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Abstract. An n-level field theory, based on the concept of "functional interac- 
tion", is proposed for a description of the continuous dynamics of biological 
neural networks. A "functional interaction" describes the action from one 
substructure of a network to another at several levels of organization, molecular, 
synaptic, and neural. Because of the continuous representation of neurons and 
synapses, which constitute a hierarchical system, it is shown that the property of 
non-locality leads to a non-local field operator in the field equations. In a 
hierarchical continuous system, the finite velocity of the functional interaction at 
the lower level implies non-locality at the higher level. Two other properties of 
the functional interaction are introduced in the formulation: the non-symmetry 
between sources and sinks, and the non-uniformity of the medium. Thus, it is 
shown that: (i) The coupling between topology and geometry can be introduced 
via two functions, the density of neurons at the neuronal level of organization, 
and the density-connectivity of synapses between two points of the neural space 
at the synaptic level of organization. With densities chosen as Dirac functions at 
regularly spaced points, the dynamics of a discrete network becomes a particular 
case of the n-level field theory. (ii) The dynamics at each of the molecular and 
synaptic lower level are introduced, at the next upper level, both in the source 
and in the non-local interaction of the field to integrate the dynamics at the 
neural level. (iii) New learning rules are deduced from the structure of the field 
equations: Hebbian rules result from strictly local activation; non-Hebbian rules 
result from homosynaptic activation with strict heterosynaptic effects, i.e., when 
an activated synaptic pathway affects the efficacy of a non-activated one; 
non-Hebbian rules and/or non-linearities result from the structure of the interac- 
tion operator and/or the internal biochemical kinetics. 
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1 Introduction 

A method is proposed to describe the dynamics of neural networks when three 
dependent biological constraints are considered: several levels of organization 
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(including the molecular level), geometrical densities of neurons and synapses, 
and non-local interactions between biological substructures. 

The dynamics of formal neural networks are generally described with alge- 
braic (Kohonen 1972, 1978) or statistical physics (Hopfield 1982, 1984) methods, 
and are based on two properties of their elements: the spatial summation 
according to a given topological connectivity, and learning rules which impose a 
modification of synaptic weights according to a correlation principle such as 
Hebb's postulate (Hebb 1949). Moreover, formal networks frequently are based 
on automata theory, due to the small number of assumed neuron states and the 
ease of implementating the learning algorithm on digital computers. For exam- 
ple, Hopfield networks, which are very similar to spin glass models in statistical 
physics (Toulouse et al. 1982, Peretto 1984), are based on a principle of 
optimization of an energy function with a sigmoid input-output relation. When 
this relation is steep, i.e., when the circuits are assumed to have a "high-gain" 
limit, network elements have one of two states, 0 or 1, and the energy function 
exhibits strong non-linearities. These conditions lead network states to attract 
minima in the space of configurations. Because such a process implies memoriza- 
tion, i.e., the possibility of convergence towards such attractors, it may be 
analogous to learning. 

Biological neural networks present specific constraints (Crick 1989) which 
have to be considered in any study of the function of the network. Most of these 
constraints come from the organization of the system into several levels. From 
the molecular level, which is concerned with the dynamics of neurotransmitters, 
receptors and cytoplasmic neuromediators, to the level of groups of neurons, 
which generally constitute nuclei with a common physiological function, all the 
dynamics at each level are integrated to provide the function of the whole 
system. 

Although physical models of memory have been proposed (e.g., Longuet- 
Higgins 1968), one important property in neural networks is the modifiability of 
their connections. Hebb (1949) hypothesized that stable long-term memory 
results from an increased synaptic efficacy, due to some structural change in 
biological neural networks. Many examples of such changes in synaptic function, 
e.g., associative learning at the behavioral level (Gingrich et al. 1987), associative 
long-term potentiation at hippocampal synapses (Levy et al. 1979, Kelso et al. 
1986); learning and memory of movements in cerebellar cortex (Thompson 
1986), have not been documented; and have been incorporated within models of 
perceptual learning and pavlovian conditioning (Grossberg 1967, 1982, 1990), of 
hippocampus (Traub et al. 1985), and of cerebellum (Albus 1971, Marr 1969, 
Fujita 1982). Interpretation of this postulate in terms of modern neurophysiol- 
ogy led to the concept of the Hebbian synapse, in which the strength is enhanced 
during nearly simultaneous pre- and postsynaptic activity. Brown et al. (1990) 
define an Hebbian synapse "as one that uses a time-dependent, highly local, and 
strongly interactive mechanism to increase synaptic efficacy as a function of the 
conjunction or correlation between pre- and postsynaptic activity". Such a 
principle of conjunction, and its extension toward a more general principle of 
covariance (Sejnowski 1977, Chauvet 1986), can be described as a macroscopic 
statistical principle, which does not explicitly include known cellular and molec- 
ular mechanisms. A first problem is to know how to deduce a quantitative 
formulation of the variation of synaptic efficacy from known cellular and 
molecular mechanisms (Gingrich et al. 1987), i.e., a formulation that integrates 
several levels of organization (Chauvet 1988b). 
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A second important property of biological neural networks is the large number 
of neurons and the large number of synapses per neuron. A continuous approach 
is therefore consistent with the continuous geometrical location of neurons and 
synapses, which is known from the experimental space densities of neurons and 
density-connectivities of synapses. Geometry with the space density function, and 
topology with the space connectivity function are then included in the formula- 
tion of the dynamics. 

A consequence of this continuous approach with several levels of organization 
is the special formulation of physiological properties that depend, at each level of 
organization, on the geometrical location of the neurons and of the synapses for 
each neuron. It will be shown that these properties can be described with a 
non-local interaction operator as a consequence of the concept of non-locality in 
biological systems (Chauvet, 1993a). (i) Local interactions occur in an infinitesi- 
mally small space interval during an infinitesimal time interval, and the processes 
are described with local PDE (see, e.g., Murray 1990). They result from local 
phenomena at a given level as, e.g., the propagation of potentials (active 
propagation along the axonal membrane (Hodgkin et al. 1952); or the passive 
propagation with an attenuation factor along the dendritic membrane (Rall et al. 
1973)), at the level of one neuron. (ii) Non-local interactions result from 
phenomena at a non-infinitesimal distance at different levels of organization. It 
will be shown that the existence of non-local effects appears logically through the 
formulation, and that some consequences can be suggested: (i) the influence on 
the dynamics of the delays of propagation between neurons (Chapeau-Blondeau 
et al. 1991), (ii) the distinction between intracellular and extracellular spaces which 
leads to considering propagation and diffusion in these spaces as non,local and 
local phenomena respectively. Recent experimental investigations on long-term 
potentiation (LTP), which is a persistent enhancement of synaptic efficacy 
following high-frequency stimulation (tetanization) of afferent fibers (Kelso et al. 
1986) also provide some evidence for the existence of non-local effects. Specifi- 
cally, LTP of inputs to the CA3 region of hippocampus, have confirmed that the 
induction of enhanced synaptic efficacy does not explicitly require activity in 
presynaptic fibers (Bradler et al. 1989, 1990). A mathematical expression of this 
physiological property of "true" heterosynaptic effect (Fig. 1) is that the dynamics 
of synaptic efficacy, for one subset of inputs, can depend on other subsets of 
synapses that are located further away on the same postsynaptic neuron, 
irrespective of the level of activity of the distant synapses. 

To incorporate conditions appropriate for the existence of several levels of 
organization and continuous geometrical densities of neurons and synapses into 
models of neural networks, a field theory is proposed, which includes non-local 
interactions between biological substructures (Chauvet, 1993c). The dynamics of 

Activity 

X(r ' ,T ' )  
D 

1 

X(r,T) 

Fig. 1. Illustration of homo- (1) and 
hetero- (2) synaptic efficacies in the 
space of neurons ((r, T)-space) and 
in the space of synapses 
((s, 0-space). Presynaptic activity is 
denoted X =- Y(r',  T'), and 
postsynaptic activity is denoted 
Y = Y(r, T)  
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a neural network are described when synaptic efficacy is modifiable and determined 
by both local and non-local sub-cellular mechanisms. The dynamics of a discrete 
formal neural network are again obtained, and conditions for classical Hebbian 
and non-Hebbian learning rules are deduced from the proposed field theory. 

The field theory approach 

Non-locality, non-symmetry and field theory 

The concept of "functional interaction" is at the origin of the proposed theory. 
A functional interaction describes how a biological structure, called a "source", 
acts upon another biological structure, the "sink"; in the case of nervous system, 
the functional interaction is the expression of how one neuron acts upon another. 
For example, neural activity, considered as a space-time variable, is a functional 
interaction, as well as is synaptic efficacy. As will be shown later, there exist at 
least four fundamental properties for a functional interaction (Chauvet 1990): (i) 
non-instantaneity, i.e., its transport with afinite velocity, (ii) non-locality because 
of the possible long distance between sources and sinks considered at different 
levels of organization, (iii) non-symmetry between sources and sinks, and (iv) 
non-homogeneity of the medium. These four properties require a field theory. 

