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Abstract. Selection is often viewed as a process that maximizes the average 
fitness of a population. However, there are often constraints even on the 
phenotypic level which may prevent fitness optimization. Consequently, in 
evolutionary game theory, models of frequency dependent selection are investi- 
gated, which focus on equilibrium states that are characterized by stability (or 
uninvadability) rather than by optimality. The aim of this article is to show that 
nevertheless there is a biologically meaningful quantity, namely cross (fitness) 
entropy, which is optimized during the course of evolution: a dynamical model 
adapted to evolutionary games is presented which has the property that relative 
entropy decreases monotonically, if the state of a (complex) population is close 
to an uninvadable state. This result may be interpreted as if evolution has an 
"order stabilizing" effect. 

Key words: Frequency dependent selection - Evolutionary game theory - Repli- 
cator dynamics 

1 Introduction 

Selection is often viewed as a process that maximizes the "good of a species", i.e. 
the average fitness of a population. This may be true in some elementary 
situations, but in general there is no evidence for a steady improvement. Apart 
from genetical obstacles like recombination which may yield a decrease in fitness 
(cf. Hutson/Law (1981) and Hofbauer/Sigmund (1988, p. 27)), there are also 
constraints on the phenotypic level which may prevent fitness optimization. The 
prototypic example is the meanwhile classical hawk/dove game as described in 
Maynard Smith/Price (1973). 

To cope with these situations, game theoretical methods were applied to 
models of evolution, which have two essential features: (i) they mainly focus on 
phenotypes, thus avoid a detailed description of both the genotypic level and the 
transmission mechanism from genotype to phenotype; and (ii) they consider 
equilibrium states (attained by an adaptation process) which are characterized by 
stability rather than by optimality. Evolutionary game theory models frequency 
dependent selection: indeed, the "payoff" is nothing else than incremental 
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Darwinian fitness, which is influenced by the distribution of  phenotypes ("strate- 
gies") within the population. Originally, strategies were interpreted as be- 
havioural traits, particularly in pairwise conflicts, but it soon turned out that 
these concepts are advantageous also in more complex situations (often termed 
"playing the field"), e.g. if dispersal, size, or differences in resource allocation 
affect the individual's fitness in quite a complicated way. 

The aim of  this article is to show that - although evolutionary game theory 
favours stability instead of  optimality - there is a biologically meaningful quan- 
tity, which is optimized during the course of  evolution. To be more precise, a 
dynamical model adapted to evolutionary games, the so-called "replicator dy- 
namics", is investigated which has the property that relative negentropy increases 
(and hence relative entropy decreases) monotonically, if the state of  population 
is close to an evolutionary stable (more precisely: a strongly uninvadable) state. 
This result may be interpreted as if evolution counteracts the thermodynamical 
effect of increasing entropy, i.e. has an "order stabilizing" effect. Now (absolute) 
entropy need not have a unique (local) minimum, wherefore one is forced to 
consider an entropy measure relative to an ideal state, viz. an uninvadable state. 
Since there are situations where more than one state is uninvadable, it seems to 
be evident that the result can only hold locally, i.e. applies only to those states 
which are already close to an uninvadable state. 

It should be stressed that the use of (fitness) entropy methods, particularly 
for dynamical systems applied to frequency-dependent selection models in genet- 
ics plays an important role; see, e.g. Ginzburg (1977), Desharnais/Costatino 
(1982), Desharnais (1986) and in particular Iwasa (1988); cf. Hines (1982). 
Although Akin (1982) already has proved a special case of  the main result in the 
present paper, he interpreted it exclusively in terms of  the Kullback]Leibler 
distance; hence it seems that this article for the first time explicitly relates cross 
entropy minimization with stability notions in the context of  evolutionary game 
theory, i.e. on the phenotypic level. 

The paper is organized as follows: in Sect. 2, the general setting of an 
evolutionary game, and the notion of  strong uninvadability are introduced. 
Section 3 deals with the replicator dynamics, while in Sect. 4 the announced main 
result is stated and proved. Section 5 relates the notion of strong uninvadability 
to well-known solution concepts in evolutionary game theory. 

2 Evolutionary games and strong uninvadability 

Denote by X the set of  strategies individuals are able to play. For  the purpose of 
modelling the contest, the state of the population is then fully described by the 
distribution P of  the strategies x e X within this population. Since our model - 
like most of  the models investigated in the literature - is based on the assumption 
that populations are so large that they can be regarded ideally as infinite (see, e.g. 
Maynard Smith (1988) or Shaffer (1988) for a treatment of evolutionary stability 
in finite populations), there is no reason why, a priori, there should only be a finite 
number of strategies available to the individuals. Thus let (X, X) be an arbitrary 
measurable space. Any state P then is a probability measure defined on the system 
X, with P(A) representing the relative frequency of  strategies x belonging to a set 
A e X. The model now consists of  a collection ~ of states, i.e. ~ is a set of 
distributions P on (X, X). We assume throughout this paper that ~ is convex and 
exclude the trivial case where ~ contains no, or only one, element. 
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Let Fp(x) denote the mean payoff to an individual playing x e X against 
members of a population in state P e N. In the simple case of pairwise conflicts, 
this mean payoff Fp(x) is obtained by averaging the individuals' payoffs with 
respect to P (see Example 2 below). However, in more general situations like the 
"sex ratio game" as described, e.g. by Sigmund (1987), the averaging procedure 
is performed with respect to a more complicated probabilistic mechanism 
governing the contest. This mechanism is determined by both the structure of the 
underlying model and the state P of the population; cf. Maynard Smith (1982, 
p. 23). Thus, the quantity Fp(x) may - but need not - depend on the state P in 
a rather complicated way. 

