 2  - ( v .  r  2 (3.14) 

~x dB 

2 dx 

The non-uniformity means there is a pressure change 

bp• = - ~ . V p •  

so we have 
dp• 

6P• = -~x - -  (3.15) 
dx 

It is clear that although the signal is incompressible near the pressure gradients both 
magnetic and particle pressures are perturbed but, as (3.13), (3.14), and (3.15) show, 
in just such a way that 

B . b  
~p• + - - = 0  

#o 

so that the total pressure is constant just as in our earlier example. 
Now, of course, condition (3.13) only hold s if the scale of pres sure and field gradients 

is much shorter than the field radius of curvature but somewhat similar arguments 
(Soutwood, 1976, 1977a) show that in a curved field geometry a similar pressure balance 
can be achieved by the Alfv~n-like mode that perturbs an inhomogeneous pressure 
distribution and thus has a significant compressional magnetic component. 

The ideas presented above or a combination of them probably provide the basis for 
an explanation of the low frequency compressional signals reported in the magneto- 
sphere. A full treatment of pressure variation in low frequency waves is complicated 
however and we return to the problem later (Section 5). 

3.3. KINETIC ALFVI~N WAVE 

Finite pressure effects also become important when hydromagnetics is about to break 
down. When wavelengths are as small as the thermal ion Larmor radius, Equation (2.1) 
is no longer valid. Terms involving the electron pressure and the Hall effect may need 
to be introduced. A more accurate expression for the electric field is 

Vpe j x B  
E + u x B +  - 0  . ( 3 . 1 6 )  

ne ne 

In this equation the last term, the Hall term, causes the parallel propagating Alfv6n mode 
described by (3.1) to split into left and right hand polarised modes, the ion cyclotron 
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and whistler modes, at frequencies near the ion cyclotron frequency. The pressure 
gradient term however is our main concern here. In any parallel propagating wave it 
produces a parallel electric field, clearly violating hydromagnetic notions. 

The simplest example of when this term is important is illustrated in an example of 
a mode which has not been invoked much in a magnetospheric context. When the 
plasma pressure is very low the slow mode does not perturb the magnetic field and under 
appropriate circumstances an acoustic electrostatic wave, the ion acoustic mode, can 
occur. Let us start out assuming that the electron thermal speed much exceeds the wave 
phase velocity which in turn exceeds the ions' thermal speed. The electrons travel rapidly 
through the wave and see an essentially static signal. The electron density perturbation 
is directly related to the local wave electrostatic potential, ~b, 

~n e = ne  @ / T  e . (3.17) 

The ions however are slow compared to the wave and behave as if they were cold. The 
wave produces a parallel velocity, u H , in the ions where 

Ull -- ekll ~ / c o m i  

and a density perturbation (from continuity) 

~n i = n e k ~  q ~ / ~ Z m  i . (3.18) 

Requiring the density perturbations match gives 

co 2 = k ~  T e / m  , . (3.19) 

A posteriori one may check that thephase velocity lies between electron and ion thermal 
speeds only if electron temperature much exceeds ion temperature. If this is not true (as 
it normally is not in the magnetosphere) heavy ion Landau damping is expected. Because 
the electrons move through the wave much faster than the ions they respond in a very 
different way. In fact the electrons' quasistatic response (3.17) may be swamped if there 
is a cold background electron population. In the magnetosphere ring current or plasma 
sheet electrons have temperatures (or mean energy) of order 1 keV but also there is 
present a plasma with temperature less than 1 eV &ionospheric origin. This may often 
be adequate to short out wave parallel electric fields (which the ion acoustic mode must 
have) and so suppress this or similar modes. 

It is evident from (3.17) that in the ion acoustic wave the parallel electric field is 
proportional to the electron pressure gradient as (3.16) requires. For the reasons 
mentioned above the ion acoustic mode has not been thought to be of any great 
importance in the magnetosphere. However when an Alfv6n wave has a short enough 
perpendicular wavelength the electron pressure gradient field can also modify the form 
of the Alfv6n wave. The wave is then normally called the kinetic Alfv6n wave. Coroniti 
and Kennel (1970b) first directed attention to the wave and in recent years Hasegawa 
and co-workers have done a lot of work on its potential magnetospheric role (Hasegawa 
and Chen, 1976; Hasegawa, 1976; Hasegawa and Mima, 1978; Hasegawa, 1979). 
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To understand the physics of the mode one should first note that the Alfv6n mode 
couples in motion of charge parallel to B as there is always a component of j parallel 
to B unless k• = 0. In pure hydromagnetics the electrons are regarded as mass free and 
if they are also cold, any current along B can be sustained by a very small E field. If 
the electron thermal speed much exceeds the Alfv6n speed the electrons respond to the 
parallel electric field just as they do in the ion acoustic mode. 

As otir working below shows this is of no great significance, the parallel electric field 
is still small, unless the perpendicular wavelength is of order the Larmor radius of an 
ion moving at the ion acoustic velocity. 

Let us now examine the physics of the mode in more detail. Current across the field 
in an Alfv6n wave is related to the flow velocity by the momentum equation. In a cold 
plasma one has 

o r  

-picou = j x B (3.20) 

J• _ ipco E •  (3.21) 
B 2 

The current (3.21) is primarily carried by the ions. If one takes its divergence one obtains 
an expression for the amount of charge that builds up due to it. This charge excess is 
balanced by a parallel current. The parallel electric field is just that required to drive the 
parallel current. If the electrons' thermal speed much exceeds the wave parallel phase 
velocity respond to a parallel field just as they do in the ion acoustic mode. So 

~n e = ineEll (3.22) 

rekl 

We now equate this to the positive charge excess from the perpendicular current and 
find 

P k • 1 7 7  - ne2Eil , (3.23) 
B 2 rekll 

E• and Jll are also related by Maxwell's equations. In particular 

(V x (V x E))II = iCo#oJl I 

so using (3.22) 

k 2EIq - kll k •  

Substituting from (3.23) gives 

r n Eli 
(3.24) 

(/)2 
k2j- Ze -1- 1 - ( 3 . 2 5 )  

Q2 mi A 2 k~ 
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i . e .  

c92 = k~A  2 (1 + (k• a/f2,)2), 

where f2~ is the ion gyrofrequency, m+ the ion mass, and a the ion acoustic speed (cf. 
(3.9)). The expression (3.25) shows that the dispersion of the Alfv6n mode is modified 
once k •  a / Q ,  ~ 1. It is straightforward to show, from (3.23) 

(k• ) (El'] ,.~ (k~a 2"] (3.26) 
\ a ? /  

The 'potential' ( E • 1 7 7  seen by a fast particle moving across the field is comparable 

to the parallel 'potential', Eii/kll, once k ~ a 2 / O  2 ~ 1. 

If T e < Ti, as if often is in the ring current and plasma sheet regions, we should also 
make specific allowance for finite ion Larmor radius in the ion dynamics. One must 
allow for the averaging of the E x B drift over a Larmor orbit if scales are as short as 
a Larmor scale. The dispersion relation becomes 

co 2 = k~A 2 (1 + k ~  a2/f2,?) (1 + T i r e ) .  

The new ion term is of far less signifiance to the wave dynamics than the term due to 
electron pressure as it does not give rise to a parallel electric field component. If the 
electrons were cold (3.22) would be replaced by 

~n e - ikll neEII (3.27) 
m e (I) 2 

One can check that Eli is negligible unless k •  ~ O)p/C if (3.27) holds. The criterion for 
cold or hot behaviour in the Alfv6n mode is whether the electron thermal speed is less 
than or exceeds the Alfv6n velocity. The Alfv6n velocity in the outer magnetosphere is 
of order 103 km s-  a in the equatorial plane. The critical cold electron temperature is then 
2.5 eV. Thus a virtual absence of ionospheric electrons is required for completely 'hot' 
behaviour. 

3.4. WAVE PARTICLE INTERACTIONS 

A unique feature of collision-less plasma behaviour is the long 'memory' particles retain 
of their past history. A consequence of this is reflected in the ability of some particles 
to achieve secular acceleration whilst moving through a wave field. For example consider 
a traveling wave with phase velocity co/kll parallel to B. A particle moving along B with 
velocity co/krr sees a constant wave phase and thus a constant wave field and thus will 
be steadily accelerated or decelerated. The process, called resonance can continue until 
the particle moves out of synchronism with the wave. In the absence of collisions this 
may take a long time. Resonance can cease because either the wave field spectrum finite 
bandwidth leads any particle eventually to see a varying field or the resonance 
acceleration or deceleration itself changes the particle velocity enough to move it out of 
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resonance. The latter is clearly a non-linear effect and one we shall not look at further 
here. A wave resonates with a distribution of particles. In the event that more particles 
are accelerated than decelerated, energy is transferred from the wave field to the particle 
population and the wave is damped. This is the physical basis of the Landau 
phenomenon in a collision-less plasma (see e.g., Clemmow and Dougherty, 1969). In 
a uniform plasma with a Maxwellian velocity distribution damping of the wave field is 
the inevitable result of wave-particle resonance but spatial non-uniformity or the fact 
that in a collision-less plasma velocity distributions can be far from Maxwellian means 
the opposite situation can occur and the wave field gains energy at the expense of the 
plasma. The plasma is then unstable and such instability is a possible source of 
magnetospheric waves. The rate of change of energy, W, for a particle moving 
adiabatically through a small amplitude hydromagnetic wave is 

0b II 
= # ~ t  + q E ' v a  + qEl[ vII ' (3.28) 

where b ll ,-Ell are the magnetic and electric perturbations along the background field, 
B, and v d is the unperturbed particle magnetic gradient and curvature drift. Equation 
(3.28) is a linearised version of the general expression given by Northrop (1963). In a 
uniform field the magnetic drift ~s zero and so particles can only be accelerated by waves 
with parallel magnetic or electric field components. In a uniform plasma one thus 
expects the Alfvrn or transverse mode to undamped unless the wavelength is short 
enough that the finite Larmor radius or electron pressure effects described in the 
previous section are important. In contrast fast or slow mode waves are damped in a 
uniform plasma because both have a magnetic perturbation parallel to B even if Ell 
components are negligible. This type of damping is sometimes called transit time 

damping (Stix, 1961). 
For waves near the gyrofrequencies of any particle species significant resonance 

effects can result from the wave being Doppler shifted to the particle gyrofrequency or 
a harmonic of the gyrofrequency. In this paper our interest in waves well below the 
gyrofrequency means this effect shall not concern us here. In an inhomogeneous plasma 

other wave particle resonances are possible. In the dipolar regions of the magnetosphere 
the mirror magnetic field geometry causes ions and electrons to execute a bouncing 
motion back and forth along the field and also execute a slow drift in longitude across 
the field due the magnetic gradient and curvature drift. If the wave field varies as 
exp (impq) - loot) in longitude q), and time t, resonance can occur if 

co - me% = No% Ninteger,  (3.29) 

where c5 d is the mean (bounce averaged) angular drift and • is the bounce frequency 
(Southwood et al., 1969). Not only does this new form of resonance occur in an 
inhomogeneous field but also in such a field the purely transverse Alfvrn wave can 
interact with resonant perticles through the term in E" v a in Equation (3.28). 

Let us now examine in more detail the energy transfer resonant particles can achieve. 
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The particles which are responsible for the energy transfer are likely to be a small 

fraction of the plasma population by virtue of the fact they satisfy a special resonance 
condition. The resonant particles behave as if they contribute a negative electrical 
resistance to the plasma medium. They provide a current in antiphase with the wave 
electric field. Non-resonant particles behave reactively and although their behavior can 
strongly affect wave structure and polarisation (as we outline in Section 5.2) their role 
in the wave physics is fundamentally different from that of the resonant particles and 
we can sensibly go ahead and discuss resonant particle behaviour in isolation. This 
particular approach to resonant behaviour serves to emphasize that it is in many 
respects independent of the precise wave polarisation. 

Let us then direct our attention at particle in resonance with a low frequency wave, 
i.e. those particles which can move through the wave in such a way that for some integer 
N, Equation (3.29) holds. 

We can calculate the exchange of energy between a group of resonant particles and 

a wave by computing the mean value of Jres" E where Jres is the current due to the 
resonant distribution. In the low frequency (co ~ gyrofrequency), long wavelength 

(>> Larmor radius) limit, the hydromagnetic limit, the hot plasma current perpendicular 
to the field is proportional to plasma pressure as can be seen from Equation (2.4) if it 
be rewritten 

du r~ 
x 

P dt 

The e.m. body force has been written explicitly in terms of the current density, j. In 
linearised form for a small amplitude wave one has 

j a  = - V ( ~ p •  I - ~ p •  •  2+  B e (3.30) 

where ~p • ~p H, u are wave perpendicular, parallel pressure, and velocity perturbations, 
respectively. If we add a subscript r, to denote the contribution to the pressures from 
the resonant particles it is clear the perpendicular resonant current is 

�9 [ :3" Jr• - - -  - 7(~Pr•  + (~P~I[ - ~Pr• X B 2 . (3.31) 

The contribution that this makes to the volume integral o f j .  E can be rearranged in the 
following way 

fd3r(j'•177177 E x B  B 2 (3.32) 

=-f d3rI(q'uE)+ U~'R] ~p,• + f d3rue'ft~pdl/R, 

where Gauss' theorem has been used and where uE = E x BIB 2. 
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E must be related to the wave mgnetic perturbation b by Faraday's law, vector 
manipulation of which (Southwood, 1973, 1976) shows 

Thus, 

- B ( V ' u  E + uE" t~/R ) = Obll/C3t + ue. VB. 

f d3r (j E)~" = fd3r PrlabllfB Ot + d 3 r u e �9 ( V ~ _  + ~P~II ~ ) R  

+qE'va) 6fr 
\ Ot 

(3.33) 

where # is the magnetic moment and v e is the combined VB and curvature magnetic drift 
and ~fr is the resonant distribution function. Allowing for parallel current and electric 
field one has 

where 

f d r (j" E)r = f d 3 r d3v (qEII vii 
~b I \ Iz 

+ qE" v a + ] ~fr 
c3t / 

:fd rfd vW fr (3.34) 

I/U= qEtVll + qE'Vd + ~11  ~ 
Ot 

The expression W is precisely the adiabatic change in energy, cf. Equation (3.28). To 
proceed we need to calculate bfr and we do this by notting in the absence of the wave 
the distribution is a function of constants of motion /~, W and magnetic shell 
parameter L. In an axisymmetric field L can be defined as the radial distance to the field 
line equator. # will be conserved if the wave period and wavelength are large (i.e., in 
hydromagnetics) but W and L will be changed by the wave. The Liouville theorem 
shows, if # is constant, 

6f= - 6 W  O f _  bL ~f , (3.35) 
OW 8L 

where 

6W= i dt 14? (3.36) 

- o o  

and (in linear wave theory) the integral is taken along the unperturbed trajectory. Now 
Dungey (1966), Southwood et al. (1969) and several subsequent papers pointed out that 
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in resonance bL and 3Wwere proportional so we only need to compute one or the other 

~ W  qoJ 

~L m 
B ~ q L R ~  d W  

= d L  , s ay ,  (3.37) 

where Beq is the equatorial field and we measure L in units of Earth radii, R E. The 
trajectory along which we integrate in (3.36) consists of a bounce back and forth along 
B and drift across B at fixed L. The periodicity of the bounce motion means any quantity 
seen by the particle can be expressed as 

A = ~ A N exp iNO 
N =  --o:3 

i.e. as a Fourier series in particle bounce phase 0. We can allow for the drift in longitude 
by expressing the acceleration seen by the particle as 

f f z= ~ WNexp i (Ncob  t + m C o a t - c o t ) ,  (3.38) 
N =  - - o o  

where cob, ~d are bounce and drift frequencies' and rn is angular wave number. 
For a weakly growing wave the integration (3.36) gives 

~ W  = i l /guexp i (Nc% + m(Od-- co)t 

0 9 -  md) d - NO) b 

For resonant particles one term dominates and 

6 W ~  ZNI/fYNexpi(Nco a + m ~  d - co)t , 

where z N is the resonant term 

i y 

co - moo d - Nco b (co~ - mco d - Nfob)  2 + ~2 

(3.39) 

and co = co~ + i 7. 