The property of non-locality is a consequence of the size of the neuronal extent 
in the cartesian space: Two neuron-sources, can be infinitesimally close in the 
sense of the continuous density, but the corresponding neuron-sinks can be very 
far apart because of the extent of their axonal part in the cartesian space. The 
motoneurons, which give rise to the sciatic nerve, provide one such example. 
Another example can be deduced from the propagation of local synaptic or axonic 
potentials submitted to various intra and/or extracellular influences. Because the 
transport of the nervous influx occurs in the continuous space of one neuron, say 

Non-local Functional Interaction v 
LEVEL 2 

Times "1"2 T~ = T0-d/v To 
SPACE OF NEURONS r2 rt ~ ro 

rT1 i ]  " ,  " ' " ' " " .  

%.\ 
/ /" Z ' v , v 

LEVEL 1 0 0 0 O ~-- 
SPACE OF SYNAPSES S' S 
Times  t '  t 

D s (r2,r~) 
Ds(r~,ro) 

]Fig. 2. Non-locality in the space of neurons where each point in the space of neurons in fact 
extended along a certain distance in the physical, cartesian space. The "point"  considered is a 
volume, and includes the space of synapses (for this hierarchical system with two levels of  
organization). At time TI the value of  the field variable is 7S(rl, TI) in point rl which includes the 
space Ds(r 2, q )  of synapses that connect neurons at r 2 with neurons at rl ,  and the axonal space. ~t 
is shown that this is the source of non-locality. 
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  sources i 
Fig. 3. Three interactive neurons 
represented as sources and sinks 
with an interaction operator from 
the source to the sink. 
Mathematically, this interaction is 
expressed by a field operator that 
operates on a field variable, and 
which carries it from point (r, T) or 
(r', T') to point (r 0, To). The source 
is represented by F. 

with a velocity va, and not in the continuous space o f  neurons, what we see at time 
To and at point ro in the space of  neurons is what was emitted at time T1 = To - d/va 
by neurons that are located at rl where d =  t r l -  r01 (Fig. 2). This non-local 
property, which expresses the coupling of  biological substructures at a distance, 
is very general, and is the consequence of the structuring of the system into several 
levels of  organization (Chauvet, 1993b). Therefore, for the same reason, the 
synaptic efficacy modifiability will be locally (in the sense of a density of synapses) 
the expression of non-local interactions with the velocity vs at the molecular level. 

As a consequence of the propagation of activity in the neural network, 
non-symmetry is a property which must be included in the formulation. For  
example, space-time equations like reaction-diffusion equations are symmetric 
and cannot represent this propagation phenomenon. That is the case of 
Hodgkin-Huxley equation which represents the two-way active propagation of  
action potential from any initial point of the axon. 

A solution to these problems, a consequence of the existence of  non-locality 
and non-symmetry, is to include in the local dynamic equation of  one neuron, a 
non-local and non-symmetric term which describes the unidirectional action of 
this neuron at a distance. That can be done with the field theory (Chauvet 1988a, 
1988b). In the framework of  physical field theory, an interaction is propagated 
with a finite velocity from the source point to the sink point: A source in (r', T') 
creates a field ~ which acts in turn on a neighboring point (r0, To) (Fig. 3). 
Because of the non-symmetry, sources and sinks do not have a similar role 
regarding their reciprocal influence: the source acts on the sink, but the sink does 
not act on the source. If, at point (r', T'), a source interacts with the field 
O(r', T'), then a new value O(ro, To) for the field variable is obtained at the 
neighboring point (r0, To), and so on. Such a process could be described by the 
following general equation: 

H(~)~(r0, To) = r(ro,  To) (1) 

where ~ is the excitation field which is propagated by the non-linear field 
operator H(~),  (that can depend on ~0), from sources to sinks, and F is the 
source term for a source localized in (ro, To). A similar formulation has been 
used for only one level of organization (Beurle 1956, Griffith 1963, Wilson et al. 
1972, Fischer 1973, Kishimoto et al. 1979). The problem of the determination of  
the field operator H is not easy, because it mathematically requires it to take into 
account all orders of  time and space derivatives, and integral operators. Most 
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often, that determination is imposed by the geometry of the space or by some 
symmetry considerations. For  example, in some cases of good regularity, the 
field operator H(0)  can be considered as invariant with regards to rotations 
and translations, so that: 

H(0)  = ~ - DV 2 - HI(O) (2) 

where DV 2 is a diffusion term that depends only on the properties of the 
medium, and H~ is an interacting nonqocal and non-symmetric operator. 
Therefore, with HI depending on 0, and with a potential kernel function V~,, 
Eq. (2) can be re-writen, at point (r0, To) as: 

60 
-- DV20 + .[D V$(ro, To, r', T'; V(r', T'))Q(r') dr' + F (3) 

0T --R(r0) 

where 0(r') is the density of units at r'. Thus, the role of V 0 at (r', T') is to 
interact with the field 0 at (ro, To), which is generated by the processes that are 
evolving in the source F(r', T'). In Eq. (3), the velocity v a of transport along the 
extent of one neuron appears via the term ~(r', T ' ) -  ~h(r', T o -  d/va) where 
d = I r ' - r01  (Fig. 2). As discussed above, the existence of the functional interac- 
tion with a finite velocity v at the lower level implies the non-locality. In the 
following, the notation will take into account the rank of the synapses: r 0 denotes 
the present point in the r-space; ri denotes the points where presynaptic neurons 
are located. Subscript i is used to represent the rank of the synapse relatively to 
r 0. For  example, neurons at r I are connected with neurons at ro via a monosy- 
naptic pathway, neurons at r2 are connected with neurons at r0 via a disynaptic 
pathway, i.e., with neurons at r 1 via a monosynaptic pathway. Points r'l, r~' are 
points such as r 1 in r-space, r~, r~ are points such as r2, etc. When subscript for 
afferent neuron points is not specified, then a monosynaptic pathway is assumed. 

Activity and synaptic efficacy as fieM variables 

It is desirable to use as field variables observed quantities (observables) that 
have a physical meaning to improve the theoretical interpretation of the dy- 
namics based on experimental data. At the neural level with a time scale {T}, 
the field variable is the activity which is defined as action potential frequency. 
At the synaptic level with the longer time scale {t}, the choice of field variables 
is more difficult (Fig. 4, see also Appendix A). The "local postsynaptic mem- 
brane potential" is denoted as ~(s, t) at a point (s, t) in the space of one neuron 
at (ro, To) and corresponds to a presynaptic neuron at (r, T). The "local 
somatic depolarization" is denoted as 0(ro, To) at the axon hillock at (ro, To) in 
the space of neurons. With these definitions, a general definition of synaptie 
efficacy between presynaptic neurons in r and postsynaptic neurons in ro at 
synapses in s(r, ro) could be: 

#(s, t) = C[¢b(s, t), (0(r ,  T))(t) l  s = s(r, ro) (4) 

where ( 0 ) ( t )  is the average depolarization at time t, and the function C, which 
represents the synaptic efficacy, has to be determined. This expression for # 
includes implicitly with ( 0 ) ( t )  the mechanisms for pre-synaptic efficacy, and 
with • the mechanism for post-synaptic efficacy. Their description will be given 
in Sec. 3. The "instantaneous local somatic activity" X(ro, To) in the time scale 
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X(r,T) ¢~(s,t) ~ r0 ,T  0) X (ro,T 0 ) 

s 

Neurons at r Synapses at s(r,r 0) Neurons at r 0 

Fig. 4. Definition of field variables, 
input activity X(r, T), postsynaptic 
potential ~(s, t) in the space of 
synapses, soma membrane potential 
5U(r0, To), and output activity 
X(r o, To). Two of these, soma 
membrane potential and synaptic 
efficacy related to postsynaptic 
potential, have been chosen as 
independent variables 

{T} is deduced from ~, by a non-linear, generally sigmoid input-output function 
F: 

Z(ro, To) = X(<0(ro, To)>) = F(@(ro, To)>(To)). (5) 

Therefore, the passage from one level of organization (synapse) to the higher 
(neuron) with ~9 and kt as local somatic depolarization and local synaptic efficacy 
respectively, leads to our considering the 0-field and the #-field as evolving in 
two different spaces whose points are denoted by (r, T) and (s, t) respectively. In 
this conceptualization, a given space at one point within one level is a point for 
the next higher level. This property of "space inclusion" is characteristic of a 
hierarchical system with fields acting at multiple levels. In this paper, a formula- 
tion of the dynamics of the neural network described by both soma membrane 
potential and synaptic efficacy as field variables satisfying Eq. (4) (or similar 
ones of the same class of equations), is investigated as a consequence of the 
propagation of electrical potentials, whatever the mechanism. Although complex, 
this approach has the advantage of classical continuous mathematical analysis, 
and, further, partial integro-differential equations are solvable by numerical 
methods. Moreover, particular discrete cases can be deduced from the general 
continuous case when the densities are chosen as Dirac Delta functions. 

