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Abstract. A simple mathematical model for competitive running is developed. 
This model contains the force and energy reserves as key variables and it 
describes their relationship and dynamics. It is made up of three submodels for 
the biomechanics of running, the energetics and the optimization. The model for 
the energetics is an extension of the hydraulic model of Margaria and Morton. 
The key geometric parameters of this piecewise linear, three compartment model 
are determined on the basis of well known physiological facts and data. 
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Introduction 

The running performance of an athlete is primarily determined by his force, 
energy reserves and breathing capacity. In addition the build of the athlete, the 
composition of his muscles and other biomedical factors are important. Finally 
psychological factors influence his performance. 

The main objective of this study is the construction of a simple optimization 
model for the force, velocity profile and energetics in running. Thus we shall 
neglect psychological factors and individual variations in build, biomechanics 
etc. This model is an extension of [3]. It is made up of three submodels, which 
describe the biomechanics, the energetics and the optimization. The model for 
the energetics is an extension of the hydraulic model of Margaria [16] and 
Morton [ 18]. Its geometric parameters will be determined on the basis of well 
known physiological facts and data. In a subsequent paper this model will be 
applied to world records and to estimate small effects in running. 

It is obvious that such a model can also be applied to other disciplines like 
swimming, skating, rowing or bicycle riding. 

The paper is divided into four sections: 

I Biomechanics 
II Energetics 
III Optimization 
IV Discussion 
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Throughout  we use the m kg sec-system, though sometimes the energy will be 
given in cal, 1 cal = 4,184 J. 

For  reasons of normalization, which will be explained in Sect. I, most 
quantities will be defined per kilogram of bodyweight. This normalization 
procedure effectively makes the mass dimensionless. The derivative of a function 
g of a single variable will be denoted by g'. 

I Biomechanies 

For simplicity we describe the motion of the athlete as one dimensional motion, 
where the coordinate axis coincides with the track. Thus x(t), v(t) will denote the 
position respectively the velocity of the center of mass at time t. 

By Newton's law the equation of motion is 

My(t)'  = Fl - Rint(V, x,  t) - Rext(V , x, t) (1)  

where M is the mass of the athlete and F~ the propelling force generated by the 
legs.  Rint,  Rex t describe the resistive internal respectively external forces. 

From this formulation it is clear that we do not take into account the 
internal degrees of freedom of the athlete. The main reason is that these features 
would complicate the model considerably and that so far we do not know an 
adequate description of the biomechanics of sprinting. Indirectly the internal 
degrees are taken into account via Rint, which is used to describe the dissipation 
of energy within each step cycle. Each step consists of a push off phase, a free 
flight phase and a braking phase. Thus this periodic acceleration and decelera- 
tion or cycles of "positive" and "negative" work [16] is largely responsible for 
the internal dissipation of energy. The internal friction will contribute to a much 
lesser extent to Rin t. We shall also assume that the track is smooth and 
homogeneous. Then Rin t and Rex t a re  independent of x. 

If an athlete runs with an almost constant velocity v and if _+ A is the 
variation of the velocity during each step cycle, the kinetic energy lost during 
each step is approximately given by 2MAy.  Thus the dissipated power is 
2M Av .  v, where v is the step frequency. The corresponding contribution to Rin t 
is thus 2M Av. Since runners increase their running speed by lengthening their 
strides and then by increasing v, we expect Rin t to grow at most linearly at higher 
velocities. This effect is partly counteracted by an increased saving of elastic 
energy in tendons and muscles at higher velocities. All this explains the following 
observed facts: 

(i) At moderate velocities the oxygen consumption is proportional to v, i.e. Rin t 
is approximately constant [22]. 

(ii) At higher velocities the oxygen consumption grows quadratically in v [8]. 

For  this reason we define 

~Mr o v <~ 6 
Rint = r i n t M  = (Mro + M r l ( v  - -  6) + M r 2 ( v  - -  6) 2 v >t 6. (2) 

v = 6 m/sec delimits the moderate velocity domain, because speeds of v ~> 6 can 
be kept up almost indefinitely. For  v >/6 (2) is of course just the Taylor 
expansion of Rint, and we shall use actual data to determine the coefficients r0, 
r~ and r2. In addition we note that the internal mechanical energy is given in [24] 
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as a quadratic polynomial. R~xt describes the air resistance. It is given by 
1 

R e x  t = g A C  • ~v  a MCv 2. (3) 

Here A is the frontal area of the runner, ~ the density of air and C a shape 
factor. The data of Davies [5] give approximately 

c = 0.00375. 

Simple scaling arguments show that the average force per step cycle is approxi- 
mately proportional to M. Thus F~ = M - f a n d  the equation of motion simplifies 
to 

v' = f -  r i , t -  cv  2 v(0) = 0 (4) 

where f has to be interpreted as force per kilogram of body weight. 
(4) is now size independent and can thus be applied to all athletes alike. Since 

the energy reserves of an athlete are stored in the muscles and since the mass of 
the muscles is about 40% of the total mass, we expect the reserves to be roughly 
proportional to M also. For  the same reasons as above we define all energy 
reserve quantities as quantities per kilogram of bodyweight. This will also be 
applied to the breathing rate. 

Muscles and tendons have limited strength. Thus 

O<~f<.F. 
Since man has to run in the field of  gravity, the total force generated by the 
muscles in the legs should be given by 

Ftot = M • Safetyfactor • g, g ~ 9.81 m/sec 2. 

The safety factors for animals are usually in the range between 1.5 and 4.5. 
Assuming a safetyfactor of 3 and an average angle of 20 ° of the push off leg with 
the vertical during the acceleration phase, we expect 

F ~ (3 • g - g). sin 20 = 6.7 m/sec% 

For  the acceleration at the start we get similarly F ~ ( 3 . g -  g) sin 45°=  13.7. 
This estimate agrees well with values reported in the literature [1, 2, 8]. 

In the muscles chemical energy is transformed into mechanical energy of the 
limbs, which in turn is partially dissipated or transformed into energy of the 
center of  mass. 

Chemical Energy ~ Total Mech. Energy--, Energy of the Center of Mass 
+ 

Dissipated Energy (Rim .v). 

Even though we have described the second transition by the additive term Rmt, 
we shall use the factor ~, the efficiency, to describe the first transition from 
chemical energy to total mechanical energy. The use of an efficiency factor q is 
quite common in engineering and physics wherever energy losses occur for 
thermodynamic reasons. One knows that t/is an increasing function of v [4] and 
from the result of [4] one deduces by linear regression 

r l ( v ) = 0 . 6 + 0 . 0 4 . ( v - 6 )  for v~<6. (5) 

For simplicity and reasons explained above we put 

r / (v)=0.6 for v~<6. 
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Since the cost of  t ransport  at v ~< 6 is approximately 1 cal per meter and 
ki logram of  bodyweight  [ 16], we obtain for the power demand in a steady run at 
a velocity o f  6 m/sec 

6 cal/kg = 6 . 4 . 1 8 4  = 6[r0 + c • 36])/(6). 

This gives 

r 0 = 2.3754. (6) 

The equat ion of  mot ion  (1) has to be modified when it is applied to the start. For  
this reason we introduce an extra starting phase, which is the interval [0, to] in 
which the runner attains a velocity o f  6 m/sec, which we have used to separate 
the moderate  and high velocity domain.  The start is characterized by a reaction 
time r, a high initial acceleration for the first few steps and a rather small 
negative energy [1, 2]. Interpolat ing the term rin t q-rex t linearly, we can write 
instead o f  (1) for the starting phase 

f 0 0 ~ < t < r  v ' =  1.6F ~ ~<t < z + 0 . 3  

F 2.5104 ( t -  r - 0 . 3 )  (7) 
- r + 0 . 3 ~ < t < t  o 

t o - ~ - 0.3 

with v(0) = 0. In addit ion we set x(0) = - 0 . 2 ,  because at the start the center o f  
mass is slightly behind the starting line. 