Example 1 Finite number of admissible strategies. If the set of strategies 
available to each individual is finite, X = {x, . . . .  , x~ }, say, then every state 
P s ~  is given by the relative frequencies p/=P({xj}),  1 <~j <~k. Clearly the 
relative frequency P(A) of a subset A of strategies is in this case given by the sum 

P(A) = ~ pj. 
j:xj~A 

If, particularly, in state P all individuals play the same strategy x s, i.e. if P is a 
monomorphic state, then Ps = 1 and Pi = 0 for i ¢ j .  In this case P is given by the 
Dirac distribution (unit point mass) at x,, denoted by P = 6x. In general, every 

• . . a . j . 

state P + ~ in this model is represented by a convex combination 
k 

p = 

j = l  

of Dirac distributions; a state of this form is called "discrete polymorphism". 

Clearly one can think of more complicated situations where P consists of a 
continuous component and a discrete component, the latter corresponding to a 
finite or countably infinite convex combination of monomorphic states. An 
example is provided by the evolutionary stable state in the war of attrition with 
continuous time described in Bishop/Cannings (1978). The setting proposed 
simply allows us to treat all these different cases in a unified way. For  instance, 
the average mean payoff of a (sub-)population in state Q against the (overall) 
population in state P is given by 

E(Q, P) = EQ(Fe) = .[~ Fp(x)Q(dx), 

or, for short, ~ FI, dQ. This quantity is essential in evolutionary game theory and 
also will be central in the definition of strong uninvadability given below. 

According to Maynard Smith a n d  Price (1973), a state P ~ of  the 
population under consideration is evolutionarily stable, if occurrence of rare 
mutants results in an average mean payoff lower than the average mean payoff 
to the population in the original state P. The occurrence of rare mutants means 
that a subpopulation of (small) relative size ~, 0 < e < 1, switches from state P to 
a different state Q ¢ P. Hence, the resulting "perturbed" state of the total 
population is given by 

(1 - , )P + eQ. 

(For  convenience and in order to avoid lengthy arguments dealing with excep- 
tional cases, we have made the assumption that # is convex at the beginning of  
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this article; hence ( 1 - e)P + eQ ~ ~ whenever Q ~ ~ and 0 ~< e ~< 1.) Now the 
statement that the average mean payoff  to rare mutants is less than the average 
mean payoff  to the remaining population (in state P) is reflected by the 
inequality 

E(Q, ( 1 - ~)P + eQ) < E(P, ( 1 - e)e + ~Q). 

Since the map  Q ~ E(Q, P) is affine, this relation is equivalent to 

E(R, R) < E(P, R) with R = ( 1 - ~)P + eQ. 

Note  that the variational distance lip - R IJ between P and R is small because of  

II P -  R[[ :~[Ie -a l l  ~<2e. 

Hence we are led to the following, stricter definition. 

Definition 1 A state P E ~ is said to be strongly uninvadable, if there is an a > 0 
such that for any R e ~ ,  

E(P, R) >E(R,  R) whenever 0 < IIR -Ni l  < ~. 

To promote  the flow of the argument, we defer discussion and formal definitions 
of  other, usual solution concepts in evolutionary game theory to Sect. 5. Here let 
us only note that in some important  special cases the above definition yields the 
usual evolutionary stability notions. 

3 Replicator dynamics 

The main idea behind any dynamical model for the evolution of behaviour based 
on games is as follows: assume that the state Q e ~ favours strategies in a set 
A e Y" in the sense that the average payoff  on A exceeds the average mean payoff, 
i.e. 

fA q~Q(x)Q(dx) > ~Oo(X ) = FQ(x) - E(Q, Q), x e 0 with X. 

Then the frequency of  strategies belonging to A should increase with time and 
vice versa. Replicator dynamics is the simplest formalization of this principle, 
and describes evolution of  states Q(t) over time t according to the relation 

[Q(t)(A)]" = [~Po(o" Q(t)](A), A ~ ~Y, 

where a dot denotes derivative with respect to time t, and where 

[q~. QI(A) = .tA ~o(x)Q(dx), A ~ ~ ,  

for any bounded measurable function ~ p : X ~  N and any Q e ~ .  In order to 
avoid the highly technical differential geometric approach of Akin (1982), we 
rephrase the above relation in terms of a differential equation operating directly 
on a suitably chosen Banach space ~ :  

Q(t) = ~pQ~,) " Q(t), ( ~ )  

Q(t) being the signed measure on (X, f )  defined by 

IIO(t + h ) - Q ( t ) - h Q ( t ) ] l = ° ( h )  a s h ~ 0 .  
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For  simplicity and parsimony, we choose ~ to be the smallest Banach space of 
signed measures on (X, 5f) under variational norm, which contains all measures 
of the form q~ • Q, where q~ : X ~ R is bounded, measurable, and where Q e N. 
Then L~ a is the so-called L-space of the experiment (X, W, ~),  upon which notion 
a functional analytical treatment of statistical decision theory is based: see 
Strasser (1985) and LeCam (1986); cf. Bomze (1990a, Proposition 1.1). 