Synaptic level of organization 

Local synaptic efficacy. Influence of  time scale 

Presynaptic mechanisms at any point (s, t) in a neuron at (ro, To) and corre- 
sponding to a presynaptic neuron at (r, T) are described by terms that can 
interpret the kinetic properties of neurotransmitter release (Magleby et al. 1982). 
A phenomenological expression of these kinetic properties as a function of time 
in the neuron space is obtained by fitting the observed curve with the product 
of the four functions that describe facilitation, potentiation, and depression 
(decreasing) rates: 

4 
~(s, t) = ~°(s, t) IJ ( 1 + d(i)(s, t)). (6) 

i = l  

This expression gives the probability of neurotransmitter release when the 
four functions d(Os, t) are known. The basal level of presynaptic efficacy 
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tO((s, t); (X)) is a function of activity (X)(t). A simplified expression including 
only two terms was used by Finkel et al. (1987) to describe presynaptic 
facilitation and synaptic depression. They interpret 5 as the presynaptic eficacy. 

Postsynaptic mechanisms include transmitter-receptor binding, transitions 
between opened and closed channel states, conductance variation of voltage- 
dependent channels, the resulting variation of postsynaptic potentials (PSP), and 
the action of neuromodulators. Following Finkel et al. (1987), Changeux and 
Heidmann ( 1987), a simple two-state kinetic model can be chosen to describe the 
binding of transmitter to postsynaptic receptor sites. The instantaneous postsy- 
naptic efficacy r]  is defined as a conductivity. In a simplified model, it is in direct 
relation with a sum of two conductance terms: (i) the product of the number 
(1 - fI(@)) of non-modified (but modifiable) channels with conductance g with 
the number of non-activated receptors 1 - R*; and (ii) the product of the 
number (1 - f T (@)) of modified channels with conductance g* with the number 
of activated receptors R*: 

The postsynaptic potential (PSP) is obtained using the Hodgkin-Huxley equation 
(Hodgkin et al. 1952): 

where the g's and G = Rg are the conductances that depend on the postsynaptic 
potential and on the synaptic and ionic currents; K is a coefficient, and C is the 
membrane capacity. This reaction-diffusion equation expresses the local conser- 
vation of the number of ions during their transport across the membrane. 
Because of the symmetrical space diffusion term, it cannot represent the trans- 
port of action potential from one neuron to another. 

A variation of the postsynaptic potential requires two local mechanisms: (i) 
free diffusion of ions, depending on extrasynaptic channels and on the conditions 
of extracellular space, e.g., extracellular potentials. This variation is described by 
DoV%@(s, t), where the diffusion coefficient Do includes the properties of matter 
in space, which generally are non-homogeneous. In case of non-homogeneity, 
diffusion is described by V,(D,V,@(s, t)). (ii) spontaneous loss and gain of ions 
due to homosynaptic effects that are described by the term -ko@(s, t) = 
T,(@(s, t)). These two source terms are represented by J, and J,, for the ionic 
and synaptic currents respectively in the Hodgkin-Huxley Eq. (8), which can be 
re-written more generally as: 

-- a@(s7 'I - Vs(DoVs@(s, t)) + To(@(s, t)). 
at  

Let us define the "instantaneous local synaptic eficacy" oo as the function which 
describes all the phenomena that occur between presynaptic depolarization 
$(r, T) and consequent postsynaptic potential @(s(r, r,), t ) :  

00 

$(r, TI @@, 0. (10) 

Defined in such a way, instantaneous local synaptic efficacy a, depends on 
various parameters that satisfy local dynamics, i.e., a system of differential 
equations for which the mathematical solution will determine the long-term 
evolution of instantaneous local synaptic efficacy. This fundamental hypothesis 
regarding the dynamics seems reasonable because: (i) the number of receptors is 
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dependent on internal chemical modifications, including those mediated by a 
neuromodulator; so, only the long-term average of instantaneous local synaptic 
efficacy will be observed, (ii) the concentration of neurotransmitter varies slowly, 
as its long-term average, and therefore depends on long-term activity, (iii) the 
concentration of neuromodulator results from intracytoplasmic kinetics and can 
evolve slowly as its long-term average. In other words, the slow evolution of these 
dynamics implies variables which evolve in the same long time scale and which are 
the time averages of the observed concentrations of neuromodulators, neurotrans- 
mitters, and receptors. With these concentrations denoted respectively by M, R, N, 
let (M) ,  (R) ,  (N) ,  be the slow variables calculated on an interval AT. Then, 
the local synaptic efficacy/t 0 can be defined by: 

#o(s(r, to), t; ( M ) ,  (R) ,  ( N )  = (ao(s(r, ro), t; M, R, N))AT. (11) 

This equation introduces a new definition for local synaptic efficacy that takes 
into account the time scale of the phenomena. The next step in a formalization 
of neuronal interactions in terms of the field theory is to introduce in the 
mathematical formulation the non-local and non-symmetric effects. Note that in 
this continuous approach where a functional interaction operates from one point 
to another with a finite velocity, non-local effects are inherent, and appear in 
both levels of organization. One argument for the existence of such functional 
interactions at the synaptic level is the experimental evidence of true heterosy- 
naptic effects (Bradler et al. 1990). 

Non-local mechanisms for the variation of synaptic efficacy. Global synaptic 
efficacy defined from field effects 

A more general form of the postsynaptic potential variations than that described 
by Eq. (8), and therefore by Eq. (9), is obtained by considering non-local 
potentials that depend on membrane receptors and neurotransmitters: the post- 
synaptic potential at s in the neuron localized at r0, which is connected with 
neurons at r, results from other synapses localized at s' on the same dendritic 
tree, due to the activation of neurons localized in r' (Fig. 5). These heterosynap- 
tic effects depend on two anatomical functions: (i) the density-connectivity 
rc(s', r'; ro) which is defined in a space D~(r', r0) and constituted by the synapses 

A C T I V I T Y  X (r,T) 

SOMA 
D~OLARIZATIOI~ Ig(r,T) 

~" ~ ~ (s,t) 
r)  

Oo(S,t) 

< 
Z 

~ 11 (s,t) 

r .space 

t') 

,t') 

X ( r ' ,T ' )  

~ ( r ' , T ' )  

l ao(S'(r',ro),t' 

pOSTSYNAPTIC 
pOTENTIAL ~(s,t) 

s=s(r,r o) 
s-space 

(~(s',t') 

s'=s'(r',r0) 

Fig. 5. Non-local heterosynaptic 
effects between two distant 
synapses at (s, t) and (s', t'), 
which originate in two distant 
points (r, T) and (r', T') in the 
space of neurons. Thus, 
presynaptic activities are 
considered at these two points: 
X(r, T) and X(r', T'). For 
example, two effects converge in 
(s, t), one from the soma 
depolarization at (r, T), and the 
other from (r', T') via the 
synapse at (s', t') 
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X(r',T') Ds(r',ro) 

X(r,T) 

rI(s',r';r0) 

Ds(r,ro) 

n (s,r;r 0) 

D R =D ~r,r ~ U D  ~r',ro) 

X(r0,T) 
ii 

Fig. 6. The density-connectivity 
z(s, r; ro) represents the density 
of synapses at s, in the neuron at 
r o, that are connected, with a 
certain probability, with neurons 
at r. Their spaces of definition 
are Ds(r  , ro) and D R that is the 
recombination of spaces D s for 
all presynaptic neurons at r 

localized at s'(r', ro) in the neurons at ro, which are connected with the 
neurons at r'. (ii) the density of neurons Q(r') at r '  which is defined in space 
DR(ro), the recombination of  subspaces D~(r', ro) when r '  varies (Fig. 6). It 
is possible to describe this field effect as a distance effect with a mathemati- 
cal potential kernel function U~(s, t, s', t'; 4, 17) where variables ~ and 17 are 
considered as parameters that are defined at the lower level. The interaction 
operator is: 

;o fo H~ = o(r') U~(s, t, s ,  t'; 4, t/)rc(s', r , r0) ds' dr' (12) 
R(rO) s(r', ro) 

where 

s - s ( r ,  t o )  

DR(to) = U D(r', ro). 
r" 

In this way, Uv is a function which has to include the set of phenomena 
which occur at s' and act upon s (Figs. 5 and 6). For  example, the passive 
conduction implies an attenuation of potential between these two points (Rall 
et al. 1973). The potential • is modified (6cb) due to a variation in the 
number of activated receptors, which occurs as a consequence of biochemical 
dynamics. Therefore, Eq. (9) for the postsynaptic potential can be written as: 

0 f  
(s, t)=Vs(DoVs~b(s, t))+ fo e(r') fD Uc~(s, t, s', t'; 4, 17) 

0t R(ro) s(r'. to) 

x n(s', r'; ro) ds' dr' + Fo(~(s, t)) (9') 

with t '=  t -  I s -  s'l/v, where v is the velocity of the interaction due to the 
propagation of the potential along the dendritic tree membrane. This is the 
postsynaptic potential non-local field equation. 