The reaction time r for sprinters is known to lie between 0.1 and 0.2 seconds 
[10]. We therefore approximate  it by 

= 0 . 1 5  

for world class athletes. 
As we will see later in Sect. III ,  see also [12, 3], sprints are run most ly with 

maximal  force, i.e. f = F. With this, the equations o f  mot ion  (7) for t ~< to and 
(1) for t ~> to can readily be integrated in closed form. One finds 

t 0 = ( 6 - 0 . 4 8 ' F ) ' ( F - 1 . 2 5 5 2 )  1 + r + 0 . 3  

x(to)  = 0.072 • F - 0.2 + 0.48 • F .  (to - z - 0.3) (8) 
+ 0.5 • (F - 0.8368)(t 0 - ~ - 0.3) 2 

V(to) = 6. 

Writing (1) in the form 

v '  = F --  ro - q (v - 6) - r2(v - 6 )  2 - c v  2 = a --  b(v - 6) - (c + r2)(v - 6 )  2 

= (C q- r2)(w , -- (v -- 6))(w 2 -~ (v -- 6)) 

one gets with c ' =  c + r 2 

v ( t ) = 6 + w l ( 1 - g ( t ) )  1 +  g ( t ) - 1  and 
(9) 

x( t )  = x ( t ° )  +(6+wl)(t-t°)--l-ln[(l+W')/(l+W'g(t))lc w a l / \  w2 

where g(t)  = exp( - c ' (wl  + w2)(t  - to)). 
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By choosing the remaining parameter F, r 1 and r 2 appropriately (1) and (7) 
respectively (8) and (9) can be used to fit the data and results of Ballreich [1, p. 
129]. With a fit of  x in the acceleration phase of better than 0.2 m for all six 
groups one finds 

F 2 =  0 

and 5 ~< F ~ 6.5, as expected. Moreover 0.685 ~< b ~< 0.855. Since c(wl + w j  
0.85 the limit velocity v~ is attained rather quickly and x(t)  is, for t/> 4 sec, 
almost a linear function of t. 

In order to compute the power demand in the first seconds, we approximate 
the energy demand in the starting phase by 

1 
Es = 1/2 .62.  b ~  + 10 = 40. 

Here the second summand describes the lifting of the center of mass from a 
crouching position to its normal running position. For  t ~> to the power demand 
is given by 

/) 
E'(t)  = F .  - -  (10) ~(v) 

with v determined by (9). Though (10) can be integrated in closed form, the 
exact expression is of limited value here. 

Sprints are almost entirely run with maximal force. A simple model for 
sprints is thus determined by (2), (4), (5) and (7) with F, b = r 1 -I- 12c and z as 
parameters. This allows us to describe the sprint world records by setting 
r = 0.15 and by choosing F and b appropriately. With 

F = 6 . 9 5  (men), F =  6.30 (women) and b = q  + 12c =0.75 (11) 

we obtain 

Table  1. W o r l d  records spr in t  

Men  W o m e n  

D T Dco,, p T Dcomp 
45.72 5.20 45.76 - - 

50 5.55 49.81 6.06 51.64 

60 6.41 59.83 6.96 61.42 

100 9.86 100.29 10.49 99.95 

F = 6.95 v~  = 11.75 F = 6.3 v~  = 10.93 

Contrary to [3] we have chosen a common t" 1 for men and women. The 
determination of F and r~ from the sprint data is complicated by the fact that 
both quantities have an opposite effect on the results. Though the 100 m records 
will have to be corrected due to the power constraint in the last phase, the 
approximation is nevertheless quite good, in particular if one remembers that 
individual variations are of the order o f .  1 sec or 1.2 m for the 100 m sprint. Thus 
the error for F and b will be abou t .  1 and 0.05 respectively. While F is of  rather 
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limited importance for longer distance runs, b extends its influence to these 
distances via the energy consumption. This model extends earlier models for 
sprints by Keller [12] and Ward-Smith [23], because it takes into account a 
separate starting phase and because it uses a more general resistance term rint. 
Numerical comparisons with these models show that (2), (3), (4) and (6) give a 
better fit of  the sprint data and lead to more reasonable model parameters. 

One finds that the model of Ward-Smith leads to an infinite acceleration for 
t = 0 and tends to overestimate the performance for short distances and short 
sprints. The model of Keller leads to unrealistic values for F, F >/15. In addition 
the values for r 1 for men and women differ too much, rl = 1.8 men and rl = 2.3 
women. Consequently this leads to an energy consumption which is far too large. 

II Energeties 

The energy for running and other activities is mainly derived from the following 
sources, listed in their usual order of recruitment and power 

(i) A T P  and creatine phosphate, the alactic anaerobic store 

(ii) Glycolysis, the anaerobic transformation of glucose or glycogen to pyruvic 
or lactic acid 

(iii) the oxydation of carbohydrates, mostly glucose and glycogen 

(iv) the oxydation of  lipids. 

The release of energy from these sources is regulated hormonally and enzymati- 
cally by feedback mechanisms in a rather complex way. In particular these 
processes are rate- and capacity-limited. The following values are given in the 
literature [ 16]. 

Table 2. 

A TP - PCr Glycolysis Oxydation 

Power (cal/sec.) 13.5(18.1) 6.5 4(5.5) 
Capacity (ca1) 200 250-350 250000 

The results on the capacities have been confirmed approximately also by 
determining the A TP ,  P C r  and lactic acid concentrations in the muscle. These 
values hold for well trained people. For top athletes they will be higher, because 
such athletes have relatively more muscles, a higher lactic acid tolerance and a 
more efficient breathing system. In fact, the highest V 0 2  max recorded is about 
80 mlO2/min. This corresponds to 6.7 cal/sec or 28.2 W. Values determined by 
di Prampero et al. measured with participants at the Olympic Games in Mexico 
City [6] are therefore given in brackets in the above table. In general the 
anaerobic alactic power seems to be about 3.3 times higher than the aerobic 
power. Ambiguities arise however, because r/, the efficiency is incompletely 
known and depends on the specific energy providing process. In addition there is 
a small amount - 100-200 J - of oxygen bound to the myoglobin in the muscle 



A mathematical model for the force and energetics in competitive running 859 

[13]. ATP is the only immediate source of energy for the muscle, and all other 
processes operate via ATP production. There is about three to four times as 
much phosphocreatine as ATP in the muscle [12, 15]. In intensive muscular 
exercise the A TP would be depleted in about 3 seconds. Its stores however are 
replenished immediate ly-  within milliseconds- by the phosphocreatine. For 
this reason we shall treat the ATP and phosphocreatine system as a single 
compartment, the phosphagen compartment. This system is regulated enzymati- 
cally such that the A TP concentration is kept at a constant and high level, 
because a decrease in ATP concentration results in a decrease of power 
[15, 16, 17]. Thus one can expect the maximal power to remain constant until the 
phosphagen stores are reduced to about half its values. This would also explain 
the indication for a compartmentalization of this system [16]. 

The second most important source of energy is glycolysis. It is triggered by 
ADP and inhibited by ATP and breathing. Thus it sets in when the ATP 
concentration begins to decline, after 6 to 7 seconds with supramaximal work. Its 
main function is thus to offset the decrease in power due to a decrease in A TP 
concentration and to provide power at a high level for a longer time (about 30 
seconds) until the breathing rate is sufficiently high. Since the rate of glycolysis 
depends critically on the ratio of the concentrations of ATP and ADP, it assumes 
its maximal power rather quickly, in 2-3 seconds, in maximal work. If this were 
not so the maximal power would decrease too strongly after 8 seconds. This 
maximal power output in strenuous exercise is kept up until the inhibition of this 
process through high lactate concentration sets in. 

Since lactate formation is inhibited by breathing (Pasteur effect), the lactate 
concentration tends to a steady state and the glycolytic power is low after about 
90 to 120 seconds of maximal work. Thus the highest lactate concentrations are 
observed with 400 and 800 m events [11]. Responsible for this inhibition is an 
increasing acidosis and probably the fact that glycolysis utilizes only about 5.5% 
of the energy of glucose. 

Oxydation of carbohydrates and fats is the most important source of energy 
for longer lasting activities. The reserves of carbohydrates in general suffice for 
1 to 2 hours of activity, e.g. a marathon run, only. 

Increased breathing is triggered by ADP. Thus it is a delayed process with a 
time constant of 20-30 seconds and the anaerobic processes listed above are 
utilized to offset this delay. In addition to an increased burning of fats, fatigue 
is an important factor for very long distance runs. 