We can now take (3.39), (3.37), (3.35), and (3.34) together to show 

d 3 r R e ( l r e s ' E ) =  - " d3r d3vlWNI2ZN d W '  (3.40) 

where Re( ) means real part of and 

d f  Of dL Of 

dW ~W dW OL 

Summations are taken over species i, and different resonances N. 
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Equation (3.40) illustrates the well-known fact that whether a particular group of 
resonant particles contributes to wave growth or damping depends on the sign of df/d W 
(Southwood et al., 1969), a result that is independent of the wave polarisation or wave 
mode considered. As a special case, one can note that for a spatially uniform plasma 
distribution with a velocity distribution which monotonically decreases with increasing 
energy damping results. Instability only occurs if there is a sufficient spatial gradient in 
some part of the resonant distribution or if the plasma velocity distribution in inverted 
at some point so that ~?f/~?W> O. As we discuss in Section 42. such conditions appear 
to occur. 

One can picture the nett effect of a population of waves on particles in resonance as 
diffusion in energy and L shell. Dungey (1966) and Southwood et al. (1969) looked at 
the problem this way and their relation (3.37) means the diffusion in L and Wis coupled 
and is thus strictly one dimensional. For co, m fixes, energy and L diffusion coefficients 
are evidently related by 

= 

\ d W /  

The diffusion equation can be written (ignoring sinks and sources of particles) 

dfres 

~?t dW dW 

where evidently 

= r V;NI2 N. 

In the diffusion picture .the energy released or absorbed by the particle distribution 
is 

- ~N f d 3 r f  d3vW ddW (Dww ddw) " 

One integration reduces this to the same form as the right-hand side of (3.40). 
The diffusion picture provides a rationalisation of the resonant term z u. Looking at 

the diffusion as a random walk as particles experience interactions with different waves 

in a noise band we can interpret ZN as the interaction time and thus Zu ~ 1lAin where 
Aco is the bandwidth of the signals seen by the particle. 

4. Quasi-Steady Energy Sources 

In the previous section we have outlined what waves can occur and the ways in which 
one can deal with the phenomena unique to a collisionless plasma. In this section we 
concentrate on the energy sources available for wave generation, in particular, on the 
sources which could set up relatively steady signals. The first source we examine in detail 
is the shear in velocity which must necessarily occur in the vicinity of the magnetopause. 
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Velocity shears give rise to the 'wind-over-water' or Kelvin-Helmholtz instability. The 
second source of energy is the internal energy of the magnetospheric plasma trapped 
in the middle/outer dipolar regions of the Earth's field. As plasma is moved in from the 
magnetotail it is compressed and heated and in the dipolar region it forms the 'ring 
current' plasma which can have a pressure as high as the equatorial field pressure. 
Energy can be released from the plasma by the bounce/drift resonance process 
described in the last part of the previous Section 3.4. What is required is a somewhat 
pathological distribution of plasma in space or in velocity space. Peculiar plasma 
distributions can be generated naturally by the background collisionless quasisteady 
hydromagnetic convection. 

4 . 1 .  K E L V I N - - H E L M H O L T Z  I N S T A B I L I T Y  

At the magnetopause there is a shear in flow velocity which is a potential source of 
hydromagnetic instability. Dungey (1955) first pointed this out and a variety of work 
followed. The problem of the stability of a shear flow is complicated in hydromagnetics 
by the magnetic field. The field line tension opposes growth of any perturbation that 
bends the field. As fields on each side of the boundary are usually not parallel there must 
be some field bending. Even with an infinitely thin region of shear the compressible 
MHD stability problem becomes very complicated and there was once controversy over 
conflicting deductions based on different idealizations of the problem (Southwood, 
1968). Empirical evidence, first in the form of high latitude pulsation polarization 
(Atkinson and Watanabe, 1966), later with in situ measurements of magnetic perturba- 
tion polarization (Dungey and Southwood, 1970) and then in studies of boundary 
motions and attitudes (Aubry et al., 1971; Ledley, 1971) accumulated to show that the 
boundary does appear to be rippled by waves. Recently very dramatic probing of the 
rippled magnetopause has been done by Williams et aL (1979) using energetic particles 
measured on the ISEE spacecraft. Theoretical interest in the instability also continues 
to this day (e.g., Walker, 1981; Miura and Pritchett, 1981; Pu and Kivelson, 1982). 

In 1974, Southwood (1974) and Chen and Hasegawa (1974a) published independent 
papers suggesting the instability was a major source of pulsation energy in the inner 
magnetosphere. The coupling into the inner regions was achieved through the field line 
resonance process described in Section 5.1 of this paper. Both papers pointed out that 
the polarization pattern in latitude and local time reported by Samson et al. (1971) for 
low frequency pulsations could be explained by this mechanism. Subsequently more 
work bore out this idea (Fukunishi and Lanzerotti, 1974; Lanzerotti et al., 1974, 1975). 
Waves generated by the solar wind should move westward in the morning, eastward in 
the afternoon. Apart from one paper by Herron (1966) measurement of east-west phase 
velocity in pulsation signals was not done until the late 1970's. Herron (1966), Green 
(1976), and Mier-Jedzrejowicz and Southwood (1979) used mid-latitude chains of 
stations and found no evidence of propagation appropriate to the predictions of 
instability. However, Hughes et al. (1978a) and Olson and Rostoker (1978) did report 
observations of propagation with the correct diurnal variation. Hughes et aI. (1978a) 
used data from three synchronous orbit spacecraft ATS 6, SMS 1, and SMS2, to make 
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phase velocity measurements in the east-west direction and found clear evidence of a 
change in sense at midday from westward in the morning to eastward in the afternoon 
in the 80-200 s period band. The evidence was less clear at higher frequencies. Olson 
and Rostoker (1978) used pulsation data from an east-west chain of ground stations 
at high latitude and found clear evidence of propagation consistent with the Kel- 
vin-Helmholtz instability in pc4 signals. 

As mentioned earlier the general theory is complicated but a feel for the physics of 
the instability can be achieved by looking at a limiting case. Consider the boundary 
between two uniform plasmas (labelled 1 and 2) in relative motion. If a hydromagnetic 
wave displaces the boundary in the normal direction, ~, the normal displacement should 
be continuous across the boundary and so also the total (magnetic and particle) pressure 
perturbation in the wave. These two quantities are related to each other in the reference 
frame of either plasma by the momentum equation 

(p0)2 _ B2k~/#o)  ~ = ikn (bp• + Bbtl//~o) �9 (4.1) 

Now let kt be the wave vector in the boundary plane. If we take the plasma to be cold 
on one side of the boundary kt and kn must be related by 

0 ) 2 = ( k ~ + k  2) a 

as the compressional disturbance must satisfy the fast mode dispersion relation on that 
side. If 0)2/A2 ~ k 2 clearly 

k 2 _ - k  2 (4.2) 

and we have a surface mode. In a similar spirit one can impose a similar condition on 
the other side if r in the plasma frame is less than the sound speed. If these conditions 
hold (4.1) and the continuity requirements on pressure and displacement yield a require- 
ment that (p0)2_ B2k21/#o) is continuous. Noting that the frequency in plasma 2 is 
related to that in plasma 1 by 

0 ) l - U ' k  t = - 0 )  2 ,  

where U is the velocity difference, one finds a dispersion relation for COl 

#0P2(0) kt" U) 2 + #oPl 0)2 _ (B 1 . k,)2 _ (B 2 . kt)2 = O. 

In plasma 1 the wave frequency is complex, 0)r + i7, 

0)r = P2 U " k J  (Pl + P2) 
and 

72 _ PlP2 (kt. U)2 _ (BI" kt) 2 + (B2' kt) z 

Pl + /)2 ] /0 (P l  + /)2) 

The form of the growth rate 7 illustrates the stabilizing effect of field line bending. As 
the Earth's field is normally the strongest at the boundary there is a preference for waves 
to move at right angles to it. Near the equatorial regions this corresponds to the direction 
of the major flow. 
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The distinctive pattern of polarization referred to earlier follows from (4.2). As 

V.b = iktb t + iknbn = O 
it follows 

bt 
bn 

where the sign is set by the requirement that the signal decay as one moves away from 
the boundary. Following the argument through one finds clockwise polarization 
(looking along the field) on field lines near the boundary when waves move eastward 
(in the afternoon) and anticlockwise polarization is predicted in the morning. The 
boundary is a very complicated region (see e.g., Battrick, 1979) and we probably have 
more to learn about it. It does however seem to be a source of geomagnetic pulsation 
energy with boundary generated waves feeding energy to other parts of the magneto- 
sphere through the field line resonance mechanism. 

4.2. RELEASE OF HOT PLASMA ENERGY 

In Section 3.4 we calculated the energy exchange which takes place when resonance 
occurs between a low frequency wave and groups of particles which see the wave 
Doppler shifted to a multiple of their bounce frequency. One can picture the waves as 
driving phase space diffusion of the particles. The diffusion is one-dimensional but 
involves changes of both energy and position (W and L). In this section we discuss the 

circumstances under which the process can drive waves given the particular physical 
contraints imposed on waves and particle populations in the magnetosphere. 

It is useful to work in terms of dW/dL, the ratio of the change of energy to change 
of L shell in resonance. This ratio determines the slope of the resonant particle's 
diffusion curve in W, L space. We also use (dW/dL)7. This is the slope of a contour 
of the distribution function f in the W, L plane. It is defined by 

d W _ (~f/OL)~,, w (4.3) 
d L  (a flOW).,  L f 

Our calculation in Section 3.4 showed that a group of particles in resonance contributed 
energy to the wave if 

~ -  + dW > O. (4.4) 
, ,,lPV 

We can also write 

- - ~ U L (  d W ) d L  d f  ~f dW 
(4.5) 

(4.6) 
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When d f / d W i s  written in the form (4.5) or (4.6) it is clear that if((~f/QW)~,.L < 0 
then at the outer edge of a distribution, i.e. where (Of/OL),, w < O, one requires 

0 > > (4.7 
dL 

and at the inner edge (Southwood et aL, 1969) 

O< d W  < 
dL 

(4.8) 

From Equation (3.37) 

dW qo9 

dL m 
BeqLR ~ (4.9) 

and its sign depends on the sign of m, i.e. on the sense of east-west wave propagation. 
Our conventions here imply that d W / d L  is negative for westward propagation, positive 
for eastward. As (4.7), (4.8) show, provided the distribution monotonically varies with 
energy ((Of/OW)~, L < 0) small east-west phase velocities are favoured for instability 

(Southwood etaL, 1969; Southwood, 1976): 
The waves with lowest east-west phase velocity are likely to have a long 

wavelength to B. For instance, the Alfv6n mode in a uniform field has a 
phase velocity across B, k l lA/k•  As the dispersion relation does not 
couple kll and k• the smallest perpendicular phase velocity in any particular geometry 
is obtained when, kll is smallest (parallel wavelength maximum) and k• very large. 
Applying such notions to the inhomogeneous magnetospheric configuration we 
need to allow for the rough north-south symmetry of the field and note that waves with 
long parallel wavelength have a standing structure along B as described in Section 3. I. 
Wave fields will be either symmetric or antisymmetric about the equator if 
the background field is fairly symmetric as we discussed in Section 3.1 and 
illustrated i n  Figure2 of this paper. Symmetric or antisymmetry in wave 
electric field means the acceleration and particle energy change, I~, produced by the 
wave may exhibit symmetry. In Section 3.4 we expressed W as a Fourier series in 
bounce phase (Equation (3.38)). Now it is important to recognize that if 1r exhibits any 
symmetry with respect to the equator this will be reflected in the bounce phase Fourier 
series. If lois symmetric about the equator, terms with N odd are missing from the series 
(3.38) and so only N = 0, + 2, etc., resonances can occur. If VV is antisymmetric, only 
odd terms are present in (3.38) and only the N = + 1, + 3., resonances occur. Let us 
consider a simple example, a transverse Alfv6n wave. In the simplest circumstance 
where plasma pressure and inhomogeneity are unimportant the Alfv6n wave has b II and 

Eli zero so 

1~ = qE ' v a , 
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where v d is particle magnetic gradient/curvature drift. The symmetry of E is reflected 
in 14?. The fundamental standing Alfv6n wave illustrated in Figure 2(a) has W symmetric, 
the next harmonic shown in Figure 2(b), has V~ antisymmetric. Because the parallel 

wavelength is long in both cases the signal varies slowly over most particles' bounce 
orbits and hence the most significant resonances are those wth N smallest so wave (a) 
(symmetric mode) has the N = 0 resonance dominant and wave (b) (antisymmetric 
mode) the N = _+ 1 resonance dominant. To see the full significance of these results we 
need next to take account of some well defined properties of the hot plasma distribution 
in the magnetosphere. 

Let us then consider the type of particle distribution that is present in the ring current 
region. The overall magnetospheric convection system (referred to briefly in Section 2) 
is responsible for injecting plasma into the ring current and at the same time heating it. 
The injection process is slow compared to the gyration and bounce time of most charged 
particles and the two adiabatic invariants #, the magnetic moment and J, the action 
integral associated with motion along B, are conserved (see e.g., Southwood and 
Kivelson, 1975; Cowley, 1976). As a particle moves on to flux tubes closer to the Earth 
(i.e., to lower L), its energy increases at a rate that we shall denote by (~W/OL)~. s. The 
atmospheric loss cone is small at large L and to a first approximation loss is important 
only in defining the distribution near its inner edge. Elsewhere the distribution function 
is determined by requiring that f is conserved following a particle trajectory (the 
Liouville theorem). In Figure 3 we show distribution function contours in the 
W, L plane. The outer legs of each contom" have a slope, (dW/dL)f, close to but less 
negative than (~?W/~L)~,,j because loss is not important. The dotted line indicates the 
adiabatic variation of energy with L, i.e. it has slope (OW/OL)u,s. The contours at the 

W 

. . . .  adJaba tJc  p a r t i c l e  
e n e r g y  v a r i a t i o n  

"x "~. 