Because this postsynaptic potential field equation is extended from Eq. (9), 
the instantaneous local synaptic efficacy ao(s(r, to), t), as in (10) above which is 
deduced from Eq. (9) has also to be completed. Let a(s(r', to), t) be the new, 
non-local function that describes the effect of the presynaptic neurons on the 
postsynaptic one, and defined as: 

~r 

Vr' ~(r ' ,  T') > q)(s(r', ro), t). (10') 
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Equation (9') leads to the assumption of a similar, but crucially non-local, equation 
f o r  (Y: 

0~ 
t 0t V,(DIV, o-) + H~(Uo(s, t, s ,  t'; ~b, 6q)) + Fl(a ) (13) 

where H~ is a field operator that depends on 4~(M, R, N) and cS~(M, R, N), in 
accordance with the homo- and heterosynaptic mechanisms described above. Note 
that in Eq. (10') for a, a property is added to the property of Oo described in (10): 
due to diffusion of the postsynaptic potential, there exists a distance interaction 
of the instantaneous synaptic efficacy % which leads to a diffusion term. 

As #0 was deduced from the o0-average by Eq. (11), the "global synaptic 
efficacy" # will be defined from the ~r-average by the same relationship: 

#(s(r, ro), t; <M), <R>, <N)) = <a(s(r, ro), t; M, R, N)>zr. (I1') 

The most interesting implication of the non-locality property included in this 
formulation is the determination of the non-local interaction operator for # because 
it allows us to deduce new learning rules, as will be shown below. 

Structure of the neuronal field equation and interaction operator 

Structure: Following the discussion about the time scale that leads to Eq. (11), 
the local synaptic efficacy #0 is defined as the time average of the instantaneous 
local synaptic efficacy a0, and consequently is dependent on the time average 
concentrations, e.g., ( M ) ,  (R) ,  (N) ,  according to a new specific equation. 
Referring to the preceding discussion about the non-locality that leads to Eq. 
(13), the non-local synaptic efficacy a is defined using the non-local equation (9') 
by introducing a non-local interaction operator that represents electric or 
chemical interactions between two synapses via the membrane or the cytoplasm. 
Therefore, time scale and non-locaI interactions can be included in the global 
synaptic efficacy /~ if we assume that it satisfies a non-local equation like (13) 
with an adapted interaction operator which depends on long-term variables. 
Formally, the equation for/~ is deduced from Eq. (13) as: 

a~ = V,(D~Vs~) + Ar,~(~) + r~. (15) 

The first term corresponds to a local spatial variation and is directly deduced 
from Eq. (13). The second term describes the long-term spatio-temporal summa- 
tion of all non-local effects, which lead from O(r', T') to ~(s(r', ro), t). The third 
term corresponds to an instantaneous local reaction in the source. 

Let U¢, be the potential kernel function. Although this function could be 
expressed in many different forms, only a few forms are consistent with experi- 
mental observations, and moreover, give rise to the Hebbian learning rules. 
Therefore, the following forms for U~ are proposed: 

H~ = H~ [U~(<a), 6<a); <~(X) ), Q?(M, R, N) ))] (16.1) 

U~,(#, 6#; (~) ,  (r/>) = U~(#, 6#(6 (R >); (r/(M, R, N) >) (16.2) 

U~(#, @; (~.>, (~/>) = U~(#; (~>, (r/(M, R, N)>). (16.3) 

Collectively, Eqs. (16.1) to (16.3) represent the dependence, of non-local 
interaction between two synapses on synaptic efficacy, ~ itself, and/or its 
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variation 6#, when some variables such as receptor, neuromodulator, neurotrans- 
mitter concentrations, R , . . . ,  M , . . . ,  N, are involved in the local dynamics. 
Long-term pre- and postsynaptic efficacy, (~)  and (r/), act as parameters. Such 
a formulation describes how distant synapses depend, either on the absolute 
value of global synaptic efficacy, or on its time variation, given the local pre- and 
postsynaptic efficacy, from eqs (6) and (7) considered as local conductivities. 

The first two forms (16.2) and (16.3) suggested for U, lead to a potential 
kernel function determined from (12) such that: 

U~(s, t, s', t'; (~ ) ,  QI))  = A(s, sl)#o(S ', t ')6#(s', t') (16.2)' 

U~(s, t, s', tl; (~ ) ,  ( 7 ) )  = A(s, s')po(S', t') (16.3)' 

respectively, where #o is the local synaptic efficacy, and written as points in the 
s-space. Thus with (16.3)', the #-field equation is from (15): 

8#(s, t) = V,(DsVs#(s ' t)) 
0t 

~(r') [ #o(S', t')rc(s', r'; ro)A(s, s') ds' dr' + F~(s, t) (17) + 
jD R(r O) .) Ds(r' ,  r o) 

s =- s(r, ro) 

DR(ro) = [9 D(r', ro) 
r" 

where t' = t - Is - s'[/v~, with v, being the velocity of the #-interaction. DR(ro) 
is the reconnection of subspaces D~(r', ro) when r' varies. A is an attenuation 
function for the electric potential along the membrane between two points, s' 
and s per unit time. 

Interaction mechanisms: The simplest way to deduce this interaction is to sup- 
pose that it results from the long-term evolution of chemical substances M and 
N. This long-term evolution determines the variation 6 (R*)  of activated recep- 
tors denoted by R*, and consequently the variation 6 ( a )  of the non-local 
synaptic efficacy at time t. A simplified case that nevertheless is consistent with 
the classical Hebbian rules, is obtained with the following assumptions: 

(1) local pre- and postsynaptic linear dynamics are represented by: 

F~ = m#(s, t) (18.1) 

(2) the interaction between ~ and r/that results in #o (local synaptic efficacy, Fig. 
5) in Eqs. (16.2)' and (16.3)', is multiplicative: 

#o(S, t) = ( ~(s, t)tl(s, t) ) (18.2) 

and a possible expression for 6# in (16.2)' is: 

6#(s, t) = K#(s, t). 

In (18.2), the functions ~ and r/ are given by Eqs. (6) and (7) as solutions of 
complex and non-linear local dynamics, or by the average of pre- and postsynap- 
tic activities, (X(r, T))  and (X(ro, To)),  respectively, at two points r and r o. The 
first class of solutions for ~ and t/ leads to a threshold-like behavior (5) for 
neuronal activity; this formulation includes non-linearities because of the exis- 
tence of physiological mechanism at both the synaptic and the neuronal level of 
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organization. The second class of solutions for ~ and t/ presents a simplified 
description of  the complex internal dynamics expressed by Eqs. (6) and (7), and 
leads to linear behavior. It imposes a further relation such as that described by 
Eq. (5), i.e., the expression of soma depolarization as a function of activity. In 
the latter case, we have: 

~(s, t; ~° ( (x) ) )  = a(~°(s); r)(X(r, r ) ) ( t )  (18.3) 

q(s, t; q°(<X>)) = bO1°(So, s); r)<X(ro, T0)>(t). (18.4) 

Assumptions (18.2), (18.3) and (18.4) lead to the learning rules of the 
biological neural network, because they drive the variation of # in time. These 
assumptions, and particularly these learning rules, can be included in Eq. (17) to 
give the particular g-field equation: 

~#(s, t ) _  Vs(D s V,#(s, t)) + f ~(r') f a(s'; r')b(s'; ro)A(s, s') 
Ot JDe(,.o) JDs(r', ro) 

× (X(r' ,  T ' ) ) ( t ' ) (X(r  o, To)(t')Tr(s', r'; ro)ds" dr' +m#(s, t). (19) 

It is clear from the nature of interaction mechanisms (18.2, 3, 4) that strict 
heterosynaptic effects can occur if, at a given point s', the synaptic efficacy #0 
does not depend on neuronal activity. The contribution of one non-active 
synapse at point s" to the variation of # at point s, is a direct consequence of the 
field equation (19). Note that the non-local nature of the interaction operator U~ 
is important, because it includes the activity traces in the system, the time 
evolution of which is described by #. So, events at t ' <  t, which occur at a 
distance, contribute to the space-time evolution of the/z-field. 