So far only individual aspects of the thermodynamics and chemistry of the 
muscle system have been described and modelled, because a reasonable complete 
description would be much too complicated. Such a complete model would 
moreover require a large number of additional parameters and the description of 
processes, which are as yet only partially understood. For this reason we shall 
only use a simplified analog model for the energetic processes which take place 
in the muscle. This model is an extension of the hydraulic model proposed by 
Margaria [16] and extended by Morton [18]. Basically it is a three-compartment 
model in which the dynamics is determined by the hydraulic pressure of a liquid 
representing the energy. Our model consists of three vessels, one for each source 
of energy in the muscle. These sources are phosphagen, glycolysis, oxydation of 
glucose and lipids. The corresponding vessels are denoted by (P), (L) and (O) 
respectively. The volumes (capacities) of these compartments will be denoted by 
Ve, VL, and Vo. In contrast to Margaria and Morton we assume Vo to be finite, 
because glycogen depletion and fatigue are serious problems for long distance 
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events e.g. 10,000m or marathon runs. Even though it seems reasonable to 
consider separate compartments for glycogen and the oxydation of lipids, this 
cannot be done, because these processes are not additive as far as their power is 
regarded and because they run largely in parallel using the same substrate, 
namely oxygen. Thus we consider a single vessel O, which is the union of two 
vessels with cross-section Ao and AF respectively. This allows us to model the 
different rates of depletion of these sources as well as their order of recruitment. 
Thus the lower part of this vessel has the cross-section AF, because the oxydation 
of lipids sets in only when the glycogen is sufficiently depleted. In order to avoid 
a further unnecessary parameter we have allowed a discontinuous change of 
parameters. Since Ao and AF are large this has only a minor effect on the 
dynamics. In contrast to this the vessels P and L have a constant cross-section 
Ae and AL respectively. The basic outline of this model is given in Fig. 1. 

Vessel (L) is connected to (P) by a pipe, allowing the liquid - energy - to 
flow from (L) to (P). This represents the formation of A TP from ADP via 
glycolysis. The maximal rate of flow in this pipe will be denoted by M L. This is 
obviously the maximal glycolytic power. There is also a pipe from (O) to (P), 
which carries a maximal flow of M o. M o is also known as VO 2 max. There are 
two more pipes leading out of L, which describe the intracellular respectively 
extracellular oxydation of lactic acid. These processes however are important 
only in recovery and will not interest us here. Since glycolysis uses glucose as its 
fuel, one should also consider a connection between (O) and (L). 

The primary source of muscular power W is A TP, since it is directly involved 
in the contraction process of the muscle. In this model the muscular power is 
represented by the liquid flowing through the tap T with a rate W. This flow 
causes a drop h in the fluid level in (P). This in turn induces drops in the level 
of fluid in (L) by l and in (O) by k. The rate of flow between these vessels is 
regulated in each case by the hydraulic pressure of the fluid. The connection 
between (L) and (O) however should not be governed by hydraulic forces. The 
dynamics of this analog model is thus determined by the volumes of the vessels, 
the maximal rates and the geometry of the system. The geometry of this model 
is defined as follows. Vessel (P) has a height normalized to 1. The pipe from (L) 
to (P) is at height 2 and the ceiling of (L) is at 0. The pipe from (O) to (P) is at 
height ~b, while the ceiling of the bottom part of (O) is at #. For details and 
explanations of a closely related model the reader is referred to [18]. For easier 
comparison we have chosen the same parameters as in that paper. The geometric 
parameters 0, 2, 4> and # model in an indirect fashion the chemistry in the muscle 

O 

Tqw 

. . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . .  
0 

r.......4 
L')I 

k 
Fig. 1. The hydraulic 
model 
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cell. One would therefore expect these parameters to be almost the same for all 
athletes. We therefore call these parameters almost universal. To a lesser extent 
this will also hold for the ratios Ve/VL and Me/ML since the muscles have a 
similar composition for all athletes. With this assumption we neglect of course 
individual differences in lactic acid tolerance and different amounts of fast twitch 
and slow twitch fibers. On the basis of our assumptions above we are thus led to 

VL ,-~ 1AVe, ML ~ 0.45Me. (12) 

We are keeping Mo as an independent parameter of course, because the 
breathing system is largely independent of the muscles. 

It remains to determine the geometric parameters of the model. This will be 
done such that the dynamics of the hydraulic model corresponds most closely to 
experimental data or physiological principles. Thus we will have to solve the 
differential equations governing the behavior of this model and compare the 
solutions with observations. In doing this we shall use as reference parameters 
Ve ~ 900-1200 J, Vr ~ 1400-1700 J, Me ~ 90-100W; Mo ~ 24-29W as well as 
(12), because these values are representative for good athletes [3]. 

The state variables of  the hydraulic model are h, l and k, the levels of the 
liquid in (P), (L) and (O). Of these h is the most important, since it models the 
concentration of  phosphagen in the muscle. 

Since the model is essentially a three compartment system with piecewise 
constant coefficients, the dynamics of this system is determined in each phase by 
three coupled linear constant coefficient differential equations. The correspond- 
ing characteristic values 21, 22, and 23 are real in all cases and thus the solutions 
can be written in closed form as sums or integrals of exponentials. Thus we shall 
only state the equations and the solutions. In some cases it is advantageous to 
approximate the solutions in order to estimate parameters. 

The eigenvalues can usually be grouped into two classes with 21, 22 ~ - 0 . 5  
and 123I << 1. We interpret this fact as a rapid transition to the quasistationary 
state governed by 23. 

We shall now discuss the various phases of this model and consider further 
restrictions later on. Our guiding principle is to determine the values of 2, ~b, 0 
and # such that the dynamics of  this model corresponds most closely to observed 
physiological facts or principles. 

Phase 1 No glycolysis; 0 ~< h ~< 0. 
The mechanical power W, produced by the muscle will be denoted by W. It is 
made up from the contributions of all vessels 

w=we+wL+Wo.  

ATP is the primary fuel for the contraction of the muscle and the ability of the 
muscle to contract decreases with the concentration of ATP [15, p. 40,45, 
60, 61]. For  this reason the enzymes in the muscle operate in such a way that the 
concentration of the ATP is kept constant at the cost of phosphocreatine 
splitting [17]. Once the phosphagen stores have been emptied to approximately 
60% the rising ADP concentration triggers glycolysis via the activation of  
fructokinase. This effect counteracts the decrease in power due to a decrease in 
ATP concentration and provides a high power for about 30 seconds. Thus 
super-maximal workloads, W ~ Me can be maintained for about 6 - 7  seconds 
without the formation of  lactic acid [17]. In terms of the hydraulic model this 
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means 0 = 0.55-0.65. We choose 

0 =0.6.  (13) 

This also explains the compartmentalisation of (P) mentioned in [16]. In the first 
phase we thus have 

h - k  
W =  We + Wo = A o k ' + A e "  h', A ° k ' = M °  1 -q5 (14) 

This is a degenerate system of linear differential equations with constant co- 
efficients. For  constant W the solution is given by 

W [ ~ +~ , ) ]  (15) h(t)=A~(c~ + fl) flt + - ~ ( 1 - e  -(~ 

k ( t ) -  -:-c~v fl t c~ ~-fl(1-e-(~+">') (16) 

where e = Mo/((1 - O) " Ae) and fl = Mo/((1 - d?)Ao). 
Since the time constant for breathing is approximately 25-20 sec, we get 

+ fl ~ ~ ~ 1/27 or q~ ~ 0.25-0.3. 
If W/(Ae • (~ + fl)) ,,~ W(1 - (o)/M o <<. 0 then no lactic acid is formed for a 

long time. Thus the anaerobic threshold is given by 

0 
W = M o  1-c~" 

It is known that this threshold is approximately 0.6Mo -0 .85 [ 15, p. 84, 86] and 
higher values are observed for better athletes. Thus 0 ~ 0.8 • (1 - ~b) or 

~b ~ 0.25. (17) 

Phase 1 ends at t I when h(tl) = 8. 