To ensure global existence and uniqueness of trajectories under (N) in 
(see, e.g. Lang (1972, p. 63)), we need some assumptions on the payoff structure 
fo, OE~: 
Lemma 1 Assume that for  any # ~ ~LP there is a bounded, measurable function 
(p~ : X--* R such that 
(i) q)e(x) = FQ(x) - E(Q, Q) for  all x e X, all Q e ~ ;  
(ii) q).(x) = 0 f o r  all x E X, tf NP I[ >~ 2; 
(iii) there is some constant c > 0 such that 

sup Iq~,(x) - ~0~(xll ~< cll # - vii f o r  all #, v ~ ~ .  
xE.X" 

Then q~(#) = ~o~ • # defines a globally bounded Lipschitz map 4) : ~ ~ ~q~. 

Proof. Putting v - -o  in (iii) we get 

[%(x)l ..<c[]#[[ + d  with d =  sup Iq~o(X)[. ( . )  
x ~ X  

This and (ii) yields clearly [1~(#)I1 ~ 2(2c + d) for all # e L~. If #, v e 5(' satisfy 
I[#1[ ~<2 and Hv[[ ~<2, then from (iii), from (.) ,  and from 

• (#) - ~ ( v )  = (~o~ - ~Ov).  # + ~ov.  ( #  - v )  

we get 

-  (v)II ( 4 c  + d ) I [ #  - v II. 

Finally observe that for any measures #,v e ~ with I[# II ~ 2 < Ilv II there is a 
number 2 with 0 ~ 2 ~ < 1  and l l v ' l l - - 2 ,  if v ' = 2 p + ( 1 - ~ . ) v .  Hence 
4~(v') -- o = 4~(v) and with the help of the above relation we obtain 

I [ ~ ( # )  - ~ ( v ) I I  = [ l ~ ( # )  - 4~(v' ) ] [  ~< (4c + d ) l i p  - v'll 

--- 2(4c + d)lip - v II ~< (4c + d)lip - v II- 

Hence also the Lipschitz condition is met. [] 

A mild sufficient condition for the assumption of Lemma 1 to hold in an 
important class of evolutionary games is specified in Theorem 7 of Sect. 5. For 
this class, where X _~ R n, the replicator dynamics was introduced in a slightly 
different way by Zeeman (1981), who considered the values of the n-variate 
distribution functions, i.e. 

Q ( t ) ( { x e X : x i < < , y i ,  l<~i<~n}) ,  y ~ X ,  

instead of  Q(t)(A) for general A ~ 5F. Within the same framework, Akin (1982) 
and Hines (1980a) investigated dynamics (~ )  for the special case where E(Q, P) 
is bilinear, and where every state Q e N is dominated by P; Akin even requires 
a condition implying P to be equivalent to all states Q e ~ (as usual, we say that 
P dominates Q, in symbols Q ,~ P, if P(A) = 0 entails Q(A) = 0 for any A e f ,  
and say P and Q to be equivalent, abbreviated by Q ~ P, if both P ,~ Q and 
Q ,~P hold). Due to bilinearity of E(Q, Q ) -  which according to Bomze/ 
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P6tscher (1989, p. 14) means the contest is pairwise - Akin obtained in (1982, p. 
399) a global version of  the main Theorem 4 below for this special case. See also 
Hines (1980b, 1982). 

Example I, continued. Replicator dynamics in games with finitely many strate- 
gies. In this case, we may and do put X = { x l , . . . ,  x~ }. Furthermore, every state 
Q(t) ~ ~ is a discrete polymorphism of  the form 

k 

Q(t) = ~ qj(t)bxj 
j= l  

and hence uniquely determined by the vector of relative frequencies 

q(t) = [q~ (t) . . . . .  qk(t)]' e S k, 

where 

Sk = q = [ q l  . . . . .  qk]' e [~k : qi >~ O, Z qi = 1 
i = l  

is the k-standard simplex (by ' we denote transposition of a column vector). For 
simplicity, we assume that ~ consists of all distributions on X, so that every 
q(t) ~ S k gives rise to a state Q(t) ~ ~ .  Defining hj(q(t)) = FQ(o(xj), 1 <~j <<, k, we 
obtain 

k 

E(Q(t) ,  Q ( t ) ) =  ~. qyFQ(o(xy ) = q(t)'h(q(t)), 
j=l  

and thus it is not surprising that (~ )  takes the form 

Oy(t) = qj(t)[hy(q(t)) - q(t)'h(q(t))], 1 <~j <~ k. 