Neural level of organization and neural field equations 

Potential function for the neuron-neuron interaction 

At the neural level of organization, the potential function describes the effect of 
divergent or convergent neurons from or to a (r0, T0)-point. Postsynaptic soma 
depolarization O(r0, To) at that point, results from the presynaptic depolariza- 
tions O(r, T) that are modified according to synaptic efficacies #(s(r, ro), t). The 
neuronal space {s(r, ro), t)} is in the neural space {(r, T)}; the correspondence 
between these two spaces is expressed by the density-connectivity function 
rc(s(r, ro), r; ro). Such a property of inclusion of spaces with a connectivity 
function between them is a direct consequence of multiple levels of  organization, 
as is the case with the nervous system. 

The 0-field equation has a particular form due to the mechanisms of  firing: 

aO(ro, To) 
~r -Vr(DrVrO(r°' TO)) q- H~(#) q-ro(ro, To). (20) 

It is known that if the value for ~ exceeds a value defined as depending on the 
neuron internal state, then a steep variation of  ~ occurs. This steep variation 
corresponds to firing. Thus, neural activity is a function of  ~ (see Eq. (5)). An 
interpretation for this non-linear property can be given by a special expression 
for the source, F~,, by assuming that it depends on a strictly local transformation 

which leads to the "activation": 

r~(ro, To) = 9l(¢(ro, To),  0rofr) (21) 
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where 0~ef, denotes the refractoriness of the neuron, and T refers to states of 
the neuron prior to activation. 

Let U~(r, T, r o, To; #) be the potential kernel function of the neuron-neuron 
non-local interaction. The simplest form for this function that is compatible with 
the accepted law of spatio-temporal summation is: 

go(ro, To, r, T;/t) = B(ro, To, r, T)#(s(r, r0), T). (22) 

Then, the non-local interaction operator is: 

Hf = fD e(r)O(r, T) fo B(ro, To, r, T)n(s, r; ro)#(s, t) ds dr. 
R(ro) s(r, ro) 

Combining Eqs. (20), (21), and (22) gives the 0-field equation: 

00(ro, To)_  
jD o(r)O(r, T) JD B(ro, T o, r, T) V,(D, V,0(r0, To)) + 

~T R(ro) ,(r. to) 

x 7z(s, r; ro)#(s, t) ds dr + ~R(O(ro, To ), 0refr) (23) 

where ~(s(r, to), r; to) is the synaptic density-connectivity space function between 
neurons at (r, T) and synapses per neuron at (s(r, r0), t), o(r) is the density of 
neurons in the r-space, and B(ro, To, r, T) is a space attenuation factor between 
the two points (r, T) and (r0, To), which takes into account temporally preceding 
neuronal states for To - ~ ~< t ~< To where ~ is a neuron time constant. In contrast 
to A(s, s'), the kernel function B includes the spacetime relation expressed by the 
velocity of the propagation of the membrane potential. This explains why A, and 
not B, is a coefficient whose dimension is unit per time. 

Neural field equations and physiological interpretation 

Equation (17) for the #-field, deduced from (16.3)' and (23) for the 0-field can 
be combined to provide the neural field equations of the neural network in this 
continuous approach: 

e(r') A(s,s')~(s' ,r ';ro) 
~t  g(ro ) s( / ,  r0  ) 

x I~o(S ', t') ds' dr' + F,(s, 0 (24:1) 

#O(ro, 
T°)=Vr(Dr V,,O(ro, To))+ fD o(r)O(r, t) j~ B(ro, To, r, T) 

(~t R(r o) s(r, to) 

X ~(S, r; ro)P(s, t) ds dr + ~(O(ro, To) ,  0rerr) (24.2) 

s ~ s(r, ro) 

DR(ro) = ~J D(r', ro). 
r" 

where T = T o -  d/va, d = [r - ro], v, is the transport velocity of the 0-interaction, 
i.e., the neural activity, and t '=  t - I s  - s ' / vu ,  with vu being the velocity of the 
/~-interaction. Equations (24.1) to (24.2) are the neural 2-level field equations for 
the activity of neural tissue at two corresponding points (s(r, ro), t) and (r, T) in 
space-time level of organization. Their coupling is imposed by the synaptic 
efficacy ~, and the neural tissue is characterized by two geometric functions: the 
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density ~ of neurons and the density-connectivity ~ of synapses. Ds(r, ro) is the 
space of synapses in neurons localized in r0, which correspond to neurons in r. 
DR(ro) is the neural integration space that is the recombination of subspaces 
Ds(r, ro). This formulation implies non-linearities which appear via the source 
terms. However, transformations F (Eq. (5)) and 91 (Eq. (21)) are not deduced 
from the formulation, but could be determined on the basis of experimental inves- 
tigations (Chauvet et al. 1990). Relation (4) for the global synaptic efficacy appears 
as the solution for the field equations (24.1) and (24.2) that include local and 
non-local effects from multiplicative interaction (18.2), where pre- and postsynaptic 
efficacies are determined by (6), and (7), and from the anatomical space functions 
Tc and A. Learning rules can either be imposed on the network according to Eqs. 
(18.3) and (18.4), or included in the dynamics from Eqs. (6) and (7). 

The local effects, which are described by the diffusion term in field equations 
(24.1) and (24.2), correspond to transport across the "external" medium, i.e., the 
extracellular space for soma depolarization, and the cytoplasm for synap- 
tic efficacy. They depend on the diffusion coefficients Ds and Dr, respectively. The 
non-local effects, due to the hierarchy of the system, and which are described by 
the interaction terms in field equation s (24.1) and (24.2), correspond to the 
propagation "inside" the medium, i.e., neurons for the soma depolarization, and 
membrane and cytoplasm for the synaptic efficacy. What we see in the continuous 
space at each level of organization is the combination of these two types of 
transport, diffusion and propagation. Their contribution to the dynamics of the 
field variables is determined by the value of the diffusion coefficients in Eqs. (24.1) 
and (24.2). Thus, the proposed n-level field theory predicts a distance effect of 
synaptic activity due to propagation of that activity in the internal medium. 

Hebbian and non-Hebbian rules 

Dynamics for a discrete network 

One important question is whether classical Hebbian or non-Hebbian learning 
rules can be deduced from this field theory, and also whether new properties can 
be obtained for the neural network with the new learning rules derived from the 
interaction operator. Although the formalism used with the field theory is 
deterministic and continuous at each level of organization, a discrete representa- 
tion of neural network can be obtained by concentrating the values of field 
variables at any point of the space of neurons. That can be done with particular 
point density functions of neurons and synapses such as Dirac functions, 
~(r - r i ) ,  and can be used to study some discrete cases. They concentrate all of 
the field variable values, at any r, into n values at ri, Vi = 1, n. As a result, partial 
differential equations distributed in space are transformed into n differential 
equations, one for each point. 

As an illustration, a neuron with only one input and one output is considered 
under the following assumptions: (i) a dendrite originating at r connects with a 
neuron at r0, via a synapse at s (Fig. 6). Thus, the density function 
~(r') = ~(r ' - r )  and the connectivity function zc(s', r'; ro) = 8(s ' - s )  which im- 
plies: A(s, s') = 1 and B(ro, To, r, T) = 1; (ii) soma depolarization diffusion and 
refractoriness are negligible; the local firing dependence, 9t, is assumed to be 
piecewise linear (21): 91 =pO; (iii) the neuron membrane is homogeneous; (iv) 
the velocity of the dendritic transport of interaction is infinite: v = oe. Learning 



786 G.A. Chauvet 

rules are given by Eqs. (18.3) and (18.4), with a and b constant. We start from 
the field equation (15) with the structure (16.2), then (16.2)', and (18.2), i.e.: 

8#(s, t) _ Vs(D, Vs#(s ' t)) ["  ~(r') 
•t JDR(~o) 

x [" #o(S', t')K#(s', t')rc(s', r'; ro)A(s, s') ds' dr' + Fu(s, t). (25) 
JD s(r', r O) 

Combining these assumptions with (25), (where the notation @ ) ( 0  is now 
replaced by ~(t)), and (5), (18.3) and (18.4), transform the system of equations 
(24.2) and (25) into: 

8 (s,t) fofo  8t - abK X(~(r ' ,  t))X(d/(ro, t))#(s'(r', to), t') 
R(rO) s(r', r O) 

x A(s, s')b(s' - s)6(r' - r) ds" dr' + m#(s, t) 

a0(ro, To) f~ O(r',To)6(r'-r)f,~ # ( s ' , t ) 6 ( s ' - s ) d s ' d r '  
0T R(ro ) A/, to) 

+ PO(ro, To). 