Phase 2 The onset of glycolysis, 0 ~< h ~< 1 - 2 + l, WL ~ ML. 
As soon as h > 0 the flow from vessel (L) to (P), i.e., glycolysis starts in. 
Glycolysis is triggered by a higher ADP concentration, which corresponds in this 
model to larger h values. The differential equations for this process are 

h - k  h - l - O  
W= Wo + We+ WL = Mo ~ + Aeh' + ML • 

1 - 8 - 2  
h - l - O  h - k  h - l - O  (18) 

ALl '=ML 1 - 0 - 2  and A o k ' = M o ~ _ ~ + 1 9 M L  1 - 0 - 2 "  

The second term in the equation for k' describes the glycogen depletion due to 
glycolysis. This term has not been considered by Morton, though it is of 
considerable importance. Because Ao is rather large, Ao ~ 105, the characteristic 
values of (18) are 21 = 0, 2 2 ~ - - 0 . 0 0 1 6  and ~.3 ~ -0 .7 .  Thus the general solution 
of (18) with constant W is a superposition of three exponentials. Of  these the one 
associated with 23 describes the rapid growth of h and a corresponding rapid 
onset of glycolysis. (18) is only valid as long as A L - l' ~< ML or 

h - l - O < ~  l - O - 2 .  (19) 

it  is known that glycolysis reaches its maximal value ML in 2 to 3 seconds in 
supramaximal work. An explicit calculation with W=O.8Me, Me = 100, 
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Mo = 28, Ap = 1200, Ve = 1700 gives h(tl + 3) = 0.6638 and l(t~ + 3) = 0.033. 
This shows 1 - 0 - 2 ~ 0.06-0.07 and we set 

,~ = 0.33. (20) 

Analysing (18) further, one can show that the maximal glycolytic power is 
attained only if W is sufficiently large W >~ ML + Mo.  

Phase 3 Maximal glycolytic power, l - 2 + l ~< h ~< 1 - ~b. 
In this case WL = Mc and the determining differential equation becomes 

h - k  A ' 
W = M o ~ +  ph + M e  

(h - k) (21) 
A o k '  = Mo - -  + 19 • ML. 

( 1  - 4 ' )  

This is a degenerate system of two equations, similar to (14). It can be solved 
along the same lines as above, by considering first the equation for (h - k ) ' .  

It  should be noted that such a phase is not considered by Morton.  Experi- 
mental evidence however seems to indicate that a maximal glycolytic phase exists 
and is attained rather rapidly in supramaximal work [16, p. 20 Fig. 1.12]. I f  the 
power W is not supermaximal one has 1 - 2 + l > h for all t. Then this phase is 
absent and phase two is directly followed by the next phase. 

Phase 4 Maximal breathing rate; h - k ~> 1 - qS. 
As soon as h(t) - k(t) >>. l - 4), Wo is maximal and the equations for the system 
become 

[ ,01 W = M o + A e h ' + A L I '  and A L l ' = M L m i n  ~ - - ~ - - ~ , 1  . 

For  both cases the solution can be determined along the lines stated above. 

Maximal power 

The equations derived above determine the dynamics of  our system uniquely. 
The solutions would be unrealistic however, because this system does not 
describe the decline in power i.e., endurance and fatigue correctly. This model 
has to be augmented by further conditions. This problem has been discussed by 
Mor ton  in [19], where he relates the maximal power to the remaining glycolytic 
store. For  the following reason we do not consider this assumption to be 
reasonable. 

A T P  is the primary fuel for the contraction of the muscle and its ability to 
contract decreases with the A T P  concentration, because A T P  is directly involved 
in the contraction of the muscle filaments. The maximal power W~ should 
therefore be a function of the A T P  respectively phosphagen concentrations 
alone. In addition the glycolytic power in the muscle is reduced in longer lasting 
events, due to the Pasteur effect, so that it is not a reasonable indicator for the 
maximal power. 

We have seen above that the A T P  concentration in the muscle is kept at a 
constant and maximal level initially at the cost of  phosphocreatine splitting [17]. 
In terms of our model this holds as long as h ~< 0. From the assumptions in this 
paper it is also obvious that l - h ,  for h~>0, is a measure for the A TP 
concentration, because then the phosphocreatine concentration is low. 
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Since this relation is linear, a first order approximation, as suggested by the 
principle of mass action, leads to 

Wm = - h )  h >1o. 
- 0  

It should be clear that Wm is the total maximal power of the muscle. 
Since glycolysis is inhibited by high lactate concentrations and local glycogen 

depletion, the maximal rate of glycolysis decreases with increasing l. The results 
of Danforth [15, p. 117] suggest a sigmoidal relationship. Taking into account 
also the buffering in the muscle cell and the slightly elevated pH due to the split 
phosphocreatine, a piecewise linear approximation suggests 

f ML 0 ~ l ~< ~ (23) 
WLm = M L (2o~ - l) 

- -  c~ <<. I ~ 2 ~  
c~ 

where ct ~ ( 1 - 0 - 2)/2. 
This condition has to be modified further because of the Pasteur effect. 
In this model (22) and (23) describe fatigue in a rather simple way as a power 

constraint. In reality fatigue is caused by accumulation of waste products, lack 
of substrates, increasing lack of neural control and other factors which are as yet 
not completely understood [14]. In a more extensive model this could be 
described by state dependent "constants" F = F(h,  l, k), M o = M o ( h ,  l, k), . . . . 
In particular F, the maximal force, depends on the present state. However since 
the force constraint is in general limiting only in the beginning of a run, see Sect. 
III for this, fatigue will operate mainly via power constraints. We will see later 
that this model also limits Worn, because Vo is finite. 

M a x i m a l  w o r k  

A work rate W will be defined to be maximal, if the maximal glycolytic rate ML 
is attained. It is obvious that (22) and (23) do not influence the governing 
equations for phase 1. Phase 2, i.e., (18) is not modified either, as long as 

- h)  ( 2 4 )  W <~M~I [ 0)" 

This holds for most of phase 2 if 

(2 - l )  
W -%< Mp - -  ~ 0.84M,~. 

(1  - 0)  

If  (24) is violated during phase 2 then (18) has to be replaced by 

Mp(  1 - _ + Aph"  + ( -Z -__ ) M L  

( h  - / - 0 )  
ALl '  M L  

(1 - - 0  -- ,l) 

once W = W~ (22). 
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Here t w  is defined by equality in (24). This is again a system with constant 
coefficients. The solutions can therefore be written as a superposition of two 
exponentials and a constant term. 

Thus the case of maximal work covers two subcases. In the first (24) has to 
be involved during phase 2. This happens for W ~> 0.84Me, with our choice of 
parameters. In the other case (21) is not active during phase 2. An explicit 
calculation shows that in both cases the maximal glycolytic rate is reached rather 
quickly, in about 2 to 6 seconds. In general one can continue into phase 3 with 
W for some further seconds, depending on W, but then the maximal work 
Wm = Mp(1 - h ) / ( 1  - 0 )  will decrease due to (22) and the decrease of h, which 
is not compensated by an increase in W o. This decrease is slower and smaller if 
W is smaller. In fact it vanishes completely if W ~< 0.737Mp - with our choice of 
parameters. Following this first decrease there is a phase of about 15 seconds in 
which W m is nearly constant. Thus h and W o  are nearly constant, too. In this 
time the glycolytic power is maximal. If  Wm is continued further, the maximal 
glycolytic power decays with a time constant of about 15 seconds. At first this 
can be compensated by phosphagen, but then h and W,~ decay likewise. Thus this 
second decrease of Wm is caused by (23). In Fig. 2 the development of W m for 
W = 0.85M,~ is shown. 

Heavy work 

Heavy work means a power demand W, which is nonmaximal in the above sense, 
but which is stronger than 0.4Mp. Thus W is heavy, if W1 ~< W ~< W2 where 
W2 ~ 0.73Me and W1 ~ 0.4Me. With heavy work it is the second part of  (23), 
which becomes limiting at t2, the end of phase 2, where l(t2) > c~, 2e = 1 - 0 - fl 
and 4c~ -2 l ( t2 )  = h(t2) - l ( t 2 )  -q~. Then (23) effectively decouples the equation 
for l' from the others and we obtain for the glycolytic power 

WL(t)  = WL(t2) e a(t-t2~ 
2ML 

where d -  
VL 

d-~ is thus the characteristic time with which the glycolytic reserves are depleted. 
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Inserting this expression into the remaining equations gives for t t> t2 

h - k  
W = Mo - -  + Aeh" + WL(t2) e -d(~ - ,2) 

1-- ¢b 

h - k ( 2 5 )  
A o k '  = Mo ~ + 19WL(t2) e-d(,-~2). 