This is the game dynamics introduced by Taylor and Jonker (1978). 

Example  2 Pairwise conflicts in games with finitely many strategies. This is a 
special case of  the situation considered in Example 1. The fact that the game 
consists in pairwise conflicts yields linearity of  the payoff function h considered 
above: see Bomze/P6tscher (1989, p. 14). Thus there is an n × n payoff matrix A 
such that h(q ( t ) )=  Aq(t). Consequently, the replicator dynamics (J/) takes the 
form 

glj(t) = qj(t)[(Aq(t))j - q(t)'Aq(t)], 1 <~j ~ n. 

Models of  this type belong to those investigated most frequently in the literature: 
cf. e.g. Maynard Smith (1982), or Hofbauer/Sigmund (1988). 

Remark.  Although there is a statistical aspect of  the game within the population 
at every point of  time t, described by the state Q(t) as a distribution of strategies 
displayed by the individuals, we assume in this setting that evolution over time 
of the whole population is governed by a purely deterministic mechanism. This 
means that we are not concerned, for instance, with the way in which the states 
Q(s) and Q(t) are correlated over time. A model taking into account these aspects 
would have to investigate a stochastic dynamics, describing a stochastic process 
with marginal distributions Q(t). However, if the time scale at which mutations 
occur at a reasonable rate (to induce the evolution of the states Q(t) with varying 
time t) is large compared to the time scale at which individuals and their 
offspring receive the payoff (resulting from repeated contests in a population in 
state Q(t), practically at instant t) then this payoff will approximately correspond 
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to the mean  response FQ(,)(x) and compar i son  of  this quant i ty  with the average 
mean  payof f  E(Q(t), Q(t)) makes  sense; fur thermore ,  this is the only way in 
which the state Q(t) m a y  influence the payoffs  by a significant amount .  Hence - 
at least in this setting - a model  employing the repl icator  dynamics  (N)  seems to 
m a k e  sense: the stochastic process ment ioned above  m a y  be uncorrela ted or even 
stochastically independent  over  time. 

Before passing to cross entropy,  we specify an impor tan t  auxiliary result. 

L e m m a  2 I f  (Q( t))~o is a trajectory in S satisfying ( ~)  and starting in Q( O) ~ ~ ,  
then 
(a) Q(t) ~ Q(O) with Radon/Nikodym density 

dQ(o)dQ(t--~)(x)=exp(fo'~°(s'x)ds)' 

where ~o(t, x) = q)o(o(x) for  t >~ 0 and x • X; 
(b) in particular, every Q(t) is a probability measure satisfying P ~ Q(t) whenever 
P ,~ Q(0); in this case, 

dP dP ~o' log d Q ~  (x) = log d Q ~  (x) - qo(s, x) ds for Q(O)-almost all x • X. 

Proof. (a) Fo r  all t ~> 0 and x • X, let 

Or(x) = exp q)(s, x) ds >>. 0 

and put  O(t) = ~ , .  Q(O) ~ 2 ' .  Since the m a p  s ~ Q(s) f rom N to &a is II II- 
continuous,  we obta in  f rom the assumpt ion  (iii) o f  L e m m a  1 that  the functions 
s ~-~ q~(s, x) are uni formly  bounded  and equicont inuous as x • Jr. Hence 

f t  q)(s, x) - hq)(t, x) = o(h) uniformly  x as --* O, 
+ h 

ds in h 

showing 

(ot +h(x) - (o,(x) = (ot(x)[exp(h~o(t, x) + o(h)) - 1] 

= hCot(x)~o(t, x) + o(h) uniformly  in x as h ~ 0 ,  

which entails 

[Q(t)(A)]" = lim _fA 1 h~0 ~[qS,+h(X) -- (o,(x)lQ(O)(dx) 

= .fA q)(t, x)(o,(x)O(O)(dx) 

= [q~Q(o" Q(t)](A) uni formly  in A • ~ ,  

and therefore [0(t)]" = ~oe( o • Q(t) as well as Q ( 0 ) =  Q(0). F r o m  the uniqueness 
theorem - see Lang  (1972, p. 63) - we thus get Q(t) = Q(t) for  all t >~ 0. Hence  
Q(t) ~ Q(O) with Radon/Nikodym density dQ(t)/dQ(O) = ~,. N o w  pick a ~ > 0 
such that  ]~o(s, x)] ~< 7 for  all s />  0, all x s X. Then  

e -~t ~ ~t(x)  ~< e ~* for  all x E X, ( . )  

which shows also Q(0) ~ Q(t). Hence (a) is proved.  
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(b) follows from (a) and from the chain rule for Radon/Nikodym densities. [] 

From relation ( , )  in the preceding proof it follows that every function 0 on 
X, which is integrable w.r.t. Q(0), is also integrable w.r.t. Q(t) for all t. Then the 
time derivative of its integral is given by 

because of ~oe~0(x ) = Fact)(x ) -- ~xFo¢o dQ(t). Relation (~) is a counterpart of 
Price's (1970) phenotypical evolution equation, and has the interpretation that 
the instantaneous time variation of the average of an observable quantity 
equals the covariance, i.e. the measure for the common (spatial) variation, of 
with the fitness function FQ in the current state Q. 