> L 
Fig. 3. Contours in the Energy-L shell plane of a typical magnetospheric ion distribution function;f 2 >fr  
The departures from adiabatic behaviour (dashed line) are caused by particle loss which is more important 
on smaller L shells. The fl contour is typical of medium energy protons in the dusk sector, where an energy 

inversion can occur. 
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inner edge (low L) are determined by processes that limit inward motion: loss by 
collision with neutrals (perhaps after an intermediate process like pitch angle scattering 
by high frequancy waves) or the competition between convection and rotation about the 
Earth (see e.g. Cowley and Ashour-Abdalla, 1976). The contour f ,  is appropriate for 
a medium proton energy in the evening and afternoon sectors. Its inner edge has a 
negative slope because 10-15 keV protons penetrate to low L more effectively than 
lower energy protons and in this region the proton distribution has an energy inversion. 
(This occurs because corotation and magnetic drifts tend to cancel for such particles; 
the phenomenon is weel-documented, Chert, 1970; Smith and Hoffman, 1974; Mauk 
and McIlwain, 1974; Kivelson and S outhwood, 1975; Cowley and Ashour-Abdalla, 
1976; Cowley, 1976). However, we can conclude that we expect 

0f = 0LOU +~-0W J~fw _> 0 (4.10) 
# , J  , / z , J  # , L  L 

throughout the ring current region. 
Now (OW/OL)#.j can be expressed in a particularly significant form. The theory of 

adiabatic particle motion in a mirror field can be based on a Hamiltonian formalism 
(Northrop and Teller, 1960) and one consequence of the formalism is that (OW/OL)~,. e 
is directly related to the particle mean angular magnetic drift, in longitude c~ d. 

0W 
- qdOdBeqLR~ (4.11) 

0 L u ,  j 

(taking co d positive for ions). Comparing this with (4.9) shows that particles in the N = 0 
resonance, where co - -  mcod, have 

dW_ 0W 

dL ~ -  ~,e" 

In other words, #, J are conserved in resonance. Several important consequences 
follow. 

As we have argued earlier 

Of > 0 (4.10) 

throughout the ring current. Now for particles in the N = 0 resonance 

OW ~?W Of Of 

( O W / O L ) ~ , j  is negative and hence using (4.10) 

d f < o  " 
dW 
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So all particles in the N = 0 resonance damp waves. However, as we have also already 
argued, for waves with long parallel wavelengths that are symmetric about the equator 
the N-- 0 resonance is dominant and N = + 1 resonance are ineffective. We can 
immediately conclude that symmetric mode low frequency waves are unlikely to be 
driven unstable by resonance with ring current particles. Resonance generated waves 
seem far mode likely to be antisymmetric about the equator. One test for resonant 
generation would be thus to look for instances of excitation of the antisymmetric second 
harmonic wave illustrated in Figure 2(b). Its lack of symmetry about the equator would 
make it hard to excite by other mechanisms such as Kelvin-Helmholtz instability on 
the boundary (Southwood, 1968, 1974) (see Section 4.1) at least in isolation. Such 
considerations led Soutwood et al. (969) to suggest the transverse magnetic oscillations 
reported at synchonous orbit on the ATS 1 spacecraft by Cummings et aI. (1969) were 
due to bounce resonance excitation. ATS 1 was very close to the equator and symmetry 
implies only the second harmonic would produce a significant transverse magnetic 
signal there (cf. Figures 2(a) and (b)). 

Another test can help discriminate resonant generation. It is to measure the wave 
wavelength perpendicular to the field. As we argued earlier, resonantly generated waves 
should have small east-west wavelengths if (O f l O W ) u . / ~  < 0. In fact even if the energy 
distribution is non-monotonic large m is expected for waves generated by ring current 
ions. The reason for this is that the mob d term generally needs to be comparable with 
co b in (3.29) for resonance to be achieved. Hughes et al. (1978a) report measurements 

from three space craft in synchronous orbit. One of their most important discoveries was 
a null result. In the late afternoon sector during the week of their study there was usually 
pc4 pulsation activity present at all three space craft simultaneously but signals were 
incoherent between the spacecraft. The incoherence meant no wavelength determination 
could be made. The coherence length should exceed or be of order the wavelength and 
so the wavelength must be shorter than the smaller spacecraft separation. These 
separations varied as one spacecraft was being moved. Using Hughes et al. 's (1978a) 
minimum figures it seems m > 100. Now the energy inversion in the ring current protons 
is generally clearest in this same sector of local time at synchronous orbit (Whipple, 
private communication, 1979) and it is interesting to ask if there could be a connection. 
Hughes et al. (1978b) reported on one particular afternoon event on February 13, 1975. 
For this event they had both magnetometer data and particle data measured by the 
UCSD plasma instrument from the ATS 6 synchronous spacecraft. The ion (assumed 
to be protons) distribution showed energy inversion and a detailed study of how the low 
energy proton count oscillated in the wave (using the phase method described by Hughes 
et al., 1979) showed that the magnetic oscillation perpendicular to B appeared to be in 
phase with the field displacement. In Figure 2(a), above the equator the transverse 
magnetic perturbation is in antiphase with the field line displacement while below the 
equator they are in phase. In case 2(b), precisely the reverse holds. ATS 6 is above the 
effective field line equator and so, as our earlier argument shows, the field line is 
oscillating in a second harmonic configuration. 

The evidence thus points to a class of pc4 signal seen at synchronous orbit in late 
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Fig. 4. An unstable inverted ion energy distribution originating in the magnetospheric tail can excite even 
mode hydromagnetic standing oscillation as it convects past the dusk terminator. The wave particle coupling 
is due to a resonance between the particles' bounce frequency and the eigen frequency of the field line. The 
sunlit ionospheres provide a good wave reflector which allows the field line to act as a resonant cavity. The 

system has much in common with the production of e.m. waves in a laser. 

afternoon being resonantly generated. As the spatial gradient in particles is outward it 
seems likely dW/dL must be positive for particles to diffuse to lower energy (cf. 
Figure 3). For dW/dL to be positive for protons, waves must be moving eastwards. A 
likely scenario for wave generation is shown in Figure 4 (Southwood, 1980). Convection 
feeds ions from the nightside into the afternoon sector. The ions drive Alfv6n waves 
which are unstable on the dayside but not on nightside flux tubes. Behind the dawn-dusk 
meridian field lines are stable because ionospheric height integrated conductivity I;e is 
comparable to the Alfv6n wave 'conductivity' S A (-~ 1/# o A) and waves are thus badly 
reflected as described in Section 8.2. On the dayside the ionosphere is a far better 
conductor and thus a far more effective reflector of h.m. wave energy and accordingly 
less energy is required from particles to drive the waves hence the instability occurs as 
the ions arrive on dayside flux tubes. 

5. Inhomogeous h.m. Wave Theory 

One reason that the magnetosphere has been a challenging area for study of hydro- 
magnetic waves is that it is very hard to ignore the effects of inhomogeneity in both 
plasma and magnetic field. In this section we look at three different ways in which 
non-uniformity is important. We look at the local field line resonance problem which 
arises because the Alfv~n speed varies from magnetic shell to magnetic shell. Then we 
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examine the equations governing a local transverse signal which has a wavelength 
comparable with the entire field line length in the magnetosphere. Here we are concerned 
with inhomogeneity along the magnetic field. Finally we look at the effect of non-uniform 
background plasma pressure. A new type of wave, a 'drift' wave can arise in this latter 
case. 

5 . 1 .  D R I V E N  F I E L D  L I N E  R E S O N A N C E  

As we have briefly described in Section 3.1 the two cold plasma hydromagnetic modes, 
the fast and transverse modes, are coupled by inhomogeneity. The transverse mode in 
particular exhibits peculiar behaviour. In the uniform plasma case its dispersion relation 
depends only on the wave-number parallel to B, k I[, (see 3.1)) and so in a finite geometry, 
standing transverse waves have allowed frequencies inversely proportional to field line 
length. In a non-uniform plasma where density, magnetic field strength and field line 
length vary, standing Alfv6n mode frequencies vary from magnetic shell to shell and 
purely transverse signals must be highly localized to particular shells. We describe the 
purely transverse localized signals by the obviously descriptive term 'field line resonance'. 
In general only in local regions will a single frequency signal be transversely polarized. 
Elsewhere there must be a compressional magnetic field component which couples 
neighbouring field line oscillations. These problems have not been fully investigated in 
even a dipole background field. 

The coupling problem has been investigated in a simple Cartesian system 
(Southwood, 1974, 1975) and we can review results here. The model is set up with a 
uniform ambient magnetic field, B~, but with plasma mass density p ( x )  a function of x 
(the x direction is analogous to the radial direction in the equatorial magnetosphere). 
The plasma extends to z = _+ l in the z direction and so field lines are finite in length. 
We shall extend Southwood's original derivation to include the absorptive effects of the 
ionosphere by introducing the boundary condition b x ~ = #o Z p E  at the ends of the 
field lines, z = + l. Z p  is the height integrated ionospheric conductivity. In a later section 
we explain this condition further. It is important to note now that the condition requires 
a nett Poynting flux out of the system in the z direction at the boundaries. This 
corresponds to wave driven Joule heating in the ionosphere. We build the boundary 
condition into our solution from the start by taking E to vary along ~ as 

E o c E ( x ,  y )  (e ikz e '~z + e - ikz  e ,~z) ei~Ot (5.1) 

where k and ~: are real. The magnetic field follows from Faraday's law 

by - , etc. 
ico c3z 

The boundary condition can then be applied and one finds 

k = n r c / 2 l ,  

where n is an odd/even integer according as the upper or lower sign in (5.1) is chosen. 
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In either case 

K = k/ lo)#o Zp (5.2) 

provided/~o Zp >> k /cn  which turns out to be the case of most interest. 
To examine variation in x, we take the perturbed electric field to be 

E = (Ex(x), Ey(x), 0) exp(i2y + i k * z  - icot), k*  = k - i~r 

Reexpressing this in terms of ~ the field displacement we can write down the momentum 
equations 

-cO2#oP~x = - i k * B b  x + B dbz 
d x  

- (DZlzop~y = - i 2 B b z  + i k * B b y .  

Eliminating b x and by using the frozen field condition (Faraday's law) gives 

(]~oD(X) (D2_ k , 2 ~ _  1 db~ (5.3) 
B 2 J B dx ' 

( ~0p(x )  092 -- k . 2 )  ~y = - i 2 b  z 8 2 (5.4) 

dx 

The operator on the 1.h.s. of (5.3) and (5.4) is the transverse guided mode dispersion 

relation. Field line resonance occurs on magnetic shells where 

R ( k  *e) - g~176  - coa/A2(x) = K 2 , say, 
B a 

where A is the Alfv6n speed. If k* were purely real the transverse mode dispersion 
relation would be satisfied on these shells. Elsewhere there must be a residual com- 
pressional magnetic because the 1.h.s. of (5.3) and (5.4) are not zero. This component, 
b z, is characteristic of the fast mode and must satisfy a fast mode equation. We obtain 
this equation by eliminating ~x and ~y from (5.3) and (5.4). 

( d 2 )  1 dK2dbz  
K 2 - k .2 - 2 2 + bz - (5.5) 

d x  2 K 2 - k . 2  dx dx 

The 1.h.s. is the fast mode dispersion relation. The r.h.s, is introduced by the background 
inhomogeneity and has a singular denominator which corresponds to the transverse 
mode dispersion relation. 

If k* were purely real (as Southwood assumed) the singularity would occur right at 
the resonant shell. In nature the singularity is limited by dissipation. Southwood (and 
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similary Chen and Hasagawa, 1974a) explicitly introduced a dissipative term. In our 
derivation here dissipation is introduced implicity by an ionospheric boundary condition 
which provides a finite amount of energy absorption there. This makes k* complex and 
provided the absorption is weak the singularity moves to a point in the complex x plane 
very close to the real axis and to the point, x = x o, corresponding to the resonant shell. 

If p(x) varies monotonically, the equation for ~x can be written near resonance 
(Southwood, 1974, 1975) in the approximate form 

d2~x + 1 d~x 22~x = 0,  (5.6) 
dx 2 X - X o -  ie dx 

where 

/ d K  2 ( 1 dp(x)'] -1 
e = 2 K k / ~ - x  -~2 r~c~176 p(X)o) dx 11 

To find a solution we introduce boundaries in the x direction. At x = b we place a 
source given by ~x(b) = Co exp(icot) while at x = a (a < x o < b) we assume ~x(a) = 0. 
An approximate solution of (5.6) which satisfies these boundary conditions is 

4o exp (-icot)Ko(2(Xo - x - i e ) )  
ix ~ (5.7) 

i~  sign (~,~) Io(,~(b - Xo)) 

provided e is small (e ~ b - x o, x o - a, 1/2). K o and I o are modified Bessel functions. 
The displacement in the y direction is obtained (Southwood, 1974) by noting that 

d 
- - -  r  t )  . (5.8) 

dx 

A peak in the value of ~x occurs at the resonant field line. The width of the peak has 
a scale e, which is controlled both by the scale of the inhomogeneity gradient and by the 
amount of dissipation. In this example e varies inversely as the ionospheric conductivity 
and as the density gradient scale length. 

(5.8) shows that the sign of ~y reverses across the peak in ~x. In a wave propagating 
(not standing) in the y direction the sense of wave polarization pattern is different on 
each side of the amplitude peak in the x direction. This polarization pattern is well 
established observationally (Lanzerotti and Southwood, 1979, and references therein). 
The phase reversal occurs in the displacement (and also magnetic field component) 
perpendicular to the background inhomogeneity. In an axisymmetric model this is the 
azimuthal component. The theory thus predicts larger spatial phase differences in the 
east-west field component than in components in the meridian. This was historically 
important in discussion of the ionosphere's role in signal modification. We discuss this 
later and also show an example of signal spatial structure (Figure 10). 

When the source is removed the signal decays as energy is deposited into the 
ionosphere (or the other possible sinks that we discuss later). What is most remarkable 
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is that once the source is removed theory predicts that each resonant shell oscillates at 
its own resonant frequency as the signal decays (Radoski, 1974; Southwood, 1975, and 
references therein). There is little observational evidence of the continuous latitudinal 
variation of signal frequency that the theory seems to predict in this instance. Voelker 
(1968) found a spatial dependence in signal frequencies excited by sudden commence- 
ments. Mier-Jedrzejowicz and Hughes (1980) report different frequencies at different 
points in space. They use data from three geosynchronous spacecraft and also from a 
longitudinal chain of ground stations so their evidence is of east-west  frequency 
variations. They claim there is often synchronism in the start of packets of pulsations 
but packets at different stations can have different oscillation frequencies. 