This system is degenerate and the solution can be written as a superposition of 
two exponential terms with a linear factor if W is constant or maximal. The 
leading term describes a rise of h. It has a characteristic time of d -1. This term 
arises because the phosphagen is used to offset the exponential decrease of 
glycolytic power. (25) has a quasistationary state at h ~ W(1-49 ) /Mo .  This 
state however is not reached because after about d -1 seconds (22) becomes 
limiting and (25) has to be replaced by 

1 - h  h - k  
1 - 0 Me = Mo 1 ~  + Aeh '  + Wr(t2) e d(, t2); 

(26) 
/, b 

A o k '  : M o ! ~ ,  ~ + 19 WE(t2) e t2) 

These equations govern the system until the oxydation of lipids starts in. 
However, in general the oxydation of lipids will be important only for levels of 
work of less than 0.4Me. 

Endurance work 

Long lasting athletic events are governed by a power demand W <~ 0.4Me so that 
the largest part of the power is provided by breathing. Thus glycolysis as a 
means to offset the decrease in phosphagen is of lesser importance. In addi- 
tion, it exerts an adverse effect in endurance work, because it uses glycogen 
rather inefficiently and because the breathing rate stays almost constant at 
Mo • (1 - )o)/( 1 - ~b) while glycolysis is active. 

Numerical computations based on (18), (21) and the other equations indicate 
that glycolysis is advantageous only for running distances of less than 1500m. A 
numerical simulation of a 2000m run with V L as a parameter, for example, yields 
an optimal result with VL = 0. In addition one finds that the transition region of 
glycolysis to no glycolysis is rather narrow. The adverse effect of glycolysis in 
endurance work can also be seen from the following example. In an exercise of 
constant power W ~ 0.5Mp glycolysis sets in after about 10 seconds and the 
glycolytic reserves are used up by more than 95% after about 100 seconds. Thus 
after 100 seconds the glycogen reserves are reduced to V o -  19" VL. With 
A o ~ 105 this corresponds to k ~ 0.32, which in turn implies that the maximal 
breathing rate in this model is at most 0.60 • Mo,  an unrealistic low value. In 
nature it is the Pasteur effect which inhibits glycolysis at low power demands. 
Thus for endurance work or running distances D >/2000m, glycolysis should be 
neglected completely. For  such workloads the three compartment hydraulic 
model reduces to a two compartment system. Thus we have to consider three 
phases only, phase 1, phase 4 and a power constraint phase, which is controlled 
by (22) respectively (26) with WE = 0. For  constant W, h and k in phase 1 are 
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given by (15) and (16). Phase 1 ends at tl when (h - k)(tl) = 1 -~b. Phase 4 is 
governed by h ' = ( W - M o ) / A  e and k ' = M o / A o .  It is attained only if 
W >~ M o ( 1  + (Ap/Ao) ) .  It ends at t4 when 

W 
h(t4) = 1 - ~ (1 - 0). 

The equations in the power constraint case are 

1 - h  h - k  h - k  
Me 1 - 4 ) - M ° ~ - ~  + A P h '  and A o k ' = M  o 1 - 4 )  (27) 

This system has (h, k ) =  (1, 1) as a stable equilibrium. This state cannot be 
attained however since k ~> ~b. So (27) will be valid for working times of less than 
6 hours only. Its characteristic values are 

21 ~ ~pp + and 22  ~ A o • 0.87" 

The first eigenvalue describes a rapid transition, with a time constant of about 
4 seconds, to a quasistationary state governed by 22. Thus for t ~> t4 + 4( - 2 i- 1) 
we have 1 - h oc exp 22 t, and correspondingly 

m o =  const. - e ";tzt. 

This is valid as long as k ~< #. For  k > # we have to replace Ao by A F. This 
results in a slight increase of 2 a to 2F and a corresponding slight change in the 
eigenvector. Since these changes are extremely small, they can be approximated 
by: A o ---~AF, 22-">•F, k(t4+ ) =/2. h(t4+ ) can be determined from the condition 
that (h(t4+) - 1,/2 - 1) is the eigenvector for the eigenvalue )~g" 

Thus endurance work is connected with two time constants 221 and 2F 1. 
The first describes the local depletion of  the glycogen stores in the muscles, while 
the second is related to the longtime fatigue after the onset of the lipid 
metabolism. We should therefore expect 2~-1~ 5000 and 2F 1 g 30,000. 

It should be noted, however, that it is not clear at all whether hydraulic 
forces can adequately describe the carbohydrate and lipid metabolism, because 
these substrates are released from their depots during activity. For fatigue the 
situation is even less clear. These considerations also show that for long times 
Mo,,  , ~ const. ,  exp(22t). 

For  long distance runs, D >/5000m, this leads in first order to the following 
simple model. We assume that the velocity profile for the first To seconds, which 
correspond to D = 5000m, is the same for all these runs and that k(To)>~/2. 
Then 

W(t) = W(To) e ('-ro>/~, z =~CF 1. 

In first approximation this gives 

and 

v(t) = v(To) e <' -  ro~/~ 

s(t) = 5000 + v(To) • ~(1 - e - °  To)/0. 

These expressions underestimate v and s slightly, because the air resistance is 
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incompletely taken into account. The error however is less than 5%. For  the long 
distance world records this gives 

Table 3. 

Men (T o = 778.39) 

T (sec) 1628,23 3444,2 3600 4435.8 5358.8 7610 22220 
D (m) 10000 20000 20944 25000 30000 42195 100000 
Ocomp (m) 9994 20256 21110 25631 30497 41825 99628 

v(To) = 5.95 z = 34000; 

Women (T o = 877.33) 

T (sec) 1813,74 2837 4000 8466 26337 
D (m) 10000 15000 21097,5 42195 100000 
Dcomp (m) 10082 15464 21368 42088 100676 

v(To) = 5.51 z = 31000 

With Mo = 28.4 (men) and 23.5 (women) [3] this implies Ar = 1.13.106 and 
0.84.106 respectively. 

In these computations one finds that the 25000, 30000 and 100000m distances 
are consistently overestimated. Apart from systematic deviations caused by the 
recruitment of lipids, this may also be due to the fact that these records are old 
and that these distances are run rarely. 

Because of the glycogen depletion in the muscles due to glycolysis and 
because of the Pasteur effect the dynamics of the hydraulic model have to be 
modified further. This modification has to reflect the following observed facts: (i) 
For small W glycolysis is of less importance and the muscle cell prefers oxydative 
processes to glycolysis. (ii) Glycolysis is low when the breathing is large. 
Contrary to (ii) I believe that the final spurt in running is performed partly with 
the aid of glycolysis. Responsible for this effect is probably the recruitment of 
fast twitch fibres during the final sprint. 

Since no lactate is produced below the anaerobic threshold, which is 0.8Mo 
in our model, the simplest way to satisfy (i) is to demand 

=~ ML(~) W>~O.SMo+ML(~) 
ML(W) [W-O.8Mo O<~W<~O.8Mo+ML(oo) 

(28) 

where ML is the largest possible rate of glycolysis. In order to satisfy (ii) we also 
scale VL like ML. (28) could be generalized by replacing the factor of .8 above 
by another value. The motivation for (28) lies in the fact that for submaximal 
work lower lactate values are measured [9]. 

IIl  Optimization 

In competitive athletics the optimization of force, energy and other factors is of 
primary importance. It is this aspect, which we want to investigate here on the 
basis of the models developed above. In order to obtain a tractable model, we 
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will introduce a few simplifications. Thus we neglect the starting phase and 
assume that r is a sufficiently smooth version of 

r(v) = ~ rt °) ~ v ~ 6 

~roq-rlvq-cv 2 v ~ 6 .  

Moreover we assume that the constants in the model have approximately the 
values employed above. Actually we shall consider four models, two for short 
and medium distances, where the effects of glycogen depletion are neglected. The 
others describe the situation for longer distances and one model serves to 
illustrate the Pasteur effect. 