It follows that: 

O#(s, t) = abKX{~(ro, t)}X{~(r,  t)}#(s0, t) + m#(s, t) 
8t 

80(ro, To) 
8T - # ( s ,  t)O(r, T) + pO(ro, To). (26) 

With the following notation in terms of time only: #(s , -)  = #(-) for synaptic 
efficacy, and 0(r0, • ) = 0( " ), 0(r, ' ) = 0 ' (  " ) for soma depolarization, Eqs. (26) 
become: 

d#(t) _ {abKX(( ' ( t ))X(~(t))  + m}#(t) (27.1) 
dt 

d O ( T )  #(t)O'(T) +pO(T) .  (27.2) 
dT 

Each equation is written here in its own time scale, the short time scale {t} for 
the synaptic level, and the rapid time scale { T} for the neuronal level. Using the 
time scale of the synaptic level for the neuronal level, Eq. (27.2) changes to: 
~(t) ~ - (#( t ) /p)~ ' ( t ) ,  that is a linear response, iff: 

~(t) ~ O, #(t)O'(t) = #(t)df'(t). (28) 

Under those two conditions, soma depolarization proceeds in a linear fashion, 
i.e., the solution for ~(t) is linear. The first condition expresses the slow short 
term variation of the soma depolarization average, i.e., a global variation around 
zero. The second condition follows from the fact that the synaptic efficacy varies 
on a time scale larger than the soma depolarization average (short time scale). 
With this interpretation, an important parameter is p, because it drives the 
system 0(#) and leads to non-linearities in (24.2), then in (25), together with the 
interaction operator that depends on #. Therefore, the time average of the 
0-equation (27.2) leads to a similar relation between neural activities, due to the 
non-variability of # in the short time scale. 
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Consequences of  the #-fieM existence: learning and variation of  the level o f  learning 

Various rules for the behavior of the previous discrete formal system can be 
obtained from (26) and (27) for a given field structure and from the #-interac- 
tion operator hypotheses (16) and (18). To have a notation consistent with the 
classical ones used in formal neural networks, we put: X ( t ) =  F(~'(t))  for 
presynaptic activity, and Y(t) = F(~(t)) for postsynaptic activity. Three kinds of 
rules are presented in Table 1. The distinction between them originates in the 
#-operator and the source term. In classical Hebbian rules (see e.g., Kohonen 
1978) and Easton-Gordon rules (1984), the #-operator depends only on 3# and 
the source terms are zero and rn# = - c q ~  respectively. In the learning rules 
considered here, the #-operator depends on # and 3#, and the source terms 
equals m#, Vm ¢ - e .  All other conditions are the same. These rules correspond 
to a linear system because of the multiplicative nature of the 0-interaction 
operator (22). 

It will now be shown that both the development of learning and the 
asymptotic level of learning depend on the #-field. With X not dependent on 
time to simplify the presentation, the #-field equation (Table 1, case 2), is written 
as: 

fi = a l #  + a 2 #  2 (29) 

where the coefficients are al = m and a 2 = - c~XZ/p, ~ = abK, gives the Bernoulli 
equation: z'  + alz = a 2, with z = - l/p, # ~ 0. The solution is: 

L al \#o al/ A 
A learning process is obtained if and only if the following conditions are fulfilled 
(Fig. 7 and Table 2): 

al > O, a2 > O, #(0) < -a l /a2 .  

Because these coefficients have a phenomenological meaning at the molecular 
level, these conditions correspond to molecular mechanisms which could be 
evaluated from experiment. This is a way to choose the hypotheses which lead to 
the learning rules in Table 1. 

-a2/al 

-5 

/ 
/z~(co) =2 

~2(oa) =0.5 

#3(o0) - -0.333 

75 

tima t 

Fig. 7. Solutions of the ~U-equation 
(22) (case 2, Table 2). Three 
outcomes are represented, and 
correspond to lines 2, 3, 4, in 
Table 3 (a 1 > 0 and a 2 < 0, with 
#o < p(9o) and #o > #(oo); a I > 0  
and a2 > 0, V#o). Only the first case 
represents learning. Asymptotic 
values of  #(t) in each case are 
denoted #1(oo), #2 (~ ) ,  and ps(oo) 
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Table 2. Example of the study of learning, i.e., the #-field equation, in case (2) represented in Table 
1: properties of the solution #(t) of Eq. (30) for various values of parameters a 1 and a2. We see that 
only one case, represented in the second line, corresponds to a learning curve, i.e., an asymptotic 
monotonic variation of #(t) (these variations are also shown in Fig. 7, curve I) 

al a2 #o Existence #(Go) Notes 
of t c 

<0 <0 0 

>0 <0 < - a l / a  2 NO - a l / a  2 

>0 <0 > - a a / a  2 - a l / a  2 

>0 >0 YES - a ~ / a  2 

<0 >0 > - a l / a  2 YES 0 

<0 >0 < - a l i a  2 0 

#(t) decreases --, - 0 

Learning curve 
(Curve 1, Fig. 7) 

#(t) decreases --* a 1/a 2 
(Curve 2, Fig. 7) 

Critical positive time 

tc = 1 In(1 ÷ a2@%) 

(Curve 3, Fig. 7) 

Critical positive time 

tc = l l n ( 1  + a2@0) 

#(t) decreases ~ --0 

~Ct) 
1 /xl(oo) = I 

/~2(~) =0.5 

~3(co) =0.333 

100 

t L ~  t 

Fig. 8. Learning curves (curve 1, 
Fig. 7) obtained for various values 
of the coefficients a~ and a2 from 
the solution of the 7S-equation (22) 
which corresponds to case 2 in 
Table 2. Asymptotic values of #(t) 
in each case are denoted #x(oo), 
#z(OO), and p3(oo) 

For  a two-input  system, with a reinforcement condit ion (Utt ley 1979, Chauvet  
1986), a typical two-way learning curve is obtained (Fig. 8). So, it is possible to 
deduce f rom the #-field equat ion (24.1) the hypothesis assumed by Finkel et al. 
(1987, p. 744, Eq. (18)) on the relation between pre- and postsynaptic  efficacies 
as a statistical relation between heterosynaptic inputs. With the learning rules here, 
another  result is obtained: as shown in the expression for # in the above Eq. (30), 
the level o f  learning depends on synaptic efficacy parameters  like ~ (Fig. 7). 

S o m e  d e f i n i t i o n s  o f  l e a r n i n g  ru les :  H e b b i a n  a n d  n o n - H e b b i a n  ru l e s  

Within the proposed  formalism, the pre-to- postsynaptic neuronal  t ransforma- 
t ion is (i) either imposed sigmoid-like f rom Eq. (5): 

X ( r ,  t) = ( 1 + E( r ,  t)) -1  (31 )  
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where E(r, t) = exp[(~b(r, T; #))(t)] = exp[~(t)] and 0(r, T; #) is the solution of 
Eqs. (24.2) with hypotheses (18.3) and (18.4) which include pre- and post 
activities; (ii) or calculated from the field equations (24) with the interaction 
mechanism (18.2), where local pre- and postsynaptic efficacies ~ and t/are known 
from Eqs. (6) and (7) by introducing into them detailed molecular mechanisms. 

Hebbian rules for activities, defined by Brown et al. (1990) as "time-depen- 
dent, highly local, and strongly interactive mechanism", result from the particu- 
lar structure given by equations (16), the interaction operator (18), time scales 
conditions (28), and above all, the assumption of infinite velocity of the field 
variable. The latter means that non-local effects cannot occur, because, in this 
case, the interaction operator becomes local in time, then in space. So, the 
problem is the explanation of these equations at the metabolic level by introduc- 
ing biophysical mechanisms such as the ones modeled by Kelso et al. (1986) and 
Zador et al. (1990) in Eqs. (6) and (7). A coarse interpretation could be the 
long-term internal biochemical modifications of the neuron state when it is 
activated. In this case, coefficients a and b in the expression of pre- and 
postsynaptic efficacies (18.3, 4) are important due to their dependence on basal 
levels of pre- and post synaptic activity. Some experiments could give an answer, 
for example by modifying the internal neuron state. 

From this analysis, let us propose mathematical definitions for learning rules: 
(i) Strict or true heterosynaptic effects result from at least one non-local synaptic 
contribution to a local one with interaction mechanisms (18.3, 4), which describe 
the influence of afferent activities, non verified; they imply non-Hebbian rules 
because mechanisms are not "highly local"; (ii) Active heterosynaptic effects 
result from local pre- and postsynaptic mechanisms described by (18.3, 4) as a 
direct relation with activity: they imply Hebbian rules (see, e.g., Lynch et al. 
1977); (iii) Non-linear Hebbian or non-Hebbian rules result from the structure of 
operator Uu(s, t, s', t'; ~ ) ,  ~t/)) in Eq. (16.1), and U~(ro, To, r, T; #) in Eq. 
(22), with different forms of interaction potential function, and from pre- and 
postsynaptic efficacies (6) and (7) placed in the expression (17) of local synaptic 
efficacy #0(s, t). Here too, experiments have to determine the physiological 
implications for this potential function. 