The consensus view of the observations appears to be that when multiple frequency 
signals are seen on a latitudinal chain of stations the power in particular spectral peaks 
may vary between stations but all stations will agree as to the frequencies at which 
spectral peaks occur (see e.g., Komack et al., 1961 ; Herron and Hiertzler, 1966; Stuart 
et aL, 1971; Samson et aI., 1971). One possible explanation of the lack of evidence of 
truly spatial dependent frequencies is that particular regions of the magnetosphere 
preferentially resonate and dominate the impulse response. 

The plasmapause is a unique region by virtue of the substantial plasma density 
gradient there. In particular a localized hydromagnetic wave, a surface wave, can occur 
in the neighbourhood of such a gradient. Consider a cold plasma bounded, as in our 
earlier example, in the z direction (the field direction) at z = + l, and let the plasma have 
a steep density gradient at x = x 1 . Initially let us assume that the mass density is pl for 

x < x I and P2 for x > xl (P2 > P~). On each side of the surface, x = x~, compressional 
waves must satisfy the dispersion relation 

~2 = A 2 ( k , Z  + ~2 q_ V 2 ) ,  

where k*, 2, v, are wave numbers in z, y, x, directions, respectively, and A is the Alfv6n 
speed. At the surface x = x~ we must require that the displacement in the x direction 
be continuous in the x direction and also the magnetic pressure perturbation be 
continuous. These are related by (cf. (5.3)) 

Bb po~ 2 - B 2 k * 2 / #  0 
- ( 5 . 9 )  

#o ~x iv 

on each side. Let us now assume that on each side. Let us now assume that on each 
side 22 > co2/A 2. v is then purely imaginary and, if the boundaries in x are far distant, 
must be chosen so the signal decays away from x = Xl. Using subscripts to denote 
parameters in the plasmas where p = Pl, P2, respectively, we chose 

and 

iv 1 = (22 + k .2 _ oo2/A~)I/2 

iv 2 = -(22 + k .2 _ (D2/A2)l/2 " 
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If  22 >~ 0 ) 2 / / t 2 ,  requiring the r.h.s, of (5.9) be continuous at x = x~ shows 

2 B 2  k 2 
co~ -, and ?/co = 2 ~ c / k  

~0 (Pl q- P2) 

and we have a surface wave which evanesces away from the density continuity on a scale 
2-1 and damps out on a time scale 1/7. 

If  2 is small enough that 22 ~ k .2 one still can have a surface wave. One can show 

k * a A ~  < co 2 < k * 2 A ~  

and 

- i v  2 < 2 < iv 1 

so that the signal decays faster away from the boundary on side 1, the side with the lower 

density and higher Alfv6n speed. 
It is debatable whether the plasmapause is steep enough to be treated as a discontinuity 

in density. Its thickness in the equatorial plane ranges from 50 km to much larger 

depending on geomagnetic activity. A crude requirement for treating it as a simple 
discontinuity would be that the normal wave displacement, ~,, exceed its thickness. A 

small enough signal thus would require one to treat the gradient as finite. A very unusual 
result follows if this is done. 

Consider a density distribution where the density varies linearly with x in the vicinity 

of Xl so that for a < x < b 

p(X)  = Pl  -}- j0' (X -- a) ,  

K 2 ( x )  = l~op(x)  c 0 2 / B  2 , 

where x I = (b - a ) / 2  and let us put K12 = # o p ( a ) o 0 2 / B  2, K 2 = I~op(b )e~2 /B  2. 

Equation (5.5) then gives an approximate equation for bz 

d ( K  2 _ k , 2 )  db~ _ ) 2 ( K 2  _ k,2)bz = 0 ( 5 . 1 0 )  
dx dx 

f o r  a < x  < b .  

As before for simplicity we assume 22>> 092 /n :  / ' '1 ,2,  SO for x < a 

b z w_ e ~ 

and for x > b 

b z oz e -;~x . 

Let us assume that in the gradient region 2 is negligible i.e. (a - b)2 <{ 1. 
Equation (5.10) then has the approximate solution 

bz = D l n ( k  * 2 - K  2) + E ,  

where D and E are constants which are determined by requiring d b z / d x  a n d  bz be 
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continuous at x = a, b. Now because k* has a small imaginary part which is positive we 
might expect to take 

ln(K .2 - K 2) - In [K 2 - k .2 / - in (5.11) 

ifR(k .2) < R(K2). This is indeed correct though we discuss it later in the light of results. 
Let us assume a priori that R(K 2) > R(K 2) > R(K~). 

Applying our boundary conditions at a, b then gives 

in ( ! K ~ -  k*21) _ K 2 - K 2 ( 1  + 1 )  
K2-k*2  ] +iTc (b~_ ~ K - k ,  2 K ~ _ ~  2 . 

Solving one finds 09 = co r + i7, where 

~2 = 2B2k2/po(p~ + P2) = B2k2/PoPo, 

2Po 2tr 
7/o)r - + , (5.12) 

4 Pl k 

where Po = (21 + p2)/2. The expression for o) r is unchanged from our earlier expression 
when we took just a step in density. Equation (5.12) which describes the wave damping 

rate contains the surprising new feature. The latter term on the r.h.s, is due to the 
absorptive boundary conditions at z = + l and was present in our working for the step 
in density. The first term on the r.h.s, of(5.12) is introduced entirely by our using a finite 
density gradient and thus because of the smooth density variation, in some way the 
signal experiences some damping. This damping would occur even in the absence of the 
ionospheric damping represented by ~: and it is not unreasonable to ask where the energy 
it takes from the signal is going. 

Chert and Hasegawa (1974b) look at the mode in more detail and refer to earlier work 
by Uberoi (1972) and by Sedlacek (1971a, b) on an analogous problem. As Chert and 
Hasegawa (1974b) point out in a treatment of system excitation by a general source 
(Green's function treatment) the frequency o~ in (5.12) occurs as a root of the 
denominator of the Laplace transform of the signal. It is to keep this denominator 
analytic that the prescription (5.11) is used in spite of our later determination that the 
frequency has a negative imaginary part. When the Laplace transform is inverted 
whatever the particular source there is a component of the signal present everywhere 
with 

bly QC e ic~ e ~t , 

where 7 = ~or2po/4p' (ignoring the ionosphere now). However near x~ there is also a 
field line resonance set up which has frequency precisely equal to ogr. It is possible to 
show that if the system is impulsively excited at x I the signal varies such that 

b/y(Xl) GC ei~~ - e - ~'t) 

so that the amplitude systematically grows at that location. In fact the energy from the 
large scale surface wave couples to resonant field line within the density gradient. The 
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amplitude at the center of the gradient grows as the signal decays elsewhere. When 

ionospheric damping is included there is also a flux of energy out of the system along 

the field and, for instance, 

/ , / y ( X l )  OC ei~'t (1 - e -~'t) e -7't , 

where 7s is the damping of the surface wave and 7, is the ionospheric damping. In this 
case ultimately the energy is dumped into the ionosphere on a time scale 1/~,. As we 

discuss elsewhere, 7~ :  1/ (#oZel )  and this may well be the dominant damping 
mechanism in any circumstance of interest as it can be very rapid. 

5.2 LOCALIZED TRANSVERSE WAVES 

As we showed in the last section considerable theoretical importance can be attached 
to signals that are localized and quasitransverse. The rationale for this emphasis can 
also be based on experiment; transverse signals are commonly seen in space (Cummings 
et al., 1969; Kokubun et al., 1977; Arthur etal., 1977; Cummings etal., 1978). In this 
section we describe a way of looking at isolated transverse signals starting from the 
notion of radiation from a small dipole aligned at right angles to the magnetic field. By 
considering extreme localization perpendicular to B we can isolate and examine the 
effect of inhomogeneity along the magnetic field. In this section we derive the equations 
governing highly localized standing Alfv6n waves in a non-uniform field. The physical 
arrangement discussed as a notional source of localized oscillations is very close to what 
is realized in the ionospheric heating experiment currently being run in the auroral zone 
(Stubbe and Kopka, 1977, 1981). In the presence of a background electrojet electric field 
the enhanced conductivuty region produced by the heat in the E region acts as a dipole 
source. The theoretical notions described here are similar to those advanced recently 
by Singer et aI. (1981) and Fejer (1981). 

1i 
Fig. 5. A dipolar charge separation a pair of field aligned current sheets and a localized quasitransverse 
magnetic perturbation. The current flows along B: thus if the current sheets are separated in the c~ direction, 
the magnetic perturbation is in the ~ ( •  ~, B) direction. If the flux tubes are twisted, as can happen in the 
magnetosphere, the direction of b will change along the field lines so as to always be perpendicular to the 

current sheet normal. 
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Let us now examine our idealized case. Consider a dipolar source like that in Figure 5. 
Let us say the dipole is aligned in the ~ direction_l_ B. Because the field lines are perfectly 
conducting currents will flow away from the source along the field as indicated and there 
will be a magnetic perturbation in the ~(_1_ ~, B) direction between the currents. There 
will also be plasma motion produced in the same region as 

0u 
curlb x B = #oP ~?t (5.13) 

Also b must be related to u by 

-ie)b = curl(u x B) (5.14) 

combining these equations gives a wave equation for describing how the signal propa- 
gates down B. We can extend the B, ~, ~ coordinate system along the local field down 
to the ionosphere. One axis is always aligned with the field. The second ~, starts aligned 
with the source dipole and is rotated if necessary so that the field lines on which the 
parallel current flows always remain separated in the ~ direction a one moves along the 
field. The third axis is perpendicular to the other two. One can define h a and e such that 

= h~V~, 

where h a varies along B in proportion to the field line separation in the ~ direction. 
Similarly one can set 

= hero 

and 

B = 70 x 7~. 

These relations hold all the way along the local field. Only exceptionally does this 
make a global field aligned system. 

If the geometry of the source is such that the parallel current is extended more in the 
direction than the currents are separated in ~ the major magnetic perturbation is b e. 

Equations (5.13) and (5.14) give 

- #opie)u O = curl (bohe7 ~) x B. heV ~, 

-io.)b e = heV 0 '  cu r l (uehe70  x B). 

After some manipulation one finds b e is governed by 

[h:B2(B'V)(h~B)-2(B'V)+#ope)z](b?~B)=O. (5.15) 

This equation describes a standing wave signal along B if a reflecting boundary condition 
is applied at the ionosphere. Several points need to be made: 

(i) ha is a geometrical factor which varies along the field, and so cannot be brought 
out from inside the B" 7 operator. 
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(ii) h~ is dependent on the orientation of the source. Signals with different transverse 
polarization have a different operator controlling parallel propagation (but still one 
involving only the differential B.V).  

(iii) Because the only operator in (5.15) is B. V only variation along B is involved and 
eigenfrequencies are specific to each field line (depending, for instance, on field line 
length). Eigenfrequencies in this sense vary spatially. 

(iv) If the ambient magnetic field is dipolar and 02 is aligned in the q5 direction ha = r 
(the distance from the dipole axis) and the familiar guided poloidal mode equation 
results. If 02 is aligned in the principal normal direction h~ = (rB)-1 and the guided 
toroidal equation results (see Dungey (1968) for a discussion of guided waves in a dipole 
background field). 

(v) An implication of (ii) is that transverse waves of different polarizations have 
different eigenfrequencies. Cummings et al. (1969) illustrated this explicitly by computing 
toroidally and poloidally polarized signal eigenfrequencies at L = 6.6 in a dipole 
background field model. 

(vi) The procedure outlined above for looking at localized transverse signals can be 
applied to computations in any background field model. If one can trace field lines one 
can compute h~'s along the field for any chosen field model. Singer et al. (1981) have 
followed such a procedure computing eigenfrequencies using the Olson-Pfitzer magneto- 
spheric field model. 

(vii) In the outer magnetosphere field lines can twist considerably out of meridians. 
It is clear that because a transverse signal has its Poynting vector field aligned one 
expects signals to follow the field. The polarization will also change as one moves along 
the field. Because an inevitable feature of a localized transverse signal is field aligned 
current it is easiest to picture how the magnetic polarization varies along the field by 
picturing how the parallel currents change in orientation. The field lines carrying parallel 

Fig. 6. An illustration of how the wave polarization may change along a field line as field lines twist out 
of meridians. The direction of the magnetic perturbation changes so that it is always perpendicular to B and 

also to the surface joining the two field lines carrying the field aligned currents. 
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current are rather like transmission lines. Figure 6 indicates how magnetic polarization 
would vary along B for a dipolar current source. It should be clear that the largest 
magnetic perturbation reorientates to keep perpendicular to the line separating the 
parallel currents. 

As (iii) indicates, the development which leads to Equation (5.15) adequately handles 
inhomogeneity along B only if the signal has a small enough scale perpendicualr to B. 
Field-line length, field strength and plasma density cannot vary much between field lines 
in the region of interest. If the signal has a large enough perpendicular scale it cannot 
be purely transverse everywhere because the transverse guided mode equation (5.15) has 
spatially varying eigenfrequencies. 

The significance of the approach developed here is that one has a prescription for 
calculating field line resonance frequencies in any background field. A very similar 
approach was used by Singer e t  al.  (1981) to calculate field line eigenfrequencies in a 
realistic magnetospheric magnetic field model. They found at high invariant latitudes the 
differences from a computation using a dipolar background field can be quite marked. 
Figure 7 illustrates this point. It shows the percent difference between the fundamental 
eigenperiod calculated using a dipole field and a zero tilt Olson-Pfitzer magnetospheric 
field model (Walker, 1979) at various local times as a function of geomagnetic latitude. 
The length of and equatorial field strength of a field line leaving the Earth at a given 
geomagnetic latitude varies considerably with local time, and can result in changes from 
the dipole solution of more than a factor of two at high latitudes, especially on the 
nightside. In contrast, Singer e t  al .  (1981) found the diurnal variation at a fixed place 
in space near the geomagnetic equator, at, say, geosynchronous orbit, were much smaller 
and the dipole gave a fair approximation. This seems to be because the diurnal change 
in field line length is balanced by the variation in field strength in the near equatorial 
region. 
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Fig. 7. The percent deviation of the fundamental toroidal mode period calculated using an Olson-Pfitzer 
magnetic field model from that calculated using a dipole field. The model used is symmetric about the 

noon-midnight meridian. (After Singer et al., 1981). 
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5 . 3 .  I N H O M O G E N E I T Y  I N  A W A R M  P L A S M A  

The effects described in Sections 5.1 and 5.2 are of course relevant also to warm plasma 

theory. The polarization of the guided mode may be modified in a hot plasma region 
and a compressional component may occur (as described in Section 3.2 and Southwood 
(1977a)), however in a warm plasma inhomogeneity introduces a new type of mode and 
it is this we discuss in this section. The type of wave in question is the 'drift' wave. Drift 
wave effects may occur wherever there is a gradient in density or temperature in a warm 
plasma. 