In the case of frequency independent selection, where FQ = F for all Q e ~ ,  
inserting ~ = F in the evolution equation (g) shows that the average mean fitness 
E(Q, Q) increases monotonically along (N)-trajectories. Furthermore, in a wide 
class of models the following result holds true: if m is the unique maximizer of 
the fitness function F, and if the starting state Q(0) has full support, then the 
states Q(t) evolve towards the monomorphism c]m yielding the highest fitness at 
t ~ oe: see Bomze (1990b, Example 1). However, this result is false in general if 
selection is frequency dependent. In the next section we shall show that in this 
more general set-up, negative cross entropy increases along (N)-trajectories, 
similarly to average mean fitness in the frequency independent selection model. 

4 Cross entropy decreases 

In the sequel we consider a strongly uninvadable state P and an arbitrary 
trajectory (Q(t)),>~o of states evolving according to (N), which starts in a 
(suitably small) vicinity of P. The main result states that then cross entropy of 
Q(t) with respect to P decreases with increasing time. Cross e n t r o p y -  some 
authors, e.g. Kullback (1959), Fano (1961), Csisz~ir (1967, 1975), also speak of 
directed divergence - of a state Q with respect to P is defined whenever P ~ Q 
and is nothing else than the well-known Kullback/Leibler (1951) information 

Remark. Assume for the moment that ~ is dominated by a measure p on (X, •), 
and denote by 0e  = dQ/dp the Radon/Nikodym densities. Given /~, one can 
define the entropy of a state Q relative to P via the Bohzmann/Gibbs/Shannon 
formula, see e.g. Wehrl (1978): 

He: p = Ep( --  log 0o) = - J 0p log 0o dp, 

as well as cross entropy by 

E p log ~p log ~pP 

If  HQ: p is well defined and if Hp: p is finite, relative entropy and cross entropy 
are related by the identity 

K Q : p  = H Q : p  - -  g p : p  
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(the quantity He:p is the usual (absolute) entropy; cf., e.g. R6nyi (1970) for the 
information theoretical background, or Good (1953) for applications in popula- 
tion biology). In any case, the quantity KQ: e itself is well defined and finite if and 
only if the function 0e  log(0e/OQ) is integrable with respect to #. Integrability 
yields in turn the relation ~kQ(x)> 0 for P-almost all strategies x E X, which 
means P ,~ Q. 

If  P ~ Q, then KQ: p is nonnegative and vanishes if and only if Q = P. Hence 
KQ: e may be viewed as a measure of distance between the states Q and P called 
the Kullback/Leibler distance (note however that Ko: e is asymmetric in Q and 
P), The following inequality relates this distance to the variational distance. 

Lemma 3 Let Q, P be two states satisfying P ~ Q. Then 

[I Q - PII2 <~ KQ:p. 

Proof The assertion follows, e.g. from formulae (3.3.6) and (3.3.9) in Reiss 
(1989). [] 

The arguments preceding Lemma 3 show that it is reasonable to regard the 
set 

q/e = {Q e ~ : K Q : p  exists and fulfills O<~KQ:e <6 }  

as a vicinity of the state P. Here we choose ~ = e2, where e > 0 is the tolerance 
number from Definition 1. Note that the sets q/e, 6 > 0, do not define a 
topology, see Csiszfir (1967). This is the reason why we use the term "vicinity" 
instead of "neighbourhood".  Nevertheless, the sets q/e - in a certain geometrical 
s ense -  are the counterpart to spheres in Euclidean spaces, cf. Csisz~r (1975). 

The following main result now states that along any evolutionary path Q(t) 
of states obeying the replicator dynamics (N) and starting in Q ( 0 ) e  q/?, 
Kullback/Leibler information KQ(0: p decreases monotonically as time t increases. 
This observation perfectly corresponds to the minimum cross entropy approach 
in inference, which has various applications in chemistry and biology, and which 
can be derived axiomatically, see Shore/Johnson (1980, 1981). 

Theorem 4 Suppose that the states Q(t) ~ ~ satisfy (~)  for 0 <~ t <~ T, and that 
Q(O) E ql e holds. I f  P ~ ~ is a strongly uninvadable state, then 
(1) also the states Q(t) ~ ql e for all t, 0 <~ t <<. T, i.e. belong to the vicinity of P; 
(2) the Kullback/Leibler information Ko(,):p decreases monotonically as time t 
increases. 