The main difficulty with the hydraulic energy model stems from the fact that 
the dynamics change from phase to phase. We can unify the description however 
if we use the appropriately modified equations of phase 2. Thus we restrict the 
optimization model to short and middle distances and we neglect k and write 

v' = f -  r(v) 

h" = ~ f  " v 1 h m 
q A p M °  1 - ~  Ap (29) 

/ ' = ( 1  - 0  --2)/VL "m 

where we have set m = (h - l -  0)/(1 - 0  - 2 ) M L  in order to describe phase 2. 
These equations cover the first phase if m = m(l, h) is 0 for h ~< 0 and they cover 
phase 3 if m = M L  for h > 0 and h - l  ~> 1 - 2. They can also be used in the 
glycolytic constraint phase if m is replaced by 

( ~ - 1 - 0  2 ~ - 1 )  
ML min Z 0 2' 

for ~ < l ~< 2a = 1 - 0 -- 2. It is now advantageous to define the various phases 
by their defining equations, i.e. the various forms of m. 

Defined this way, m becomes a continuous piecewise linear function of  h and 
l. Similarly one can handle Mo, but we shall neglect this phase. Thus we treat 
essentially four phases only, the phases 1, 2 and 3 and the glycolytic constraint 
phase. For  simplicity we shall denote the latter by phase 4 henceforth. (29) has 
to be augmented by several inequalities. The first 

0 ~<f ~< F (30) 

describes the limitations of the force due to the finite strength of tendons and 
muscles. It follows from (29) and (30) that v is limited by vo~, where 

F = r(v~) 

if v(0) ~< v~. If  one considers evolution as an optimization process, one would 
expect 

F 'vo~ 
- - ~ M e  

so that the power constraint 

f ' v  
- -  ~M p 

q 
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is superfluous. But we still need 

f "v <~Me(1 - h )  
r/ (1 0) (31) 

which is limiting in the final part of a run. The aim of the athletes is to cover the 
distance D in the shortest time possible. This is equivalent to maximize 

f D = v(t) dt 

for fixed time T subject to the constraints (29), (30) and (31). This is a problem 
of optimal control with phase inequality constraints and f as the control variable. 
The existence of a minimum with a measurable f follows easily from Filipov's 
theorem [7]. Though Filipov proves his result only for smooth coefficients, his 
method extends to this slightly more general situation. With the aid of the 
optimal solution (x, v, h, l , f )  we can now define tl, t2 and t3, the end of phase 
1, 2 and 3 respectively. If they occur more frequently, we distinguish them by 
additional indices. The phase boundaries t~, t 2 and t 3 are characterized by 
additional constraints. These are 

h(tl) = O, l(tl) = 0 

(h - l)(t2) = 1 - )~ boundary between phase 2 and 3 (32) 

l(t3) = ~ boundary between phase 3 and 4 

o r  

h(t,) = 0, / ( t l )  = 0 

(h + l)(t2) = 2 - 20 - 22 boundary between phase 2 and 4. (33) 

Thus (32) describes the constraints for a run in which the maximal glycolytic rate 
ML is attained, while (33) is valid for a longer distance run. 

Necessary conditions for this problem are given by Neustadt [21]. Although 
his results require smooth coefficients, the proofs carry over to our situation as 
well [21]. To derive these necessary conditions we have to introduce a quadruple 
of adjoint variables ~o, if/l, 1/12 and ~3 for x, v, h and l. They are absolutely 
continuous in the intervals (0, tl), ( t l ,  t2) ,  • • . ,  ( t3 ,  T )  and satisfy 

¢ ; = 0  ~,'1 = - 4 , 0  + r ' 0 ,  

- o  
~b;-  (1 _ ~b)Ae ~b2 + (dhm)0a 

1 (1 --  0 - - 2 )  
~'3 = ~ " (d/m) ~t 2 Vr 

together with the terminal conditions 

~'0/> 0, ~,, ( r )  

and the jump conditions 

~ ( t ~ )  - 0~( t~  + )  = - ~ 1 ,  

~,2(t~) - ~ , 2 ( t ~ + )  = - ~3,  

0 3 ( t ~ )  - 4 '3(t3 + )  = - ~4 

(1 - 0 - ,~) M p  
V ~  (dhm)~3 -- # 1 -- 0 

(dtm)~,3 

(34) 

( 3 5 )  

0 3 ( t l )  - 4'3(ti  + )  = - ~ 2  

4'3(t2) - ~ 3 ( t 2 + )  = ~3 (36) 
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o r  

0 2 ( t l )  - - 0 2 ( t l  q-)  = - - g l ,  0 3 ( t l )  - - 0 3 ( t l  + ) ---- --0~2 

02( t2 )  - -  02( t2  + )  = - -~3 ,  03(t2) - 03(t2+) = -2c~3.  (37)  

# is a nonpositive function, which differs from 0 only when the constraint (31) 
is active. Moreover 

01 "q- 02" ~ -~ ~ (g - - f )  ~< 0 0 ~< g ~< F. (38) 

With the Hamiltonian JY( f )  = JY(v, h, I, 00, 0 , ,  02, 03 , f )  

X = O o V + O , ( f _ r ) + O 2 ( q f A e  Moh Ap) _F 03 (1 - 0 - ) . )  (1 -- qS)Ae VL m (39) 

the Pontryagin maximum principle becomes 

~(f(f)  = max J~C'(g) 
g ~ U(t) 

where U(t) = {g ~ [0, F] ]gv/t 1 <<. Me(1 - h)/(1 - 0)}. By using 

t) 
0 = 0, + ~ 02 (40) 

this can be simplified to 

0 f  = max 0g. 
g e u(t)  

Thus 0 is a switching function, i.e. 

f0( ) f =  rain F , l - h t l M e  if 0 > 0 .  (41) 

1 Ov 

For the moment f is undetermined if 0 = 0. This condition determines the 
singular arc. If  0 ~< 0 then (38) shows # = 0 and for 0 < f <  F (38) gives 

# = - 0  -t/ whenever f < F  and when f . v _ M e ( 1 - h )  (42) 
v r/ 1 - 0  

Thus it is advantageous to replace the conjugate variable 01 by 0, where 

( v ) '  v M o  v 
1 r ~ 02 -t- 02 "-}- (cqhm)02 0 '  = - 0o + r '0  - ~pp t/Ae (1 -- 0)Ae 

(43) 
_ v V/T 1(1 -- 0 - ,,~O(Ohm)03 #f  v M e 

tl A e -- - # -~e 1--0" 

The analysis of our problem is thus largely reduced to a study of 0 based on 
(34), (35), (36), (37) and (43). 

Since the problem is autonomous, a f  is constant. This will give us some 
control of the jump conditions at the phase boundaries. We add that the jump 
constants (~1 . . . .  , ~4 occur in our problem as Lagrange multipliers for the 
constraints (32) and (33) respectively. In order to use the constancy of Yg' at the 
phase boundaries we write in the case of (36) 

0 = J((~(t3) - -  ~f~(t3+ ) = O ( t 3 ) ( f ( t 3 )  - - f ( t 3 + ) )  - -  cq (1 - 0 - 2) ML. 
VL 
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If  0 ( t 3 )  ----- 0 we get e4 = 0. If 0(t3) ¢ 0 we have either 

1-h.17(t3)" f ( t 3 ) = f ( t 3 + ) = F  or f ( t 3 ) = f ( t a + ) = M e  1 - 0  v 

In both cases we obtain cq = 0. Similarly one shows el -- e3 = 0. Thus 01, 02 and 
0 are continuous across the phase boundaries. 

In order to analyze 0 we integrate (34) backwards from T by using the initial 
conditions (35). In this process we use that the (02, 03) system is linear with 
piecewise constant coefficients and - /~(Me/(1 - 0)) as a possible inhomogeneous 
term. Thus this system can be solved in closed form, in principle at least. 

This and (34) show that 00 ¢ 0, because otherwise the uniqueness of the 
solution of (34) would imply 0(0  = 02(0 = 03(0 = 0 near T. This is impossible 
and we may therefore assume 00 = 1. 

Since the case 0(t) > 0 almost everywhere leads to an all effort Sprint, we 
may assume 0(t) = 0 for some t ~ (0, T). This and the integration of (34) from 
T backwards imply that the run must close with a power constraint (31) on some 
final interval [t*, T] with t* < T. Thus 0z and 03 are negative on (t*, T). Solving 
the (02, 03) equations for all phases separately shows then that 02 and 03 are 
negative in (0, T) and (tl, T) respectively. 