Chamberlain (1963) suggested such waves coule be important in the magnetosphere. 
The simplest form of these waves is found in a low pressure plasma and is akin to the 
electrostatic ion acoustic wave. The electrons are treated as very fast and so respond 
quasistatically to the wave potential cb, 

~ n  e = n e q ) / T  2 . 

The ions are treated as cold and move with E x B drift across the field so 

bn i _ K •  �9 dn 

Boo dx  

It is clear a wave is possible with frequency 

k •  e dn 
o ) -  

eBn dn 
(5.16) 

Extending this treatment for a finite pressure plasma means allowing for changes in 
magnetic field. Rosenbluth and Sloan (1971) apply the constraint 

B . b  
bp• =0 

#o 

in a study appropriate for Tokomak device field configurations. Their treatment is 
almost certainly inappropriate for the magnetosphere as they ignore any field bending 
and yet in nearly all compressional signals observed in space compressional and 
transverse magnetic components are commensurate. 

A specifically hot plasma (/~ ~ 1) drift instability that has received much attention in 
a magnetospheric context is Hasegawa's (1969) drift mirror instability. Very recently 
Kremser et al. (1981) have invoked it to explain compressional low frequency signals 
seen at geostationary orbit. It can be examined by going back to our 'slow' mode 
calculations and dispersion relation (3.11) and including the effect of resonant particles. 
Our treatment of resonant particles in Section 3.4 is appropriate for a mirror geometry 
magnetic field. Hasegawa (1969) ignores bounce effects and assumes the magnetic field 
is straight. Resonance takes place when vii ~ og/kll , the wave parallel phase velocity. 
Making an appropriate adjustment one finds the resonant particle contribution to 
perpendicular plasma pressure in a straight field takes the form (cf. the working in 
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Section 3.4) 

af - - a x  ~P• =2~2i  dr•177 dvll co/Zblt ~((D-kll Vrl ) ~-W+ dW 

where X is the direction of non uniformity and dW/dX  is analogous to dW/dL,  thus 

dW (D 
- q B .  

dX k• 

If we ignore electron pressure and substitute this additional resonant pressure into the 
working prior to (3.11) in Section 3.2 one obtains a dispersion relation of the form (cf. 
Hasegawa, 1969) 

p(D2 = k~ +Pll + k~ + 2p• 1 - + ik 2 (co- (D*)F, 

( 5 . 1 7 )  

where 

F= ~• T• 1 Z((D/x/~kl Ivr ) 
T[I kll/)T 

Z(x) is the plasma dispersion function, VT is the parallel ion thermal velocity of an 
assumed Maxwellian distribution and 

CO* = --CO 
dX w a x  
dW c3f/dW 

k• v2 , (5.18) 
Ol 

where f2 is the ion cyclotron frequency and I the scale of the density gradient in resonant 
particles in the X direction. The frequency in (5.18) is very similar in form to that in (5.16) 
and is identified as the diamagnetic drift frequency. 

The last term in (5.17), the term that includes the drift effects is due to resonant 
particles. The second term on the r.h.s, is proportional to the total pressure perturbation. 
The first term, the one involving k~, is proportional to the field bending done by the wave 
as (using 2.2) 

b• = iBkfl ~, brl = iBk • ~ , 

where ~ is the field displacement. 
Hasegawa took the limit krl ~ 0 which is inappropriate for many observed signals as 

bll ~ b• He also took the limit co~ 0 which leads him to overestimate the extremity 
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of distribution required for instability. An approximate solution for co = co r + i? is 

pco 2 =k~ 7s + p •  + k2 ~oo + 2 p •  1 T• 

2poor ? = k 2 (co r - co*)F. 

For instability co r < co* where ~or is given by the first equation. To make co r small enough 
for instability in a plasma with T• > Tll the term proportional to k 2 needs to be small 
or even negative. One can then show that the plasma pressure approximately balances 
or even overbalances the magnetic pressure as, i f  we ignore resonant particle pressure, 

~p• + - - =  + 2 p •  1 -  
~o 

from Equation (3.10). 
The above reveals the drift mirror instability as an example of an instability driven 

by resonant particles and in many senses the instability is generically far removed from 
the simple low fl drift wave described by (5.16). The only way in which inhomogeneity 
enters in the above is in the resonant contribution. The reason is subtle and is because 
the treatment has been based on the wave magnetic field being entirely polarized in a 
direction at right angles to the direction ofinhomogeneity across B (X direction or L in 
a more realistic geometry). There is thus no field motion in the X direction due to the 
wave, and hence no convection of the background plasma pressure gradient back and 
forth in the X direction. In practice observations of compressional signals in the 
magnetosphere have shown a predominace of signals with large transverse meridional 
magnetic components (Sonnerup etal . ,  1969; Barfield and Coleman, 1970; Barfield 
et al., 1972; Hedgecock, 1976; Saunders et al., 1981) and thus large meridional motion. 
This discrepancy means the theory needs further development. As our simple calcula- 
tion in Section 3.2 for an Alfv6n wave in a straight field in the presence of a gradient 
showed, convection of a gradient back and forth produces changes in plasma pressure. 
In a 'slow' low frequency wave such pressure changes seem to have to be counter- 
balanced by a magnetic pressure change in antiphase. In cases where instrumentation 
has been available to test this hypothesis the expected phase relationship has been 
discovered (Hughes et al., 1979; Saunders et aI., 1981) but the pressure balance does 
not appear to be exact. 

6. The Ionosphere and h.m. Waves 

6.1. REVIEW 

An understanding of how the ionosphere affects hydromagnetic wave signals is crucial 
their ground counterparts, geomagnetic pulsations. Most observations of pulsations are 
made at ground observatories, which alone provide the capability of measuring large 
scale variations in the signal. The ionosphere substantially modifies the magnetospheric 
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signal, and this means that on the ground we obtain only an indirect measure of the 
magnetospheric fields. The ionosphere turns out to act as a spatial filter masking short 
scale horziontal signal variations from the ground. It also alters polarization by rotating 
the horizontal signal through a right angle. 

In Section 3.1 we described standing guided modes on field lines assuming that the 
electric field was zero in the ionosphere. This picture is modified when a finite ionospheric 
conductivity is introduced. Later (Section 5.1) we used an ionospheric boundary con- 
dition with a finite electric field and thus implicitly introduced a damping term into the 
mode coupling solution which removed an otherwise embarrassing singularity. A highly 
conducting ionosphere does reflect most of the incident hydromagnetic energy.back 
along the field line. However, the electric field is finite in the ionosphere and Pedersen 
currents flow. Wave energy is lost via Joule heating. This can be a significant source 
of signal damping. We reserve a full discussion of the ionosphere as an energy sink until 
a later section. In this section we will direct our attention to how the ionosphere modifies 
the signal seen on the ground. 

Full wave solutions (Nishida, 1964; Inoue, 1973; Hughes, 1974; Hughes and 
Southwood, 1976a) show that provided the signal has some horizontal variation, 
Pedersen currents in the ionosphere shield the incident magnetic field from the ground. 
The signal below the ionosphere is due to the ionospheric Hall currents and so is 
polarized ar right angles to the magnetospheric signal. Signals which vary horizontally 
on short scale lengths are screened from the ground because the signal at a ground 
station is given by the integrated effect of Hall currents flowing in a region of the 
ionosphere comparable in scale to the height of the E-region above the ground 
(~  120 km). 

An ionospheric reflection coefficient can be easily derived. The shielding of the 
magnetospheric signal by Pedersen currents means that in the ionosphere 

b = I~oZi .E ,  (6.1) 

where 2;p is the height integrated Pedersen conductivity. The fields in the magnetosphere 
signal are related by 

where 

b = --kll E ,  
0)  

0 )  2 
m 1 2  . 

Using subscripts i and r to denote incident and reflected waves we get 

and 

1 
bi + br = ( e i -  Er) 

A 

b i -~ b r = / .~O,~p(Ei  ~- El .  ) . 
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Hence the reflection coefficient is 

E r _ 1 - #o Z v A  (6.2) 

E i 1 + #o r, e A  

One way of picturing this is that the propagation of the wave along the flux tube is 
governed by an effective impedance/~o A. The reflection is caused by the mismatch 
between this and the inverse of the integrated ionospheric conductivity (Maltsev et al. ,  

1977; Mallinckrodt and Carlson, 1978). 
Thus the product of the integrated ionospheric conductivity and the Alfvtn speed on 

the field line above the ionosphere determines the reflection coefficient and the type of 
field line boundary condition. If the ionospheric conductivity is high, most of the incident 
wave energy is reflected and the electric fields of the incident and reflected waves cancel 
so that the ionospheric electric field is small and the field line is nearly tied in the 
ionosphere. Reflection is poorer for a typical nightime conductivity. A very low 
conductivity can give rise to the situation where the magnetic fields of the incident and 
reflected waves tend to cancel, the electric field and displacement of the foot of the field 
line in the ionosphere are large, and new standing modes are possible with a free-ended 
boundary condition for the end of the field line (Newton et al . ,  1978). If the ionospheric 
conditions at the two ends of the field line are very different new quarter wavelength 
modes are possible. This has been investigated by Allan and Knox (1979a, b). 

6 . 2 .  S I G N A L  B E H A V I O U R  I N  A T M O S P H E R E  A N D  I O N O S P H E R E  

Dungey (1963b) first considered the effect of the ionosphere on a hydromagnetic signal 
with a horizontal variation. He split the signal into two parts and showed that the part 
with a vertical current associated with it (i.e. (curl b)z # 0) is effectively screened from 
the ground, so that on the ground b is polarized at right angles to the direction of 
horizontal variation. 

Analytical solutions were also developed and compared to numerical solutions in 
Hughes and Southwood, (1974, 1976a) and Hughes (1974) where some of the 
assumptions and approximations are discussed more fully. Southwood and Hughes 
(1978) also showed that the ground signal can have a significant vertical component bz, 
if the scale of horizontal variation in the signal is comparable to the skin depth in the 
conducting Earth which can be several tens or even hundreds of kilometers at these 
frequencies. In the past vertical components were assumed to be associated with Earth 
conductivity inhomogeneities, but we show here that a vertical component can be 
induced over a uniform Earth following the arguments of Southwood and Hughes 
(1978). 

We take the Earth to be fiat and to have a uniform conductivity G" In comparison 
to the ground the atmosphere is a bad conductor, but the ionosphere conducts well 
though in an anisotropic manner. We can approximately describe the ionosphere by a 
thin conducting sheet with integrated Hall and Pedersen conductivities 2;, and Zp. We 
taked the ambient field to be directed vertically downwards B = -B2. The conductivity 
in and above the ionosphere is infinite in this direction. 
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We take the horizontal variation to be in the x direction so that 7 - (ik, O, a/az). We 
can then split the signal into two parts, one with (bx, bz, Ey) non zero and the other with 
(Ex, Ez, by) non zero. Because free space wavelengths at pulsation frequencies far 
exceed an Earth radius, in the atmosphere these signals are quasistatic, that is 

0Ex ikb Z ~- - and ikE~ ~- 
Oz ~z 

and by and Ey are negligible. Below the ground both bx and bz must decay with depth 
and be related by 

7 2 b  = /~oagiogb = 2ib/b 2 , 

where b is the skin depth. Requiring 7 .  b = 0 we find that at the Earth's surface, z = 0, 

b~_ ikb 
bx ( k262 + 20.1/2 - ie, say. (6.3) 

Above the Earth's surface the signal is magnetostatic. The solution satisfying this 
requirement and boundary condition (6.3) is 

b x= e ~z + - -  e-XZ 
bg 

bz i ( ~ ) e k Z +  i ( ~ - ) e  -k~ (6.4) 
bg 

where bg is the value of b x at z = 0. 

These magnetic fields have to be matched through the ionosphere with the magneto- 
spheric signal. As only horizontal currents can flow in the thin ionospheric sheet, b z must 
be continuous, but jumps can occur in the horizontal components. 

Above the ionosphere in the magnetosphere the signal is hydromagnetic. As this 
model is set up (B II ~ and k _k p) a guided hydromagnetic signal will have a magnetic 
perturbation in the y direction while a fast mode signal will have both bx and b~ 
perturbations associated with it (cf. Figure 1). If co 2 ~ A2k 2, as almost certainly must 
be the case for pulsation frequencies and terrestrial scale lengths, a fast mode signal is 
non-propagating in the vertical direction and if 1/k is much less than, say, the length 
of the field line, (exactly equivalent to the first condition if the pulsation signal is a 
standing transverse Alfv6n wave) b z and b x must decay exponentially with height on a 
scale length 1/k. Taking this together with 7 .  b = 0 means 

b~ = ibxm e - k ( z  - h) , 

where h is the E-region height and b~m is the value of b~ just above the ionosphere. As 
bz is continuous through the ionosphere 

b x m - ( ~ - 2 1 ) e ~ h + ( ~ + 2 1 ) e - k h .  (6.5) 
be 
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The second, electrostatic, part of the atmospheric signal has an electric field E~ 
associated with it which does not vary with height above about 20 km. This electric field 
drives both Pedersen and Hall currents in the ionosphere. As Ey is negligible in the 
ionosphere and by is negligible below it, Amp+re's law gives 

by,. = - #o Y.v Ex ,  (6.6) 

bxm - bxi = #o Y"r~ Ex ,  (6.7) 

where bxi is the value of bx just below the ionosphere, which (6.4) tells us is 

bg 

We can use (6.5)-(6.8) to obtain/t a relationship between bym, the magnetospheric field 
associated with the transverse mode, and bg, the horizontal field on the ground, which 
is in the x direction. 

bym _ (1 - ~) e kh 2~p . (6.9) 

Equation (6.9) shows the polarization rotation between space and the ground reported 
by Nishida (1964), Inoue (1973), Hughes (1974), and others. It also shows that signals 
with large k have a much smaller amplitude on the ground than in space. This shielding 
starts becoming important when l / k  ~ h. Equation (6.9) together with (6.3) relate the 
magnetospheric field to the total surface field. Note that there are three controlling scale 
lengths in these equations, 1/k, h, and 8. h is the height of the E-region which is about 
120 kin. If 1/k  is much less than h the incident signal is effectively screened from the 
ground (6.9). fiis the skin depth of the signal in the Earth. For typical Earth 
conductivities b ~ h. I f k b  >~ 1 a significant vertical component is induced at the ground. 
An interesting class of signals are those with l / k  ~- b ~ h. Giant pulsations and pc5's 
both of which occur at high latitudes and which are very localized in latitude probably 
satisfy this criterion. Certainly they often have vertical and horizontal magnetic com- 
ponents of comparable amplitude (Green, 1979; Lain and Rostoker, 1978). 