Proof If Q(0) e q/p, then KQ(o):e exists, so that P ~ Q(0) holds. By Lemma 2(a) 
we know that then for all t we have P ~ Q(t), thus KQI,): p is well defined and 
nonnegative. Now note that for any Q e q/p different from P, we get using 
Lemma 3 

o l i e  - P I I - < , / K . : ,  < = 

whence E(P, Q) > E(Q, Q) results, due to strong uninvadability of P. Thus the 
relation Q e ~ / p  yields E(Q, Q) <~ E(P, Q). Furthermore we obtain from Lemma 
2(b) using Fubini's theorem 

;o KoI,): P = KQ(o): e -- ¢p(s, x) ds P(dx) = Ke(o) : ,. - Ee(q)e(, )) ds. 
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In the proof of Lemma 2, we established equicontinuity of the functions 
s ~ q~(s, x) as x e X, which in turn yields continuity of s ~ Ee(~oo(s)). Therefore 
the time derivative of KQ(o: e at time t exists and equals 

Ep(-~oQ(o) = - E ( P ,  Q(t)) + E(Q(t),  Q(t)) <~ O. 

Hence Ke(t): p decreases, and 0 ~< K~o: e ~ KQ(o): ? < ~ for all t, 0 ~< t ~< T. [] 

Example 1, continued. Replicator dynamics of Taylor/Jonker type. To be com- 
patible with the remark preceding Lemma 3, choose as a dominating measure 

= ~ = ,  6~j. In this setting the entropy of Q = ~ } = l  q:6~j relative to 
k 6 P = ~.~= ~p: x: is given by the expression 

Ho:e  = - Z pj logqj  
j:pj>O 

which is well defined (and finite) if p: > 0 yields q: > 0. This is evidently true if 
the Euclidean distance [ q - p [  between q and p is small enough. In particular, 
absolute entropy He: e is always finite in this type of game. Thus the vicinity q/e 
here corresponds to a Euclidean neighbourhood o f p  in S ". The function e-He :e, 
which strictly increases along the trajectories Q(t) ~ qle unless Q(t) = P, is used 
as a Lyapunov function, e.g. in Bomze/P6tscher (1989, Theorem 44), to establish 
convergence of q(t) to p as t ~ oo for any trajectory starting with Q(0) e q/e, i.e. 
to prove dynamical stability of uninvadable states. This Lyapunov function was 
introduced first in Hofbauer et al. (1979) in the context of Example 2, i.e. for 
pairwise conflicts with finitely many strategies, to show that every evolutionarily 
stable state is dynamically stable. This result is wrong if the game does not 
consist of pairwise conflicts: see Bomze/P6tscher (1989, Example 18). 

5 Evolutionary stability and (strong) uninvadability 

In Sect. 2, we discussed Maynard Smith's notion of evolutionary stability, which 
can be formalized in the following definition taken from Taylor/Jonker (1978): 

Definition 2 P ~ ~ is said to be an evolutionarily stable state, if for all 
Q e ~ ,  Q ~ P, there is an e(Q), 0 < e(Q) ~< 1, such that 

ho: ?(~) = E(Q,  (1 - e)P + ~Q) - E(P,  (1 - ~)P + ~Q) < 0 

whenever 0 < e ~< e(Q). This is equivalent to the condition that 

~ p ( Q ) = i n f { 1 } u { ~ : 0 < e ~ l  andho:p(~ ) ~ > 0 } > 0  for all Q ~ , Q C P .  

We call ee(Q) the "invasion barrier" for P against Q. Vickers and Cannings 
(1987) proposed to consider a uniform version of evolutionary stability called 
"uninvadability" in Bomze/P6tscher (1989) (note that, in contrast, Maynard 
Smith (1982, p, 205) and Thomas (1985) use the terms "uninvadable" and 
"evolutionarily stable" synonymously). According to Definition 3 below, a state 
P is uninvadable if it is protected by a positive global invasion barrier 

e* = inf ep(Q), 
Q ~ , Q ~ P  

i.e., if immunity against mutants is uniform. 
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Definition 3 I f  P ~ ~ fulfills ~* > 0, we call P uninvadable; if e* = 0, P is said to 
be invadable. 

Of course, every uninvadable state P is evolutionarily stable in the sense of  
Definition 2. Models in which invadable evolutionarily stable states exist are well 
known, see, e.g. Vickers/Cannings (1987). However, in some important  special 
cases it turns out that both concepts do not differ much from each other. But 
beforehand let us relate the notions introduced in Definitions 1 a n d  3: 

Theorem 5 (a) Every strongly uninvadable state P ~ ~ is also uninvadable. 
(b) Let P ~ ~ be an uninvadable state such that there is an ~ > 0 satisfying 

1---~ P +~  R ~ for some positive 6 =6(R) <e*, 

whenever R ~ ~ fulfills IIR - e I[ < then P is also strongly uninvadable. 

Proof. (a) From Definitions 1 and 3 it is clear that ee(R) = 1 holds for any state 
R e ~ fulfilling 0 < IIR - el l  < Consider any state Q e ~ differing from P. I f  
0 < e < c~/2 < 1, then R = (1 - e)P + eQ satisfies 

l ie-  PII = IIQ- Nil 2e < e, 

yielding ee(Q) >~ ~/2 and thus the assertion. 
(b) I f  R e ~  and 0 <  H R - e l l  <~ ,  then choose 6 as in the condition and let 
Q = ( 1  - 1/6)P +(1/6)R e ~ .  Then R = ( 1  - 6 ) P  +6Q, and since 0 < 6  <e*~< 
ee(Q), we obtain E(R, R) < E(P, R). [] 

Example 13 in Bomze/P6tscher (1989) shows that the converse of  (a) above 
is not true in general. Note that the condition in (b) implies that for every state 
R ~ ~ sufficiently close to P in variational distance, 

1 -- P(A) +~ R(A) >1 0 holds for all A e ~r. 