The analysis of the (02, 03) system shows moreover that 02 is never strongly 
negative throughout all phases. This in turn can be used to deduce that 0 is 
nonnegative. Though this result is intuitively quite obvious, it requires a detailed 
analysis of the (02, 03) system for all phases and cases. It is even more 
remarkable because we have not used that an f = - 0  phase is associated with 
"negative work". The most complicated subcase in this analysis occurs at the 
boundary of phase 1 and phase 2. 

This result implies that all phases are passed through in their proper order 
and that each phase boundary is traversed only once. 

An interval [r, s] with 0(r) = 0(s) = 0 and 0(t) > 0 for t ~ (r, s) will be called 
a positive semiarc of 0- By using 0 >~ 0 and properties of the (02, 03) system as 
well as (43) one can deduce then that 0 has only finitely many, in fact in most 
cases only one semiarc, i.e. f is piecewise continuous. Moreover each semiarc is 
connected with a power constraint. Thus there is no semiarc in phase 1. If phase 
3 is present one can show in addition that it does not contain a proper interval 
where 0 vanishes. Thus such runs are performed with maximal power, with the 
possible exception of a short time interval in phase 1 and phase 2. We can now 
summarize our results as follows: 

Lemma. The optimal control problem (29), (30), (31) possesses a maximiz- 
ing solution with a piecewise continuous control variable f which satisfies 
f >O. Moreover we have f = F  on some initial interval [0, t'] and f =  
Mp(1 -h )q / ( (1  -O)v)  on some final interval It*, T]. 

For  runs, in which the maximal glycolytic rate ML is attained, this has the 
following consequences: 
The runner starts with maximal force f =  F in the initial time interval 
[0, t'], 0 (0  > 0 for t < t'. This is followed by a 0 =- 0 phase until t = t*. For  
t' < t < min(t*, tl) the motion is governed by 

v Mo Mo 

i.e. v decreases. In order to extend the 0 -= 0 condition into phase 2, we need 
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0(ti+) =0(/1)=0 and O = O ' ( q ) = 0 ' ( / 1 + ) .  While the first condition holds 
because of the continuity of 0, the second condition determines the jump of 03 
at tl. 

For short distance runs, D ~< 320m, this intermediate phase will be absent 
and one has 0(0 > 0 for all t < T. Such runs will be called sprints. 

Only if phase 3 is followed by phase 4 can we expect such an intermediate 
phase, if at all. It should be noted that h'  is almost constant during phase 3 so 
that in runs of this type v is almost constant for a long intermediate interval. The 
velocity profile is thus almost the same as that obtained by Behncke [3] and 
Keller [12], though the underlying mathematical reasons are quite different. 

In medium distance runs, D/> 600m, phase 3, i.e., the maximal glycolytic rate 
is not attained any more, and phase 2 plays the role of phase 2 and 3 of the 
shorter runs. For this reason we shall first study runs, which are based on phase 
2 and 4 alone, because any optimal solution restricted to (t, T) will be of this 
form. In long distance runs phase 2 intervals with 0(0 = 0 play a dominant role. 
For such intervals the (02, 03) system becomes homogeneous. The solution is 
therefore a superposition of two exponentials 

(~:)( t )=Ae"+*(al+)+Be~'-*(al)  

where 2+ and (,1+) are the eigenvalucs respectively eigenvectors of the character- 
istic matrix. Since 2+ ~ 0.7 and 2_ ~ 0.0013, A must be very small. Thus - 0 2 ( 0  
increases very little, and 0 ' =  0 shows 

Therefore v will decrease slowly. This is valid until the power constraint (31) sets 
in, where we have again a short term increase of v. An analysis of the 
inhomogeneous (02, 03) system indicates, that there is only one positive semi- 
arc of 0 during phase 2 and 4. Thus f will in general have at most three 
discontinuities. 

The slow decay of v during phase 1 and phase 2 can be explained as follows. 
Since the breathing rate of the athlete is tied intimately, via h, to the initial 
energy expenditure, the athlete will start with a relatively high initial velocity to 
attain a large W o, which is for free in this model, since we have neglected k. This 
is paid for by a higher energy expenditure r(v)(v/q). Thus this solution is a sort 
of compromise between these two conditions. This indicates also that the optimal 
D, depends only very little on (x, v, h, l,f), i.e. we have a "flat" optimum. 

The general solution can now be obtained by joining it with a corresponding 
solution for phase 1. 

This however will in most cases lead to a coefficient A, which is small 
compared to the other coefficients but still too large. Thus the 0 = 0 phase might 
be even shorter than expected. This could be resolved by an additional boundary 
condition vl = V(tl) or by smoothing Ohm. The reasons for this difficulty arise 
because h controls the breathing rate Wo too strongly. In particular Wo grows 
too little when a large part of the power is derived from glycolysis. These 
difficulties can be resolved if one decouples Wo completely from h and I and 
replaces it in all equations above by 

a(t) = ao( 1 - e -'/3°). (44) 

The resulting model is then a hybrid between the hydraulic model and that of 
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Behncke [3]. This model can be studied along the lines above, because the 
equations for the conjugate variables ~o, ~1, 02 and 03 are the same as above, 
only M o  has to be replaced by 0. Thus the lemma and its consequences also 
holds in this case. As expected v decreases less in the ~ = 0 phases in this model 
than in the previous one. In fact ~, = 0 leads to a constant v in phase 1 and a 
very slowly decreasing v for phase 2. The joining of the solutions for phase 1 and 
2 can also be arranged easier in this case. For  both models we expect only one 
power constraint phase at the end of the run. 

In (44) a0 can also be considered time dependent in order to model long time 
fatigue, for this see e.g. [3]. The form of the optimal solution is not affected by 
this modification of or. 

For  the long distance model we shall neglect all short time effects due to 
phosphagen depletion. Thus we combine (L) and (P) into a single vessel (5  °) with 
volume VL. The oxydative processes will be described by the breathing rate cr. 
The vessel (O) with volume V will be used to describe glycogen and lipid 
reserves. The state of the system is then defined by v, l and E, where l and E 
describe the energy reserves in (50) and (O) respectively. In order to model the 
initial increase of breathing, long time fatigue and the effects of acidosis we shall 
assume that cr is roughly of the form 

E 
cr ~ a o ( t , / ) ( 1  - e - t / z ) ,  z ~ 30. (45) 

The first factor indicates that c~ declines proportionally to the remaining glycogen 
stores E. The last factor models the initial increase of a. Fatigue and the effects 
of an acidosis imply 0ta0 <~ 0 and ~zo-0 >i 0. Of course IOta01 and ~tcr0 will be small. 
Our assumption Oza0 <~ 2 • 1 0  - 4  for example means that a maximal acidosis will 
reduce o- by at most 40%. 

In this model the total power is derived from oxydation of glycogen and 
lipids, or, and phosphagen and glycolysis PL. Thus we have 

~f 
- -  = a  + P L .  
// 

Since glycolysis also uses glycogen as a fuel we see 

E ' = - o - - 6 P L ,  6 ~ 1 9  

where 6 is the energy equivalent of the oxidation of glucose versus glycolysis. The 
depletion of the glycolysis-phosphagen store finally leads to 

l' = - P L .  

This system can now be rewritten as 

v' = f -  r(~) 

E' = (a - 1)or - b v f (46) 

l" = vJ + a. 
q 

The constraints corresponding to (30) and (31) are 

vf 
0 <~f  <~ F, - -  - cr <<, P(1). (47) 
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The power constraint function P = P(l)  will be a monotone sigmoidal shaped 
function of l. It may be approximated by 

In this form 0 is the time constant with which the energy reserves in ( ~ )  are 
depleted [3]. On the basis of  (24) one would expect 0 ~ 18 or P'  ,,~ 0.05. In this 
case the optimization of 

D = v dt 
0 

defines an optimal control problem with a phase inequality constraint; which is 
obviously an extension of the model in [3]. The qualitative discussion of the 
solutions of the conjugate variable system proceeds as above and leads to. 

Lemma. The optimal control problem possesses an optimal solution with a piece- 
wise continuous f An optimal solution has the following form: A short f =  F phase 
is fo l lowed by a phase o f  very slow increase o f  v, until finally the force and power 
constraints take over. 