Figure 8 (part of a figure from Hughes and Southwood, 1976a) shows results from 
a numerical full wave solution of the same problem we have just solved. It illustrates 
how the amplitudes of the magnetic components vary with altitude. A realistic iono- 
spheric conductivity model corresponding to average daytime, sunspot maximum 
conditions was used. Other parameters were co = 0.1 s-~, 1/k  = 25 km, and b ~ 38 km. 
These results concur with all we have predicted here. Note in particular that: 

(i) by which is associated with the guided Alfv6n mode, is shielded from heights below 
100 kin. 

(ii) bx and bz above the ionosphere are associated with the fast mode and decay 
exponentially with height on a scale 1/k. 

(iii) by and b x change rather abruptly around 120 km altitude where the ionosphere 
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Fig. 8. The variation with altitude of the amplitudes of the magnetic field components associated with an 
Alfv6n wave incident on the top of the ionosphere. These were calculated using a numerical full wave 
solution in the ionosphere. Note how the signal is polarised in the y direction above the ionosphere, but 
in the x - z p l a n e  below. The changes occur in the E-region current layer around 120 km altitude. 

(After Hughes and Southwood, 1976a). 

currents flow. bz is continuous through this region. The changes in b x and by are of about 
equal magnitude (bx actually changes sign) as Zp ~ E H in this model. 

(iv) b x and b~ decay exponentially below the ionosphere (cf. Equations (6.3) and (6.4)) 
while b x - bz at the ground as kb -~ 1.6. (There is a 90 ~ phase difference between bx and 

b Z at the ground, though this is not shown in this figure). 
(v) The ratio of by m to bg is about 102. 

6.3. EXAMPLES OF IONOSPHERIC SHIELDING 

In the last section we assumed a very simple horizontal variation. However the results 
are general as in theory a signal with any horizontal variation can be synthesized from 
Fourier components of this form. Figure 9 shows schematically how the fields and 

Field Aligned Current 

[:> Pedersen Current 

I ~ o | 

Gro 

Fig. 9. A schematic representation of how the field aligned currents associated with a field line resonance 
are closed in the ionosphere by Pedersen currents. This current systems is solenoidal and if the ionosphere 
conductivity is uniform, creates no magnetic perturbation on the ground. The magnetic signature on the 
ground is caused by the Hall currents which close in the ionosphere. The electric field in the ionosphere 
is everywhere parallel to the Pedersen currents. (This current system does not model a realistic field line 

resonance, but is the simplest one which produces a localized magnetic perturbation.) 
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currents are related in a very simple spatially localized transverse magnetic signal. We 
must emphasize that the field aligned current distribution depicted in this figure was 

chosen as the simplest one which gives rise to a spatially localized transverse magnetic 
perturbation and is not meant to depict the current flow associated with a real pulsation 
signal which must be much more complicated. However it does suffice to illustrate how 
the parallel currents are closed by Pedersen currents in the ionosphere. Taken together 
thejl I and Pedersen currents form a solenoidal current system which has no magnetic 
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Fig. 10. A mapping of the magnetic fields associated with a field line resonance through the ionosphere. 
The upper three pairs of panels show component  magnitude on the left and component  phase on the right. 
The bottom two panels show polarization in the x - y plane. See text for further details. (After Hughes and 

Southwood, 1976b). 
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signature on the ground-provided the ionosphere is uniform. The magnetic perturba- 
tions on the ground are caused by the Hall currents flowing in the ionosphere. It is only 
because the ionosphere is both a Hall and Pedersen conductor that any magnetic signal 
is observable below the ionosphere. 

The shielding of a more realistic signal is illustrated in Figure 10. The solid lines in 
this figure are a solution to the cartesian resonance model developed in Section 5.1. 
Equations (5.7) and (5.8) were evaluated using ~o = 0.1 s -1 and e = 100 km. The top 

two pairs of panels show the amplitude and phase of by and bx as a function of x - x o 
which corresponds to latitude. The bottom pair of panels shows the polarization of the 
magnetic signal in the x - y plane. The dashed lines depict the fields that would be seen 
on the ground if the signal shown as solid lines were incident on the top of the ionosphere 
(taken as an altitude of 2000 kin). The mapping through the ionosphere and atmosphere 
was done numerically using a full wave solution procedure (Hughes and Southwood, 
1976a, b). The ionospheric conductivity model corresponded to daytime sunspot 
minimum conditions, and the Earth had a uniform conductivity of 1.1 • 10 2 
siemen m-  1 (and so a skin depth of 38 km at this frequency). 

Points to be noted are: 
(i) The input signal has a peak in by which is associated with a sharp phase change. 

bx barely has a peak. Both components show a decrease in amplitude with x away from 

the peak. 
(ii) The signal on the ground is rotated through 90 ~ so that b x on the ground 

corresponds best with by above the ionosphere (both are shown in the top panel, note 
the 180 ~ phase difference) and by on the ground corresponds best with bx above the 

ionosphere. 
(iii) The correspondence is no better than it is because the signal has been severely 

spatially filtered. Features with scale lengths less than about 120 km cannot be seen on 
the ground. The most dramatic example is the reduction in amplitude of the peak in bx 

on the ground compared to the peak in by in space. 
(iv) The appearance of bz on the ground is due to the localized nature of the source. 
(v) The polarization reversal near the peak in the signal does not occur on the ground. 
(vi) The polarization azimuth on the ground is 90 ~ different from that in the 

magnetosphere. 

7. Impulse Response of the Magnetosphere 

7.1. A L F V I ~ N  W A V E S  A N D  I O N O S P H E R E - M A G N E T O S P H E R E  C O U P L I N G  

The transverse mode carries parallel currents (Section 3.1). These currents, called 
Birkeland currents in the magnetosphere transmit stress along the magnetic field. 
Figure 11 illustrates an idealized model designed to illustrate this. Magnetospheric 
plasma is flowing over the collisional ionosphere. In the magnetosphere flow velocity 
u and electric field are related by E = - u  x B. The collisions between ions and neutrals 
in the ionosphere mean the Pedersen conductivity is significant and the electric field 
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Fig. 11. The arrangement of  Birkeland or field aligned currents required for a magnetospheric flow to drive 
convecting field lines through the ionosphere. (a) The field lines convecting out of the page require an 
ionospheric Pedersen current to provide the J x B force which sustains the ionospheric flow. The Pedersen 
current closes via the Birkeland currents and a magnetospheric current JM and Jp flow the field lines are 

tilted in the direction of the flow. 

drives Pedersen currents there which cause a drag on the flow. These currents close in 
the magnetosphere as Figure 1 l(a) indicates. For the moment we need not be concerned 
as to how the closure currents are carried. Suffice to note that in the magnetosphere 
j x B opposes the plasma motion and ]" E < 0 as in a generator. Figure 1 l(b) illustrates 
the magnetic perturbation produced by the Birkeland current system. From this diagram 
one can see from the appropriate term of the Maxwell stress tensor that the parallel flux 
of perpendicular momentum balances the drag force exerted by the Pedersen currents 
on the ionosphere. IfJp is the sheet current density flowing in the ionosphere (illustrated 
in Figure 1 l(a)) which closes the sheet field aligned current, JII in Figure 1 l(a), one finds: 

Flux of perpendicular momentum along B/unit area = Bo AB/#o, 

= JpBo, 
= Force on ionosphere/unit 

area. 
In a similar spirit one can show the Poynting flux associated with AB balances Joule 

heating: 
Flux of energy along B = E x AB. 13/kto, 

= - u "  AB Bo/#o, 
= J p ' E ,  
= Joule heating/unit area. 

Now consider a perturbation in a system like this. Say, the ionospheric conductivity 
suddenly increases at one end of field lines initially connecting identical ionospheres. 
If flow is occurring currents and electric field will have to reconfigure to take account 
of the increased dissipation in the modified ionosphere. As Figure 12 indicates the initial 
response is that the current excess produced by the increased conductivity is carried Off 
up the field line by an Alfv6n wave. The parallel current/unit length in the wave is 2; 1 AE 

where AE is the wave field and Z~ A = (p/Vo)W2/B. This follows from the momentum 
equation which states 

~u• 
j •  - -  

Oz 
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Fig. 12. The initial Alfv6nic pulse produced by a sudden change in ionospheric conductivity travels along 
the flux tube extending from the region of the ionosphere where this change took place. Field aligned currents 

closed by a]M perpendicular to B in the wave front flow along the edges of the flux tube. 

in the frame of the wave front. Integrating over the wave front (where 8/~?z 4= 0) gives 

f dz j •  = ( A E / B ) ,  (p /m)  1/2 

= Z, A A E  , 

= J[[ �9 

Because the front carries the excess current due to the conductivity enchancement, A2Jp, 

Jll = Z'AAE = A ~ p E -  ~,pAE.  (7.1) 

At the opposite ionosphere the wave will reflect and the wave electric field will be 

AE (1) = AE  (~ (1 - R) ,  

where R is the reflection coefficient. From (6.2) 

R_ Z,-ZA 
G+ZA 

I f  2~p > I;a, R is positive and the electric fields of the initial wave and first reflected 

wave will tend to cancel. However, as the reflected wave is travelling in the opposite 

direction along B, JII in the waves will add and 

Jll 1) = X A A E  (~ (1 + R) . (7.2) 

I f  R is negative (which is less likely) the currents tend to cancel but the electric fields 

add. 
The wave will be reflected again at the ionosphere at which it originated and continue 

to reflect back and forth along the field each time being reduced in amplitude. If  we 
assume that the perturbation in 2;p is not sufficient to significantly alter the reflection 
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coefficient, after n reflections 

A E  ('o = A E  (~ (1 - R + R 2' �9 �9 + ( -  1) n R n) = 
AE(~ + ( - 1 ) + R  ~ + ' )  

I + R  

Jt~ ~ = Z A A E ( ~  + R + R 2 + ' ' "  + R n) = 
~AAE (~ (1 + R n) 

I + R  

(7.3) 

(7.4) 

AS n --~ oo 

AE (o) 

2 Zp / 
(7.5) 

A E  (o) 
JI[ ~ = S A A E ( ~  - R) = (22p + 22A). (7.6) 

2 
Thus 

j!?>= Z',+AE<+> 

and by eliminating AE (~ using (7.1) we get 

A E  = A Z p E / 2  Zp , 

J t ~  > = � 8 9  

In the final steady state half the excess current required is drawn from the opposite 

ionosphere. This current flows in sheets of field aligned current at both edges of the 
conductivity enhancement linking the ionosphere at either end of the field line. Between 

the current sheets E, and hence the convection velocity, is reduced because of the extra 
ionospheric drag caused by the enhanced conductivity. In addition the field lines are 

tilted in the direction of flow. This can be pictured as the field lines being held back by 

the ionosphere with the enchanced conductivity while the field aligned currents 
distribute the stress from one ionosphere to the other. 

The time the system takes to come to this final state depends on the ratio of Z A to 
Sp and on the Alfv6n travel time between ionospheres. If  2~p > 2A, as will normally be 
the case, R > 0, the current in the initial pulse is less than the final current (7.4) and 

at each reflection the current increases. We obtain a measure of the number reflections 
the system takes to come to equilibrium, rid, from the ratio of the initial current pulse 
to the final equilibrium current 

nd = 2zA/(z,+ + zA) .  

I f  on the other hand Zp < ZA, R < 0 and it is the electric field which increases with each 
reflection. Then n d is given by the ratio of the initial electric field pulse to the final change 

in the electric field and 

nd= 2Zp/(2~p + ~2A). 
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In either case an Alfv6n mode hydromagnetic pulse will travel back and forth along 
the field line more than n a times before new steady state is reached giving rise to a 
periodic disturbance in the magnetosphere with a fundamental equal to the lowest 
Alfv6n mode eigenfrequency of the local field lines. The ratio of the damping time to 
the fundamental period of this signal is nd.Thus the signal is damped least when 22 A and 
2;p are most different. In the very unlikely case that 1~ a = Z~, the initial pulse carries just 
the current required in the final state, the reflection coefficient is zero, and no periodic 
signal results. The field line is analogous to a transmission line with a perfectly matched 
load (the ionosphere) on the end (Newton et aI., 1978). 

The transient hydromagnetic signal set up in this way would couple to other modes 
in the magnetosphere (see Section 5) and as a result would be detectable throughout the 
magnetosphere. The classic observed magnetospheric transient signal is the pi2 class of 
pulsations. 

7.2. Pi2 SIGNALS 

In the last section we saw how a sudden change in ionospheric conductivity sets up an 
oscillating transient signal in the convection flow. The signal damps due to ionospheric 
absorption and the damping time constant depends on the mismatch between the 
ionospheric integrated conductivity and the characteristic Alfv6n impedance, 
(p /#oB2)  1/2, of the field line. In general any sudden change in the convection flow will 
give rise to such transients. Mallinckrodt and Carlson (1978) showed that much larger 
amplitude signals are possible if the source is magnetospheric, for the amplitude of an 
impulse initiated by an ionospheric change is limited to the value of the background 
electric field existing prior to change. No such limitation applies to magnetospheric 
sources. 

The most clearly transient signals commonly seen in the magnetosphere are pi2 type 
pulsations. Their source is in the auroral zone where they have a large amplitude and 
the signal is noisy containing both low frequency parts with periods around 100 s and 
higher frequency pil noise. A second smaller amplitude peak occurs at lower latitudes 
near or at the plasmapause. Here the signal is more clearly a damped wave form with 
a period typically between 50 and 150 s. These is a very close association between the 
onset ofmagnetospheric substorms and the occurence ofpi2 oscillations, and they have 
been successfully used to time substorm onset (e.g., Rostoker, 1968; Sakurai and Saito, 
1976; Pytte et al., 1976). 

The exact mechanisms involved in the onset of a substorm are still a matter of much 
debate (Rostoker et al., (1980) but it is clear that they involve rapid changes in the field 
aligned Birkeland current systems that link the magnetosphere and ionosphere, 
enchancement and movement of the auroral electrojet and so on. Any rapid change in 
the Birkeland currents must be carried by an Alfv6nic surge of the type we discussed 
in the last section. This will be reflected off the high latitude ionosphere and ring in the 
manner we described. 

In a uniform cold plasma parallel current is carried only by Alfv6n mode waves while 
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pressure perturbations occur only in fast mode waves (cf. Figure 1). The magnetosphere 
is neither uniform nor cold, but in general we would expect both modes to be excited 
as changes in the field aligned currents will be accompanied by changes in particle 
pressure which will be communicated by fast mode signals. In addition the non- 
uniformity will couple both modes. The few observations of pi2's made in space (Lin 
and Cahill, 1975; Arthur and McPherron, 1980; McPherron, 1980; LaQuadra and 
Hughes, 1981) all show them to have a significant compressional component there. The 
fast mode propagates isotropically and will disperse the signal throughout the magneto- 
sphere. However here again the nonuniformity is important. As we showed in Section 5 
due to the nonuniformity both field line resonances can be set up on isolated magnetic 
shells where the signal frequency equals the transverse mode Alfv6n wave eigen- 
frequency and surface waves can be excited on sharp boundaries such as the plasma- 
pause. Southwood and Stuart (1980) argue that the peak in pi2 amplitudes seen at 
midlatitudes is due to the latter. The fact that the frequencies present in a pi2 signal do 
not change with latitude supports this. A boundary wave has a frequency characteristic 
of the boundary and an amplitude which falls off exponentially away from the boundary 
(see Section5.1). The exponential fall off should be somewhat sharper in the 
plasmtrough than in the plasmasphere because the density is lower there. This coupled 
with the ionospheric screening effect (Section 6.3) explains why the polarization reversal 
which is expected at the amplitude peak is at times observed poleward of the peak on 
the ground, and why the amplitude peak is sometimes observed a little equatorward of 
the expected plasmapause position. 