This is equivalent to P ~ R with Radon/Nikodym derivative dP/dR that is 
R-almost  surely bounded by (1 - 6) -  1 < (1 - e*)-~. Given this property to hold 
for some 6 not depending on R with 0 < 6 < e*, the condition of Theorem 5(b) 
follows if P lies in the interior (w.r.t. variational norm) of  N relative to the set 
of  all probability measures on (X, ~r). 

Nevertheless, there is an important class of  evolutionary games, where (b) is 
true even if P is not dominated by ~ ,  or if P lies on the boundary of ~ .  These 
"evolutionary mixed strategy games" can be described as follows: 

Suppose there is only a finite number n of  elementary actions available to 
individuals participating in a certain game. For  reasons that will become clear 
soon, we represent these elementary actions, or "pure strategies", by the stan- 
dard basis (column) vectors ei in n-dimensional Euclidean space 
~ , e i . ' = [ 0  . . . . .  1 . . . . .  0]' (only the ith coordinate non vanishing, 1 <~i<~n. 
Assume that each individual is able to play a mixed strategy x = [x~ . . . . .  xn]', 
i.e., to display e i with a certain probability xi, 1 <~ i ~< n. Some authors use the 
term "complex populat ion" in this situation. One may interpret the probabilities 
x; associated with a mixed strategy x in several ways; see, e.g. Maynard  Smith 
(1982, p. 68). The strategy set X then is a subset of  the n-standard simplex 
S n _~ ~n and ~r is the system of  Borel subsets of  X. 
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For the sake of clarity let us note here that it is important to distinguish 
between 

• (population) states describing the distribution of behaviour within a popula- 
tion, and 

• mixed (individual) strategies, which include probabilities xi for an individual to 
display behaviour pattern ei. 

Hence, states describe a statistical aspect while strategies refer to an individualistic 
aspect of behaviour. 

In evolutionary mixed strategy games, the dependence of Fp(x) on the 
strategy x is of very simple type: by definition of a mixed strategy, the payoff 
F?(x) to an individual displaying x is the weighted sum of payoffs f (P) = F?(ei) 
to the elementary actions e~, 1 ~< i ~< n: 

Fe(x) = ~'. xi f . (P) = x f (P) ,  
i = 1  

where f (P)  = [fl (P) . . . . .  fn(P)]' is the response vector to the elementary actions 
in state P. As a consequence, the expression for the average mean payoff 
simplifies to 

E(Q, P) = x'f(P)Q(dx) = xQ(dx P) = g'Qf(P), 
n n 

where gQ = EQ(x) = S xQ(dx) denotes the average strategy played in a popula- 
tion in state Q, the so-called "population strategy". In the arguments presented 
below, the set 

k= {ffQ: Q e ~} 

of all population strategies in the model will play an important role. For 
simplicity of exposition, we shall in the sequel always assume that X is poly- 
hedral. This is certainly true, if for instance .F is the whole of S n. 

An evolutionary mixed strategy game is said to be a "population game", if 
the response depends on the state P only through its population strategy if,,, i.e. 
if f (P) =f(ffp) for some function f :  X ~ N". As a consequence, the average mean 
payoffs E(Q, P) depend in this case only on the population strategies 2Q and 2e, 
namely via the formula 

E(Q, P) = ~'of(P) = .£'Qf(~,,,). 

Similarly, the mean response to strategy x in a population game takes the form 

Fp(x) = x ' f (P) = xf ( f fe) ,  x e X. 

In a population game with polyhedral X, the notions of evolutionary stability 
and uninvadability_ do not differ too much from each other, provided the 
response function f is differentiable at x = Xe : cf. Bomze/P6tscher ( 1989, Theo- 
rem 35 (a) through (c), Corollary 39(a)). For instance, in the setting of Example 
2 every evolutionarily stable state is already uninvadable, due to bilinearity of 
the average mean payoff E(Q,P)  in Q and P, see Bomze/P6tscher (1989, 
Corollary 39(b)). 

Furthermore, as we shall show now, the notions of uninvadability and strong 
uninvadability coincide in this case. To this end, we next specify an auxiliary 
result relating closeness of population strategies to closeness of states in the 
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following sense: denote  by lu[ = x ~  the Euclidean n o r m  of  a vector  u ~ R n, so 
that  I~R - gel  is the Euclidean distance between xR ~ ) (  a n d  gp ; then, given an 
arbi trar i ly small barr ier  Q > 0, any popula t ion  strategy ff ~ X can be represented 
as a popula t ion  strategy of  a per turbed  state resulting f rom muta t ions  which 
occur with relative frequency ~ less than  ~, provided ]xR - x p l  is small enough. 