DiscusSion and conclusion 

In the field of computational models, two approaches have been considered: the 
cellular automaton model (represented by the Hopfield model, 1982) and the 
cellular neural network model (Chua et al. 1988). The first one is made of a 
massive aggregate of regularly spaced identical elements called cells, which 
communicate with each other directly only through its nearest neighbors. Each 
cell has the properties of an automata, i.e., it processes signals in discrete time. 
The second one has the same fundamental properties as the cellular automaton 
model, except that it is a large-scale non-linear analog circuit which processes 
signals in real time. The cellular neural network includes a source term that 
creates non-linearities, and therefore is similar to the diffusion equation (9). 
Although ceils are not directly connected together, they may affect each other 
indirectly because of the propagation effects of the continuous-time dynamics in 
the network. However, two major differences exist between them and the present 
model: (1) space properties are included via the connectivity and not via the 
densities, i.e., the topology rather than the geometry is considered; (2) only one 
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level of organization is taken into account, i.e., the non-linear source term is 
imposed and not included in the formulation. The consequence of these two 
differences is that the non-locality of interactions is not considered. 

The approach proposed in this paper is deterministic and continuous, but, 
above all, physiological. Physical approaches in formal neural networks (e.g. Amit 
1989), stochastic approaches in biological neural networks (Herv6 et al. 1990), in 
visual cortex (Bienenstock et al. 1982), even with a mean-field approximation 
(Cooper et al. 1988), constitute another way of representing the evolution of a 
neural network. For example, it has been shown that the behavior of deterministic 
or stochastic neural networks can be described by reaction-diffusion equations 
with mathematical arguments (Cottet 1990). The discretization in space and time 
lets us use a finite difference method that could be considered equivalent to 
generating a sequence of spatially ordered compartments. This is the usual 
technique to represent the spatial distribution of membrane potential conduction 
with compartmental analysis (Jacquez 1988). For example, this technique was 
largely used by Traub (1985) for large scale simulations in Hippocampus, and 
Ambros-Ingerson et al. (1990) for the olfactory cortex. Besides the fact that this 
transformation from partial differential equations (PDE) into differential equa- 
tions must satisfy a space-time condition between the discretization steps, the 
meaning of the parameters in the PDE with several levels of organization would 
be lost in the transformation, or at least difficult to express: Above all, the 
non-local effects, which are basic in this approach, could not be interpreted 
explicitly without hierarchical organization. However, here, the problem is mainly 
the physio-mathematical continuous description of elementary mechanisms, and 
their integration, rather than the techniques to use for the numerical convergence 
conditions that have to be satisfied in solving the equations. Comparisons of the 
four preceding models are summarized in Table 3. 

Table 3. Comparison of the neural networks discussed in the text, established between biological and 
computational models, and according to the representation in time and space, the relation between 
topology and geometry, the type of state value, real or integer, the number of levels of organization, 
and the linear character of the dynamics. The present study is distinct from the cited models 

Biological models Computational models 

Model Partial differential Ordinary differen- Cellular neural cellular automata 
equations: tial equations: network 
Field Compartment 

time continuous continuous continuous continuous 
space continuous discrete discrete discrete 

topoiogy/ connectivity/ connectivity connectivity connectivity 
geometry density by space discre- 

tizing 

state value real real real binary number 

levels of n 1 1 1 
organization 

dynamics non-linear linear non-linear non-linear 
(source included (source imposed) (network function 
in the next lower imposed) 
level) 
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A correlated limiting factor is the geometry of the dendritic and neuronal 
spaces, including the density of elements. The continuous approach imposes 
these anatomical data as geometric functions that can explicitly be introduced 
in the equations, and thus constitutes a fundamental part of the formulation. 
Indeed, because they result from the study of anatomical data, they can be 
complicated space functions. 

With the present analysis, field theory lets us represent quantitative relation- 
ships between phenomena that evolve in a neural network, e.g., densities of 
active synapses and densities of active neurons. The ultimate goal of this 
approach will be to deduce an explicit formulation of such relationships to 
incorporate their interpretation within general laws of neural network dynam- 
ics. An important consequence of the explicit formulation is that a new repre- 
sentation with several levels of organization is needed, and thus, new concepts, 
such as functional interaction, non-symmetry, and non-locality are defined. 

Our choice follows from the fact that two explicit levels of organization are 
imposed by: (i) a description of the physiological mechanisms that occur in the 
sources, and (ii) a description of the non-local interactions between sources and 
sinks. The description of the biological neural network, which has to take into 
account the physiological mechanisms, has to include these mechanisms. The 
physiological description of the neural network leads to equations with a 
physiological meaning for the model parameters. The macroscopic approach 
deduced from the principle of conjunction is well adapted to the study of 
discrete neural networks such as connectionist models (Rumelhart et al. 1986) 
used in the field of connectionism. But non-linearities and learning rules are 
generally imposed on the system. With our continuous approach, which in- 
cludes anatomy, geometry, and elementary physiological mechanisms on several 
levels of organization: (i) the dynamics of biological neural networks can be 
described with implicit learning rules (Chauvet et al., in progress); (ii) an 
explicit formulation of a monosynaptic connection between pre- and postsynap- 
tic neurons leads to an interpretation of experimental input/output curves 
that describe the extracellular field potential vs. stimulating intensity (Chauvet 
et al. 1990); (iii) non-linearities emerge from the formulation with the molecu- 
lar mechanisms included in the source terms of the fields; and (iv) collec- 
tive behaviour of cooperatively coupled cell assemblies (Singer 1988) at each 
level of organization, and selection of groups of neurons (Edelman 1981, 
Edelman et al. 1984) can be directly deduced with the field theory proposed 
here (Chauvet 1990). 

Appendix A: Nomenclature 

al = m, a 2 = -o:X2/p coefficients of the learning Bernoulli equation 
m source term coefficient for the #-equation 
p source term coefficient for the 0-equation 
va transport velocity of the 0-interaction 
v, transport velocity of the ~-interaction 
A(s, s ~) space attenuation factor for the synaptic efficacy, in units per time 
B(ro, To, rT)  space attenuation factor for passive membrane voltage propagation 
D diffusion coefficient with subscripts: 

0 for local 
1 for non-local 

DR(ro) recombination of subspaces Ds(r',  ro) when r' varies 
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D, (r', r0) space constituted by the synapses localized at s(r', ro) in the r'-neurons 
connected with the r0-neuron 

F((7~(r, T))(T)) input-output network function 
H e field operator 
HI non-local interaction operator 
H T non-local interaction operator in neurons space 
Uu potential kernel function of the synapse-synapse interaction operator 
U~, potential kernel function of the neuron-neuron interaction operator 
X(r, T) instantaneous local somatic activity 
9t local transformations in neuron source 
c~ = abK learning coefficient 

Dirac function 
q instantaneous postsynaptic efficacy 
t/° basal postsynaptic efficacy 

instantaneous presynaptic efficacy 
4 ° basal presynaptic efficacy 
#(s, t) (global) synaptic efficacy in the s-space (time scale {t}) 
~(r, T) local somatic depolarization in the r-space (membrane potential) 
re(s, r; r0) density-connectivity function 
a instantaneous non-local synaptic efficacy (time scale {T}) 
~0 instantaneous synaptic efficacy 
F(r, T) source 
F~, source term in the 0-equation 
~,~ source term in the #-equation 
• (s, t) postsynaptic local membrane potential 
V gradient operator 
( )(t) =(t)  time average at time t 

Acknowledgements. I wish to thank Drs T. W. Berger and E. F. Thiels for helpful discussions. This 
research was supported by grants from DRET (88/1194) and INSERM (88/9002) (France), and the 
Conseil General de Maine et Loire. 

References 

Albus, J.: A theory of cerebellar function. Math Biosci. 10, 25 61 (1971) 
Ambros-Ingerson, J., Granger, R., Lynch, G.: Simulation of paleocortex performs hierarchical 

clustering. Science 24, 1344-1348 (1990) 
Amit, D. J.: Modeling brain function. Cambridge: Cambridge University Press, 1989 
Bienenstock, E. L., Cooper, L. N., Munro, P. W.: Theory for the development of neuron selectivity: 

orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32-48 (1982) 
Bradler, J. E., Barrionuevo, G.: Long-term potentiation in hippocampal CA3 neurons: Tetanized 

input regulates heterosynaptic efficacy. Synapse 4, 132 142 (1989) 
Bradler, J. E., Barrionuevo, G.: Heterosynaptic correlates of long-term potentiation induction in 

hippocampal CA3 neurons. Neurosci. 35(2), 265-271 (1990) 
Brown, T. H., Kairiss, E. W., Keenan, C. L.: Hebbian synapses: Biophysical mechanisms and 

algorithm. Annu. Rev. Neurosci. 13, 475-511 (1990) 
Beurle, R. L.: Properties of a mass of cells capable of regenerating pulses. Philos. Trans. R. Soc. 