One might expect transients to be excited at midlatitudes by changes occurring in the 
midlatitude Birkeland current system, the so called region II currents, which result from 
pressure gradients in the ring current plasma. Such transients have not been observed. 
The reason could be that the changes in these currents occur more gradually than the 
changes in the higher latitude system. Vasyliunas (1972), Jaggi and Wolf (1973), and 
Southwood (1977b) are amongst those who have discussed the time scale for these 
currents to responds to changes in convection. This so called shielding time is 
proportional to the ionospheric conductivity and varies inversely with plasma pressure. 
Estimates suggest that it might become as low as a few minutes at night which does not 
much exceed the Alfv6n travel time. It could be that the short scale waves excited are 
screened from the ground by the ionosphere as we discussed in Section 6.3. 

8. Sinks of Energy 

8.1. THE IMPORTANCE OF DAMPING 

If we are to understand the characteristics of hydromagnetic signals in space, an 
appreciation of how energy is lost from the signal is as important as knowing about the 
energy sources. This is made evident by our having been forced to introduce some form 
of signal damping in earlier sections. In this section we draw together several ideas 
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presented elsewhere in the paper so that we can present a coherent picture of hydro- 
magnetic signal damping in the magnetosphere. 

We have discussed the role of the ionosphere at some length (Section 6). Joule heating 
in the ionosphere is one of three prime candidates we shall consider as energy sinks and 
is probably the most important. The others are Landau damping in its most general 
sense and coupling to the kinetic Alfv~n wave from which energy is lost via very eff• 
Landau damping. Generalised Landau damping describes any collisionless resonant 
interaction between waves and periodic particle motions which transfers energy from 
the wave to the particles. Resonance with the gyro, bounce and drift motion of particles 
are all possible in the magnetosphere. The process was described in Section 3.4. For 
damping the nett energy transfer must be from waves to particles. The direction of 
energy transfer depends only on the shape of the plasma distribution function in phase 
space as was shown in Section 3.4. For this damping mechanism to be effective there 
has to be a significant stable plasma population which can resonate with the wave. In 
the third mechanism finite Larmor radius effects are important; l / k •  is the order of 
the ion Larmor radius. For kinetic Alfvtn wave coupling any large scale hydromagnetic 
wave must develop a rapid variation across B. Once energy is in the kinetic Alfvtn wave 
mode it is very efficiently lost via Landau damping to the cold plasma. Each of these 
wave damping mechanisms heats a different plasma population. Ionospheric Joule 
heating heats the collisional ionospheric plasma at the field line feet. Landau damping 
selectively heats ring current particles resonant with the wave. Kinetic Alfvtn waves heat 
the cold electrons along the entire flux tube. 

We have already shown (Section 5.1) how the spatial scale of a field line resonance 
region is controlled by the amount of damping in the system. One other controlling factor 
is the spatial variation of individual field line resonance frequency. In addition if the 
energy source is not continuous it will have a finite bandwidth at least as large as the 

bandwith of the source. For kinetic Alfvtn wave damping to be significant the resonance 
width must be as narrow as the scale of the local ion Larmor radius. This is only possible 
if both the source is sufficiently narrow band and neither of the other damping 
mechanisms is operating efficiently. These conditions make it seem unlikely that mode 
conversion to kinetic Alfvtn waves is generally the dominant sink of energy. 

Although the amount of damping a hydromagnetic signal experiences plays an 
important role in determining the characteristics of the signal and is a controlling 
parameter in determining the width of a resonant region, it is an extremely hard quantity 
to estimate for a particular signal. As we expect most energy sources to operate for a 
finite time or even be quasicontinuous, the temporal wave packet structure of the signal 
can only give us a crude lower limit of the damping. Only recently have any reliable 
measurements of resonance region widths been made, and then only for a very few 
events. Such measurements have to be made in the ionosphere using radar techniques 
(Walker et al., 1979) or in the magnetosphere using closely spaced spacecraft (Singer 
et al., 1979, 1982) as ionospheric shielding prohibits such measurements being made 
from the ground. However to derive the damping decrement from a measured width 
requires a knowledge of how the individual field line eigenfrequency varies across the 
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region, and hence a knowledge of plasma mass density variations. This is also hard to 
measure. However, for one wave event Walker and Greenwald (1980) were able to 

estimte the rate of energy deposition via Joule heating in the ionosphere. They found 
that a typical large amplitude pc5 event may deposit in the ionosphere a few percent 

of the energy dissipated in a typical substorm. 

8 . 2 .  I O N O S P H E R I C  J O U L E  H E A T I N G  

We have already shown that ionospheric shielding of a magnetopsheric Alfv6n wave 
implies that b =/~o2;pE there, (Section 6.1) and we used this as an ionospheric 
boundary condition in Section 5.1. To understand physically why this boundary 
condition implies damping we can rewrite Equation (6.1) as 

E * b  
- z ,  IEI 2 . ( 8 . 1 )  

/~o 

Equation (8.1) can be interpreted as showing that as the downward Poynting flux in an 
Alfv~n wave (the 1.h.s.) is balanced by Joule heating by Pedersen currents in the 
ionosphere (the r.h.s.). When a field line is bounded by perfectly reflecting (infinitely 
conducting) ionospheres, oscillations of E and b in a standing wave are in quadrature 
everywhere along that field line, and E = 0 at the ends. Introducing a finite ionospheric 
conductivity requires that E and b be non zero and in phase at the ionosphere. This 
introduces a new part to the E and b oscillations which is in time quadrature with respect 
to the solutions for the infinitely conducting case. At the ionosphere this is the dominant 

part of the electric field. It turns out that this is equivalent to saying that kll must now 
be complex, just as we used in Section 5.1. Unless a source of energy is included in the 
model, co must also be complex in order that c~/kll = A.  

Inspection of the ionospheric reflection coefficient (6.2) shows that perfect reflection 
occurs for either ~p = ~ or ~p = 0. In either of these ideal cases a true standing mode 
can be excited. When ~p ~ oo the electric field and field line displacement are very small 
at the ionosphere and we can describe the mode as being fixed end. We illustrated such 
modes in Figure 2. Standing waves in the magnetosphere will normally approximate this 
shape, i.e., have small ionospheric electric fields. In the other extreme when ~p -~ 0 a 
different type of standing mode occurs, with b and hence field line tilt very small at the 
ionosphere but E and hence field line displacement large. We describe these as 'flee-end' 
modes. Between the two extremes there is a range where ~p ~ 1/t~o A where is most 
severe and describing a mode as free or fixed end has little meaning. 

Numerical solutions of uncoupled toroidal and poloidal standing Alfv~n modes in a 
dipole background field with finite ionospheric conductivity boundary conditions show 
that severe damping occurs only over a limited range of ~p values (Newon et al., 1978). 
Figure 13 shows how the damping decrement ~/o~ r varies as a function of,~p and L shell. 
For z~p large the mode is the second harmonic fixed-end poloidal mode, damping is small 
and 7 ~ 1 / L  ~p (cf. Section 5.2). For z~p small the mode is the fundamental free-end 
poloidal mode (note: this has the same structure at the equator as the second harmonic 
fixed and mode, a node of E and antinode of b), damping is again small but now 
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Fig. 13. The damping decrement, y/cot, of a standing field line oscillation caused by ionospheric absorption 
is shown as a function of the integrated ionospheric Pedersen conductivity, I v, and L shell. Extreme 
damping occurs when the ionospheric conductivity nearly matches the field line impedance, 1/#oA. The 
value of Zp at which this occurs depends on the mass loading of the field lines. This calculation uses a dipolar 
magnetic field and a density model p = 1000 (B/Bo) amu cm -3, where B o is the equatorial field strength 

on the Earth's surface. (After Newton et al., 1978). 

7 oc Z p / L .  In between these extremes when Zp ~ 0.1 Siemen, 7/cot reaches a maximum 
the value of which depends on L shell, but does not go infinite as the simple reflection 
coeffient (6.1) implies. Thus perfect matching between the field line impedance and 
ionospheric impedance never occurs. However, damping here is still severe. 
(7/c0r = 0.15 implies an e-fold reduction in amplitude per wave period.) Not shown in 
the figure is the fact that co r at a given L shell changes little as 2;p is varied, and that 
the change that does occur happens near the value of I;p for whcih damping is a 
maximum at that L shell. Newton et al. (1978) also found that the value of 7 does not 
depend strongly on the particular harmonic of field line oscillation (though co r does of 

course) as is implied by (5.2). 
Typical daytime ionospheric conductivities are > 1 Siemen while nighttime conduc- 

tivities are typically 0.1 Siemen and only under extremely quiet and dark conditions can 
they get as low as 10 -2 Siemen. Thus we expect the fixed ended modes to be the 
dominant type of field line oscillation which will be lightly or moderately damped 
daylight. At night damping will be more severe and very occasionally the conductivity 
may get so low that a free-ended oscillation is possible. 

The effect of ionospheric damping on the structure of a field line resonance has also 
explored by Allen and Knox (1979a, b). Their analytical WKB solutions only apply 
when damping is weak but they have extended their solutions to the possibility of 
different ionospheric conductivities at either end of the field line. In this case a series 
of new modes exist. These new modes have one fixed end and one free end boundary 
condition, have an integral number of quarter wavelengths along the field line and are 
asymmetric about the equator. 
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8.3. L A N D A U  D A M P I N G  

In Section 3.4 we showed that particles in resonance with a low frequency wave could 

provide a current in phase or in antiphase with the electric field. In the latter case 

instability occurs and it is discussed further in Sections 4.2 and 5.3. On the other hand 
if the total resonant particle current is in phase with the wave electric field the resonant 

particles are behaving resistively, there is a next absorption of wave energy due to 
resonance and wave damping. In the absence of any distribution gradients in space 
damping must occur provided the particle distribution monotonically varies with energy. 

As an example let us consider an Alfv6n wave primarily polarized in the meridian 

(electric field mainly east-west) .  The energy associated with the Alfv6n oscillations is 

mainly kinetic and magnetic energy if the plasma fi is low and there should be equi- 

partition of energy. The total energy is 

fdV(ipu2+b2/8#o)= fdVpu z, 
v v 

where u = E x B and b, E are wave magnetic and electric fields. If  the wave is damping 

at a rate y, the rate of loss of energy in volume V is 

2Y f dVp u2 . 
i /  

v 

This must equal the Joule heating of the resonant particles given by the expression (3.40) 

derived in Section 3.4. 

Estimating 

and so on, as in Southwood (1976) one finds 

]) Pres Vr2es 

CO p C O 2 L 2  ' 

where Pros is the mass density of resonant particles. For a standing Alfv6n wave 

COL ~ A e q ,  

where Aep is the equatorial Alfv6n speed thus 

Y Pres Vr2es 
fires CO pAe2p 

where fires is the fl of the particles in resonance. I f  the major resonance is bounce 
resonance of particles with COb ~ CO, we can also note Vres ~ COL and so also 

CO p 
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Provided that gradients are smooth enough that growth does not occur, this order of 
magnitude estimate shows that this collisionless damping process can be effective if the 
ion temperature is high enough that there be a sizeable fraction bouncing at the Alfv6n 
wave frequency. Because 7/co depends on the ratio of mass density, electrons are not 
effective in damping the wave. 

8.4. MODE CONVERSION 

In our treatment of field line resonance in Section 5.1 we explicitly included a form of 
energy absorption, namely damping in the ionosphere. Equations (5.7) and (5.8) showed 
the resonance region has a thickness in the direction perpendicular to B of scale ~ where 
e is proportional to the rate of energy absorption in the ionosphere. Equation (5.8) shows 
that the field displacement in the y direction is proportional to a modified Bessel function 

~y oc K o (2(x - x o + i e ) )  o c  K 1 (2(x - x o + i e ) )  . 

Thus near x = x o, the resonance region, Cy ~ 1/~. Now because the wave energy density 
is proportional to 42 in the vicinity of resonance the volume rate of absorption of energy 
per unit length is y is proportional to the rate of absorption divided by the resonant region 
thickness e. However both the rate of absorption and the thickness are proportional to 
e so the volume rate of absorption is independent of e (see e.g., Southwood, 1974; 
Hasegawa and Chen, 1975). If the rate is decreased the amplitude and energy at 
resonance rise but the resonance region thickness decreases. This result is independent 
of the precise absorption process invoked. In our calculations in Section 5.1 we invoked 
ionospheric damping because it seems to us likely to be the commonest process. Let 
us now consider what happens if we have a source of energy feeding energy into a 
resonance region where ionospheric damping is very weak (perfect reflection). The 
Landau damping process we examined in the preceding section could then take over 
but let us also assume that there are few warm (~  keV) ions present capable of 
resonating with an Alfv6n wave. If we switch on the source at time t = 0 initially the 

amplitude at resonance will grow secularly (Radoski, 1974) as the amplitude of any 
oscillator driven at its resonant frequency does. A simple consideration of the Fourier 
uncertainty principle shows it takes a time of at least 1/e duration to feed energy to 
within a shell of thickness e about the resonance (see e.g., Southwood's, 1975, 
discussion). A weaker absorption rate means a longer time to set up a steady resonance 
wave structure. At some point if the absorption is weak enough the resonant thickness 
becomes small enough that hydromagnetics becomes suspect. It is straightforward to 
see when this is so. Hydromagnetics breaks down when scales are comparable with the 
ion Larmor radius. Our discussion of the kinetic Alfv6n wave in Section 3.3 indicated 
that in such circumstances electron pressure effects could be important. In fact as 
Hasegawa and Chen (1975, 1976) point out a short wavelength Alfv6n wave modified 
by finite Larmor radius terms will be set up in the vicinity of resonance Because it has 
a strong parallel electric field component it can suffer substantial Landau damping from 
electrons bounding back and forth along B with velocities comparable with the Alfv~n 
speed. The damping is proportional to the number of electrons (not mass density) 



T H E O R Y  O F  H Y D R O M A G N E T I C  W A V E S  IN T H E  M A G N E T O S P H E R E  357 

(Hasegawa and Chen, 1975, 1976). The short wavelength mode propagating perpen- 
dicular to B only occurs on the low Alfv6n speed, high-density side of resonance and 
thus the energy deposition takes place only one side of resonance if this process is 
dominant. The short wavelength (less than an ion Larmor radius) across the field gives 
this process an obvious observational signature to be looked for in space craft data. Of 
course if there is a cold electron population present (see Section 3.3) the kinetic Alfv6n 
wave parallel electric field is shorted out and the process is ineffective even if the 
wavelength is as short as the ion Larmor radius. 