Remark.  As in the previous two models, the phase where v is almost con- 
stant, corresponds to the 0 = 0 domain of the switching function 0. On 
this domain the (02,03) system is governed by the eigenvalue 0 and 
--((3-  I)OEO'+OlO- ) = 2 _ .  Thus this domain is shorter and v increases more 
strongly if 12_ I is larger. This means the power constraint takes over faster the 
stronger the effects of the acidosis are felt. 

The solution has thus almost the same form as that in [3]. The slow increase 
of v is a consequence of the long term negative effect of glycolysis. In fact if the 
glycolytic stores are reduced v becomes more and more constant. It should be 
noted that the final power and force constraints lead initially to an increase of v. 
Then v decays slowly with a time constant of 20 to 30 seconds. Thus this also 
explains the final kick. 

We have seen above that for longer distances the Pasteur effect reduces 
glycolysis. For  this reason one should also consider an optimization model for 
longer distances based on phosphagen (P) and oxydation alone. The state 
equations for this model are then 

v" = f -- r(v) h'  - 1 f v  m o h - k 
A e  tl A e  1 - 0 

(48) 
M@ 

k" - (h - k) v(O) = h(O) = k(O) = O. 
( 1 - (a)Ao 

In addition the constraints (30) and (31) have to be satisfied. In order to apply 
the Pontryagin maximum principle as above, we introduce the adjoint variables 
00, 0 i ,  02 and 03, which satisfy equations, which are similar to (34) 

0; =0, 01--= - - O o + r ' O l - - ~ f  0 2 - - # f  

M o  M o  Mp  
02 -- 02 03 -- # - -  00 ~ 0 

Ap(1 --q~) A o ( 1 - - 0 )  1 - - 0  

M@ M@ 
0 ;  - 02 -~ 03 Ol( r )  = 02(T) = 03(T) = O. 

A p ( 1  - ~ )  A o ( 1  - ¢o) 
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Proceeding as above one determines the properties of the switching function 
= 01 +(v /Ae t l )02  by integrating the ~ system backwards from T. With 

parameters in the range considered above one shows that ~ is nonnegative and 
has at most one positive semiarc in (0, T]. Thus f is piecewise continuous with 
at most two discontinuities. Contrary to the other two cases one does not have 
an interval where v is almost constant. The optimal strategy is rather: Attain a 
high initial velocity and breathing rate, let v decay a little for about 30 seconds 
and run the remaining time under power constraint conditions with breathing at 
nearly V02 max' Thus long distance runs are closely correlated to V02 . . . .  as is 
well known. 

So far it has not been investigated in the literature, whether fatigue, caused 
by lack of substrates, operates mainly via the force or the power of the muscles. 
In fact, so far the distinction between force and power constraints has not been 
considered at all. 

In my opinion fatigue operates mainly through the power. Intermediate 
spurts of runners and cyclists on mountain roads seem to support this claim. 

IV Discussion 

The complete model for the force and energy in competitive running is now the 
synthesis of these three submodels. Thus the biomechanical part is determined by 
the starting phase (7), Newton's law (4) for v ~> 6 as well as (5), (6) and the 
constraint 0 ~f~< F. It is connected to the energy submodel via W = ( f .  v)/ t  1. 
The energy model itself is determined by the hydraulic Eqs. (14), (18) or (22) 
along with the geometric parameters 0(13), q~(17), 2(20) and constraints (22), 
(23) and (28). On the basis of these equations and constraints each runner tries 
to minimize T given D respectively maximize D given T while us ingfas  a control 
variable. Thus the running strategy and with it the dynamics is determined by the 
optimization model. 

The application of the optimization models to our problem is complicated by 
the fact that the initial conditions for the systems equations are given for t = 0, 
whereas the initial conditions for the conjugate system are defined at T. In 
addition some of the parameters are still undetermined, which makes the 
optimization even more complicated. 

The biochemical submodel extends previous models [12] and [23] in several 
respects. Firstly it considers a separate starting phase and secondly it uses a more 
general and realistic resistance expression. By choosing the free model parame- 
ters F, b and z it yields a good fit of the data of Ballreich [1] and of the sprint 
world records. For good athletes these parameters lie in the ranges 5.5 ~< F ~ 7.0, 
0.68 ~< b ~< 0.8 and 0.10 ~< z ~< 0.25. The fit of the sprint world records for women 
can be improved a little if a smaller b and larger z are chosen. However since it 
is not clear whether this represents a real effect, we have chosen a common b. 

The energy submodel extends the hydraulic model of Margaria [16] and 
Morton [18, 19] in several respects. Firstly it uses a finite and layered oxygen- 
glycogen-lipid compartment. Secondly it allows a maximal glycolytic rate. 
Thirdly the use of the substrate glycogen for glycolysis is built in and finally the 
model is constrained by (22), (23) and (28). 

While the finiteness of the O-compartment is clearly necessary, other models 
for the glycogen-lipid metabolism are possible. This model with a layered 
O-compartment is based on the following physiological facts [ 10, 11]. Glycogen 
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and lipids use oxygen as a common substrate to produce A TP. Both processes run 
largely in parallel, though the oxydation of glucose is initiated first. The oxygen 
equivalent of  glucose is higher than that of  fat. While local glycogen depletion is 
important for longer distance runs, the lipid reserves are almost unlimited. 

A more serious objection to the present model is the fact that glycogen and 
even more lipids are released from their depots during activity. While the criticism 
addresses the applicability of the hydraulic model as such, this object is not as 
series as it seems at first glance, because the resulting exponential decay of W0 can 
also be interpreted as increasing fatigue. 

It is possible to model this latter situation by introducing a fourth lipid-glyco- 
gen depot vessel (D); which is coupled to (O) hydraulically but which is not 
coupled to (P) directly. In this case (O) should have a constant cross-section Ao. 
If  the ceiling of  (D) is at #, the dynamics of this new semihydraulic system are 
unchanged for k ~< #. For  k ~> # one will have the constraints (22) and (23) and 
thus this system is, after a short intermittent period, again governed by one 
exponential. Thus for longer distances this new model is equivalent to the model 
described in Sect. II. 

That  the maximal glycolytic rate is attained rapidly with maximal workloads 
does not only follow from experimental results [16] but is also a consequence of 
theoretical studies [14]. For similar reasons power constraints are necessary. In 
nature these constraints follow from the kinetics of a large number of chemical 
reactions and the dependence of the enzyme activities on the substrate concentra- 
tions [9, 15, 16]. Thus these constraints should rather be described by sigmoidal 
functions. In the absence of  further results and data however, a linear approxima- 
tion (22) and (23) is justified. This has the advantage that no additional 
parameters are needed. 

The function of the Pasteur effect is well established experimentally via the 
measurement of lactate concentrations for athletes [9, 10, 11]. Likewise it has been 
analyzed theoretically [9, 15] and its importance in the framework of  a hydraulic 
energy model has been demonstrated above. Nonetheless it is extremely difficult 
to take it into account for a hydraulic model, and (28) should be considered only 
as a first attempt to do this. 

In essence the Pasteur effect leads to two different models for competitive 
running. In the model for short distances, D ~< 400m, glycogen depletion is not 
important and one may set k - - 0  throughout. For the long distance model 
D > 2000m, the glycolytic compartment should be neglected, i.e. VL -- 0. Thus the 
application of  this model to middle distance runs seems more problematic than 
for the other distances. Another reason for this difficulty is the fact that the 
hydraulic model ties the breathing rate too strongly to h. 

The model stills contains a number of parameters, which will have to be fixed 
depending on the special case under consideration. These are F, b, z and Me, M/., 
Mo, Vp, VL, Ao, AF and #. For  good athletes these parameters will lie in the 
ranges 

5.0 ~<F~< 7.0 

70 ~< Mp <~ 96 

700 ~< Ve ~< 1200 

0.68 ~< b ~< 0.8 

ML ~ .4" Mp 

VL ,,~ 1 AMp 

0.12 ~< "c ~< 0.25 

0.25 • Mp <~ Mo <<, Mp 

A o ~ 90 • Ap. 

In addition we will also have A e ~ F(v~)v(v~)/tl(v ~). Even though we have fixed 
0, (b and 2, these parameters may also vary by 0.55 ~< 0 ~ 0.65, 0.15 ~< q5 ~< 0.3 
and 0 . 0 5 ~ < 1 - 0 - 2 ~ < 0 . 1 .  
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