Lond. 668(240), 8-94 (1956) 
Chapeau-Blondeau, F., Chauvet, G. A.: A neural network model of the cerebellar cortex performing 

dynamic association. Biol. Cyber. 65, 267-279 (1991) 
Changeux, J. P., Heidmann, T.: Allosteric receptors and molecular models of learning. In: Edelman, 

G. M., Gall, W. E., Cowan, W. M. (eds,) Synaptic function. New York: Wiley 1987 



794 G.A.  Chauvet 

Chauvet, G. A.: Habituation rules for a theory of the cerebellar cortex. Biol. Cybern. 55, 1-9 (1986) 
Chauvet, G. A.: Interpr&ation du concept de plasticit6 synaptique dans le cadre d'une th~orie du 

champ de l'activit6 neurale. In: Biologie Th6orique, Solignac 86. Paris: CNRS 1988a, pp. 
347-363 

Chauvet, G. A.: Correlation principle and physiological interpretation of synaptic efficacy. In: 
Delacour, J., Levy, J. C. S. (eds.) Systems with learning and memory abilities. Amsterdam: 
Elsevier 1988b, pp. 341 364 

Chauvet, G. A.: Trait~ de Physiologie Th6orique, vol. 3, p. 133. Paris: Masson 1990 
Chauvet, G. A., Berger, T. W.: Two-level field theory interpretation of hippocampal extracellular 

field potentials. Soc. Neurosci. Abstr. 16(1), 739 (1990) 
Chauvet, G. A., Burger, J.: Numerical study of learning and memory with a multiple level field 

theory (in progress) 
Chauvet, G. A.: Non-locality in biological systems results from hierarchy. Application to nervous 

system. J. Math. Biol. 31, 475 486 (1993a) 
Chauvet, G. A.: Hierarchical functional organization of a formal biological system: A dynamical 

approach. III. The concept of non-locality leads to a field theory describing the dynamics at each 
level of organization of the (D-FBS) sub-system. Phil. Trans. R. Soc. Lond. B 339, 463 481 
(1993b) 

Chauvet G. A.: Hierarchical functional organization of a formal biological system: A dynamical 
approach. I. The increase of complexity by self-association increases the domain of stability of 
a biological system. Phil. Trans. R. Soc. Lond. B 339, 425-444 (1993c) 

Chua, L. O., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. Circuits Syst. 35(10), 
1257-1272 (1988) 

Cooper, L. N., Scofield, C. L.: Mean-field theory of a neural network. Proc. Natl. Acad. Sci., USA 
85, 1973 1977 (1988) 

Cottet, G-H.: Mod61es de r6action-diffusion pour des r6seaux de neurones stochastiques et d&ermin- 
istes. C. R. Acad. Sci., Paris 312, 1, 217-221 (1991) 

Crick, F.: The recent excitement about neural networks. Nature 337, 129-132 (1989) 
Easton, P., Gordon, P.: Stabilization of hebbian neural nets by inhibitory learning. Biol. Cybern. 51, 

1-9  (1984) 
Edelman, G. M~, Finkel, L. H.: Neuronal group selection in the cerebral cortex. In: Edelman, G. M., 

Gall, W. E., Cowan, W. M. (eds.) Dynamic aspects of neocortical function, pp. 653-695. New 
York: Wiley 1984 

Edelman, G. M.: Group selection as the basis for higher brain function. In: Schmitt, F. O., Worden, 
F. G., Edelman, G. M., Dennis, S. G. (eds.) Organization of the cerebral cortex. Cambridge, 
MA: MIT Press 1981, pp. 51-100 

Finkel, L. H., Edelman, G. M.: Population rules for synapses in networks. In: Edelman, G. M., Gall, 
W. E., Cowan, W. M. (eds.) Synaptic function. New York: Wiley 1987 

Fischer, B.: A neuron field theory: Mathematical approaches to the problem of large numbers of 
interacting nerve cells. Bull. Math. Biol. 35(3), 345 (1973) 

Fujita, M.: Adaptive filter model of the cerebellum. Biol. Cybern. 45, 195-206 (1982) 
Gingrich, K. J., Byrne, J. H.: Single-cell neuronal model for associative learning. J. Neurophysiol. 

57(6), 1705-1715 (1987) 
Griffith, J.: A field theory of neural nets. Bull. Math. Biophys. 25, 111-120 (1963) 
Grossberg, S.: Nonlinear difference-differential equations in prediction and learning theory. Proe. 

Natl. Acad. Sci., USA 58, 1329-1334 (1967) 
Grossberg, S.: Studies of Mind and Brain: neural principles of learning, perception, development, 

cognition, and motor control. Boston: Reidel 1982 
Grossberg, S.: Content-addressable memory storage by neural networks: a general model and global 

Liapunov method. In: Schwartz, E. L. (ed.) Computational neuroscience. Cambridge, MA: MIT 
Press 1990a 

Grossberg, S.: ART3: Hierarchical search using chemical transmitters in self-organizing pattern 
recognition architectures. Neural Networks 3, 129-152 (1990b) 

Hebb, D. O.: The organization of behavior: A neuropsychological theory. New York: Wiley 1949 
Herve, T., Dolmazon, J. M., Demongeot, J.: Random field and neural information. Proc. Natl. Acad. 

Sci., USA 87, 806 810 (1990) 



An n-Level field theory of biological neural networks 795 

Hodgkin, A. L., Huxley, A. F.: A quantitative description of current and its application to 
conduction and excitation in nerve. J. Physiol. 117, 500 (1952) 

Hopfield, J. J.: Neural networks and physical systems with emergent collective computational 
abilities. Proc. Natl. Acad. Sci., USA 79, 2254-2558 (1982) 

Hopfield, J. J.: Neurons with graded response have collective computational properties like those of 
two-state neurons. Proc. Natl. Acad. Sci., USA 81, 3088-3092 (1984) 

Jacquez, J. A.: Compartmental analysis in biology and medicine. Ann Arbor: University of Michigan 
Press 1988 

Kelso, S. R., Ganong, A. H., Brown, T. H.: Hebbian synapses in hippocampus. Proc. Natl. Acad. 
Sci., USA 83, 5326-5530 (1986) 

Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. C-21, 353-359 (1972) 
Kohonen, T.: Associative memory: A system-theoretical approach. Berlin, Heidelberg, New York: 

Springer 1978 
Kishimoto, K., Amari, S.: Existence and stability of local excitations in homogeneous neural fields. 

J. Math. Biol. 7, 303-318 (1979) 
Levy, W. B., Steward, O.: Synapses as associative memory elements in the hippocampal formation. 

Brain Res. 175, 233-245 (1979) 
Longuet-Higgins, H. C.: Holographic model of temporal recall. Nature 217, 104-107 (1968) 
Lynch, G. S., Dunwiddie, T., Gribkoff, V.: Heterosynaptic depression: a correlate of long term 

potentiation. Nature 266, 737-739 (1977) 
Magleby, K. L., Zengel, J. E.: A quantitative description of stimulation induced changes in 

transmitter release at the frog neuromuscular junction. J. Gen. Physiol. 80, 613-638 (1982) 
Marr, D.: A theory of cerebellar cortex. J. Physiol. 202, 437-470 (1969) 
Murray, J. D.: Mathematical biology. Berlin, Heidelberg New York: Springer 1989 
Peretto, P.: Collective properties of neural networks. Biol. Cybern. 50, 51 (1984) 
Rall, W., Rinzel, J.: Branch input resistance and steady attenuation for input to one branch of a 

dendritic neuron model. Biophys. J. 13, 648-688 (1973) 
Rumelhart, D. E., McClelland, J. L.: Parallel distributed processing. Cambridge, MA: MIT Press 

1986 
Sejnowski, T. J.: Storing covariance with nonlinearly interacting neurons. J. Math. Biol. 4, 303-321 

(1977) 
Singer, W.: Pattern recognition and self-organization in biological systems. In: Marko, H., Hauske, 

G., Struppler, A. (eds.) Processing structures for perception and action. D-6940 Weinheim: VCH 
1988 

Thompson, R. F.: The neurobiology of learning and memory. Science 233, 941-947 (1986) 
Toulouse, G., Dehaene, S., Changeux, J. P.: Spin glass model of learning by selection. Proc. Natl. 

Acad. Sci., USA 83, 1695-1698 (1982) 
Traub, R. D., Dudek, F. E., Snow, R. W., Knowles, W. D.: Computer simulation indicate that 

electrical field effects contribute to the shape of the epileptifor field potential. Neuroscience 
15(4), 947-958 (1985) 

Uttley, A. M.: Information transmission in the nervous system. New York: Academic Press 1979 
Wilson, H. R., Cowan, J. D.: Excitatory and inhibitory interactions in localized populations of model 

neurons. Biophys. J. 12, 1 24 (1972) 
Zador, A., Koch, C., Brown, T. H.: Biophysical model of a Hebbian synapse. Proc. Natl. Acad. Sci., 

USA 87, 6718-6722 (1990) 