9. Other Problems 

We have concentrated on theory in this paper and this has biased us to describing the 
processes we understand. In this closing section we have chosen to highlight some 
phenomena we feel are not well understood and where more work is warranted. We have 
singled out pulsating aurora for particular emphasis because there is a wealth of 
observation and few theoretical papers. Other problems we discuss are the pitch angle 
scattering of heavy ions and standing waves in high speed flows. 

9.1 PULSATING AURORA 

Pulsating aurora is a problem which falls clearly in the ULF (ultra low) frequency band 
which also embraces all the other phenomena described in this paper. It is of considerable 
interest if only because of its dramatic appearance. This type of auroral display is most 
often seen between midnight and 10 : 00 LT during the recovery phase ofmagnetospheric 
substorms and occurs on what appear to be closed field lines equatorward of the much 
more dramatic bright and often rapidly moving auroral arc structures usually associated 
with substorms. The intensity of pulsating aurorae is weak. However, the light intensity 
of well defined patches, usually only a few tens of kilometers across and with a well 
defined shape, switches on and off in an intriguing quasiperiodic manner with periods 
between 5 and 20 s. Most observations are made optically (see reviews by Royrvik and 
Davis, 1977; Johntone, 1978) and have been much improved with the recent intro- 
duction of low light level television systems. A few important observations of the 
participating electron fluxes have been made using rockets (e.g., Bryant et al., 1975), low 
altitude satellites move too quickly to be useful. The rocket flights have shown that the 
changes in light emission are caused by modulations in the precipitating electron flux. 
The precipitating fluxes can usually be described by a Maxwellian distribution with an 
energy in the range 2-10 keV. There is usually only a small change (0.5-2 keV) in the 
temperature of the distribution during a pulsation. Perhaps the most dramatic clue to 
origin is that the higher energy electrons reach the ionosphere before the lower energy 
ones (Bryant et al., 1967; Lepine et al., 1980). The velocity dispersion shows that if the 
modulation is imposed simultaneously at all energies (as the data itself indicates) it must 
have occured a distance in the range 4-12R E away. For the field lines in question the 
distance from equator to ionosphere is about 8R w Secondly, whenever conjugate point 
correlations have been made (which is difficult due to the small scale size of the auroral 
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patches) the pulsations occur in phase in both hemispheres (Davis, 1969; Belon et al., 

1969). This both confirms that the pulsations occur on closed field lines and that the 
diffusion mechanism must occur near the equator and work equally well for electrons 
travelling in either direction along the field line. Ther are several more points which a 
good theory must explain. One rocket flew high enough to observe pulsating proton 
fluxes associated with the pulsating electron fluxes (Smith etaI. ,  1980). Pulsating 
aurorae usually occur at altitudes between 80 and 100 km, somewhat lower than 
neighbouring quiet aurorae which means that the pulsating electrons have higher 
energies. The pulsations occur in small patches or in rapidly propagating forms (Thomas 
and Steinbaeck-Neilsen, 1981). A recent observation is that the irregular patches drift 
at the ionospheric electric field drift velocity (Scourfield, private communication) which 
suggests they might be caused by structure in the cold plasma distribution. 

Pulsating aurorae are associated with magnetic pulsations. Several authors have 
shown there is a correlation (e.g., McPherron et al., 1968; Campbell, 1970; Heacock 
and Hunsucker, 1977), but it is not precise. Part of the problem may be in the fact that 
a ground based magnetometer integrates magnetic signals from over a much wider 
region of the ionosphere than the typical size of a pulsating patch (cf. Section 6) while 
the optical pulsation of neighbouring patches are often not well correlated. The type of 
magnetic pulsation seen on the ground which is most often correlated is the short period 
irregular pil type (variously called band limited pulsations, AIP, piC) which also occur 
in the early morning. This type of pulsation has not been seen at geostationary orbit 
although a search has been made (Arthur and McPherron, 1977). This result is some- 
what surprising as simple magnetic mapping leads one to think the phenomenon takes 
place on the closed field lines near geostationary orbit. Clearly there must be a link 
between the auroral and magnetic pulsations, but it is not clear how it is not clear how 
it is achieved; one could cause the other or both be the result of some other process. 
One connection that has been made between a rocket flight observation and syn- 
chronous orbit is the discovery of a high frequency 2.2 Hz modulation both in electron 
fluxes in the ionosphere and in VLF-ELF hiss in the magnetosphere (using the S-300 
GEOS-2 wave experiment) (Lepine etaI. ,  1980). Lepine et al. (1980) do not report 
modulation in field or electron fluxes at synchronous orbit however. There have not been 
many theories of the pulsating aurora and it is probably fair to say none can satisfy a 
point by point fit with observation. To date all theories have assumed that the electrons 
are precipated by VLF whistler mode turbulence causing pitch angle diffusion of 
electrons into the loss cone in the vicinity of the geomagnetic equator (Kennel and 
Petschek, 1966). The question then arises of how to modulate the VLF emissions and 
moreover idependently on neighboring flux tubes. 

Coroniti and Kennel (1970a) published one of the earliest theories. Their idea is that 
hydromagnetic drift waves produced at the inner edge of the electron plasma sheet by 
the unstable spatial gradients (cf. Section 3.2) would modulate the electron distribution 
which in turn could modulate the whistler growth rate and hence the pitch angle diffusion 
and precipitation. This mechanism depends on a pre-existing enhanced electron 
precipitation in which a critical balance between the injection and loss of energetic 
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electrons keeps the whistler mode growth rate just above marginal stability. Then any 
compression of the electron distribution by a compressional hydromagnetic wave would 
cause the whistler mode growth rate to increase, causing an exponential increase in the 
whistler mode amplitude and hence electron precipitation. This non linear coupling 
between the lower and higher frequency waves via the electron distribution function 
means that a small amplitude hydromagnetic wave can cause large fluctuations in the 
electron precipitation. 

The auroral zone is recognized as a source of atmospheric gravity waves and 
Luhmann (1979) suggested gravity waves as a source of pulsations. Some larger scale 
features of the aurora are reminiscent of the forms gravity waves produce in noctilucent 
clouds (Rothwell, private communication) but the short scale rapid pulsating features 
do not fit. Another approach is taken by Davidson (1979) who expands the ideas of 
Schulz (1974) and suggests that the magnetic pulsations seen on the ground are caused 
by the fluctuating precipitation. His idea is that the VLF waves causing the electron 
precipitation may modulate themselves quasiperiodically. The magnetic pulsations are 
explained as a consequence of the precipitation changing the ionospheric conductivity 
and hence causing changes in both the position and strenght of ionospheric currents 
which appear as a magnetic signal on the ground. This fits with the lack of  magnetic 
pulsations in space, but its hard to see how precipitation at typical pulsating aurorae 
altitudes (80-100 km) could significantly change the total ionospheric conductivity 
which peaks in the E region around 120 km to set up a significant signal at ground level. 

9 . 2 .  H E A V Y  I O N  S C A T T E R I N G  

Pulsating aurora present a challenge in an area where some work has already been done. 
The next topic has received almost no attention at all. This concerns the scattering of 
heavy ions by ULF waves. In the past few years it has become clearer and clearer that 
heavy ions of ionospheric origin form a significant population in the magnetosphere. 
Two or three separate processes can lead to injection of heavy ions. Ions may flow 
upwards out of the topside ionosphere on open flux tubes over the entire polar cap, ions 
can be accelerated by electric potential drops along B in the topside ionosphere above 
auroral arcs and ions can be heated perpendicular to the field by intense electrostatic 
turbulence. The fluxes of ion s from each process seem similar (Cowley, 1981). The conic 
distributions that result from perpendicular low altitude heating are the best documented 
and are seen over a broad range of auroral latitudes (CorneT etal., 1981). What is 
significant is that conic distributions seen at high altitude have a pitch angle distribution 
apparently much broader than would be produced by adiabatic motion from low 
altitude. (Even if heating at low altitude is entirely perpendicular to B particles should 
remain within a narrow cone of near zero pitch angle in the weak outer magnetospheric 
field.) Some process must cause a spread in pitch angle and on a fairly basis because 
ions appear to be scattered substantially in one bounce along B as downgoing collimated 
beams are not seen. 

The simplest idea of what could scatter these ions out of the ionospheric source (loss) 
cone is pitch angle scattering by gyro resonance with ULF waves. The rate of change 
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of pitch angle in a transverse electromagnetic wave field b, is proportional to qb/m where 
m is the ion mass. A rough estimate of the diffusion coefficient is then (q /m)(b2/B)  
where we have assumed the interaction time is of order a gyroperiod (Dungey, private 
communication). For an O + ion travelling at 100 km s- 1 (~  keV energy) on a field line 
extending to synchronous orbit vicinity it seems substantial wave fields are needed 
(b/B ~ 1/10) to provide scattering through a fraction of a radian in a fraction of a 
bounce. Such wave amplitudes are not commonly reported at frequencies near the 
O + gyrofrequency in the synchronous orbit neighbourhood. Further study seems 
warranted. A detailed calculation need not agree with a rough estimate. 

9.3. S T A N D I N G  W A V E S  I N  F L O W S  

Recently the Voyager mission has renewed interest in the interaction of conducting 
planets or satellites with flowing plasmas. In particular satellites such as Ganymede and 
Io at Jupiler and Titan at Saturn disturb the magnetospheric plasma flowing past and 

give rise to wake phenomena which were directly observed by the Voyager spacecraft. 
Io's electromagnetic signature was observed by Voyager 1 and has received the greatest 
attention (Ness et al., 1979; Krimigis etal., 1979; Neubauer, 1980; Southwood etaI., 
1980; Goertz, 1980). The Alfv~n (or transverse) hydromagnetic wave plays a major part 
in the interaction as it should in any interaction in which momentum is transferred 
between the obstacle (or its atmosphere) and the flowing plasma. 

We pointed out earlier in this paper (Section 7.1) the Alfv6n or transverse hydro- 
magnetic wave transmits perpendicular stress along the background magnetic field. The 
interaction between Io and the surrounding plasma of the Jovian magnetosphere 
appears to be dominated by momentum transfer and the disturbance Io creates in its 
immediate surroundings can be understood in terms of Alfv6n wave associated effects. 

No bow shock forms in Ios vicinity because the Jovian magnetospheric flow is 
sub-Alfv6nic with respect to Io. However, Io does slow the flow and extracts energy. 
It does this by virtue of its electrical conductivity. Consider generally what happens if 
an object which has an ohmic conductivity (i.e., dissipative) is placed in a plasma flow. 
The electric field associated with the flowing plasma causes ohmic currents to flow in 
the conductor. Flow energy is dissipated by Joule heating and the conducting regions 
absorb momentum from the flow in this process. Outside the conductor the field is 
frozen into the flow. Near the conductor the electric field is reduced because the 
conductor can be polarized. The flow is thus reduced. The field gets 'caught up' in the 
conductor, bent and the resultant Maxwell tension is such as to slow the flow outside 
the conductor or to accelerate the conductor in the direction of the flow as is illustrated 
in Figure 14 (from Southwood et al., 1980). 

In the plasma frame the conductor can be seen as 'plucking' the magnetic field lines 
as they get caught up. This is a good analogy. The plucking launches Alfv6n waves along 
the field direction in the plasma frame. 

Drell et al. (1965) first studied the problem and called the sheets of field aligned 
current which serve to transfer momentum between the flowing plasma and the obstacle 
Alfv~n wings. The sheets come out of the flanks of Io or its atmosphere and carry away 
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upstream 
field 

flow 

conductor., 

Maxwell tension 

Fig. 14. Schematic illustration of the interaction of a conduction body with a magnetized flowing plasma. 
The bending of field produced by currents in the conductor gives rise to a nett force on the conductor in 
the direction of the flow and is due to Maxwell tension as illustrated by broad arrows. (After Southwood 

et aL, 1980). 

I III I ll I 

I II 

T I I~,\ \\~ 
Field lines perturbed by conducting Io 
and location of Alfv&n wings 

Fig. 15. Schematic illustration of the magnetic field lines disturbed by Io. The plane of the sketch contains 
the undisturbed field B, the direction of the ambient flow VcR, and the center of Io. The black rectangle 
indicates where Voyager 1 passed with respect to Io. Because the disturbance is an Alfv6n wave the opening 
angle of the dotted lines indicating where the maximum perturbation is t a n - I M  A. (After Southwood 

et al., 1980). 
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the charge produced by the current flowing through its conducting regions. Between the 
wings, the field is strongly bent back in the direction of the flow. Because the bending 
constitutes the launching of an Alfv6n wave in the plasma frame the bend in the field 
propagates off away from Io along the magnetic field direction. In the frame of Io the 
disturbance pattern that emerges is that shown schematically in Figure 15. 

Any object embedded in and absorbing momentum from a flowing plasma should 
have such a standing Alfv6n wave disturbance pattern attached to it. Indeed the Earth's 
magnetosphere must give rise to such a disturbance pattern in the magnetosheath 
because momentum is transferred from the solar wind to drive the magnetospheric 
convection system. The opening angle is tan-lMA where M A is the Alfv6n Mach 
number of the flow and would be much smaller at Earth than Figure 15 indicates. 
However a further complication is that the convection may be driven by rather a patchy 
connection of magnetic field lines through the magnetopause as evidenced by the 
sporadic flux transfer events seen by the spacecraft (Russell and Elphic, 1978, 1979). 
If this is so the decelerated magnetosheath and solar wind plasma regions will be 
similarly patchy as will the associated Birkeland currents. 

Finally note that standing Alfv6n waves in flows in the magnetospheric interior have 
been suggested as sources of double current sheets in the nightside terrestrial magneto- 
sphere (Maltsev etal., 1974; Mallinckrodt and Carlson, 1978; Hayward, 1981). The 
underlying notions in these works are very similar to what we have outlined above. 

10. Epilogue 

It should be clear to the reader by now that the subject of hydromagnetic waves in the 
magnetosphere (or magnetospheres) is highly developed. We have attempted to give an 
ordered view of it here but as the subject is far from played out as a research field, some 
of our ordering may turn out to be illusory in the final analysis. In Section 9 we outlined 
some of the problems which require more work. We should also point out that we have 
neglected specialist areas of the subject. The substorm associated pulsation, the 
pi2 signal (see e.g., Southwood and Stuart, 1980) and the theory of charged particle 
behavior in hydromagnetic waves (see e.g., Southwood and Kivelson, 1981) are two 
such. Our aim has been to present an overview of basic hydromagnetic wave theory as 
it now stands. However we are both sad and pleased that the last words have not been 
written on even that subject. 
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