L e m m a  6 Consider a population game with polyhedral X and let ~ > 0 be an 
arbitrary positive number. Then there is an c~ > 0 such that for  any Yc R ~ k 
satisfying [2R - 2p I < ~ there is a state Q ~ ~ and an ~, fulfilling 0 <~ ~ < Q, with 

x = (1 - e)ffe + effQ = X(l  e)P+eQ. 

P r o o f  I f  ) (  = S n, this follows f rom B_omze/P6tscher (1989, R e m a r k  7.5(ix) and 
L e m m a  42). F o r  general polyhedral  X, the p r o o f  is obta ined by s t ra ightforward 
general izat ion and will therefore be omitted.  [] 

Theorem 7 In a population game with polyhedral X, a state P is strongly 
uninvadable i f  and only i f  P is uninvadable. 

P r o o f  All we have to show is the converse of  Theo rem 5(a). Put  ~ = e* and 
choose ~ as in L e m m a  6. Then  

(the second inequality is due to ] x l ~ l  for  all x e Sn). L e m m a  6 yields 
2R = 2o -~)p+~Q for  some Q ~ ~ and some e, 0 ~< e < e*. N o w  R ¢ P entails 
2R ¢ 2p, see Bomze/P6tscher  (1989, Proposi t ion  25(a)). Thus  

~(2Q - 2p) = 2R - gp ¢ o, 

whence we deduce e > 0 and Q ~ P. Fu r the rmore  we have 0 < e < E* ~< ze(Q). 
Therefore  we arrive at 

E(P, R) - E(R, R) = ( ~  - ~R)f(~R) 

= ( '~P - -  X(1 - e)P + eQ) ~( '~(1 - e)P + eQ) 

= e(£e - ~Q)f ( (1  - e)P + eQ) 

= e(E(P, (1 - e)P + eQ) - E(Q, ( 1 - e)P + eQ)) > O, 

establishing the desired inequality. [] 

Turn ing  finally towards  the replicator dynamics,  it might  be convenient  to 
note  that,  for  mixed strategy games, ( ~ )  can be written in the following, simpler 
way: 

(oQm(x) = ~pO(,(x)[x f (Q( t ) )  - xo(,)'f(Q(t))], x e X. 

Moreover ,  in a popula t ion  game we can simplify fur ther  to the form 

~Q(,(x) = ~o~,~(x)[x - ~o(,)]f(~o~,),  x ~ X. 

Example  I, continued. G a m e s  with finitely many  strategies as popula t ion  games. 
For  simplicity, we again assume that  N consists o f  all distr ibutions concentra ted 
on X = { x ~  . . . . .  xk}, so that  every q s S  k gives rise to a state 
Q = 2 ~  ~ q~8.,./~ ~ .  Identifying {x, . . . . .  xk } with {e, . . . . .  e~ } ~ ~k, we pass 
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to the model where ~ consists of  all discrete polymorphisms Q concentrated on 
{el . . . . .  e~ } c S ~. Consequently, 

k 
£ Q = q  if and only if Q =  ~ qj6ej, 

j = l  

and hence .~ = S k is polyhedral. Moreover, the response function is given by 
f(2Q) = h(q). Therefore a game with finitely many strategies can be viewed as a 
population game with polyhedral k and thus Theorem 7 is in force. Finally note 
that the replicator dynamics takes the form 

~- - -  X Q ( t ) ] f ( X Q ( t ) ) ,  1 <~j <. k. 4j(t) qj(t)[x s - ' -  - 

Now we show that the assumptions of  Lemma 1 in Sect. 3 are satisfied if the 
response function is smooth: 

Theorem 8 Consider a population game with response function ~ which is defined 
in an open neighbourhood U of X, and which is continuously differentiable there. 
Then the assumption of  Lemma 1 holds. 

Proof. At first note that due to Ix[ ~< 1 for all x E X _ S n, we have [:fu] ~< I[~/I for 
any # ~ cp, if ~ = Sx x#(dx) ~ ~". Denote by B = {x E ~" "Ix[ ~< 2} and assume 
without loss of  generality that U ~ B .  Pick a closed set V such that 
X c V =  U = B, and choose a smooth function ~, :B ~ [0 ,  1] which vanishes 
outside of U, and is equal to unity on V. Define 

flp(x)f(x), if x e U, 

~(x) = ~ " ~ ' ( 0 ,  otherwise. 

Then g is bounded and Lipschitz on B. Now put for p ~ 

(2 - I[/x I[)g(ffu), if [l# [I ~< 2, 

g(P) = 0, otherwise. 

If  q~,(x) = (x - ff,)'g(p) for x ~ X, then ¢p~ : X ~  ~ is bounded, measurable, and 

q~Q(x) = (x - ~o ) f (~o)  = Fo(x ) -- E(Q, Q) for all x ~ X. 

Therefore conditions (i) and (ii) of  Lemma 1 are satisfied. From 

~ o . ( x )  - ~ o d x )  = ( x  - x . ) ' [ g ( ~ )  - g ( v ) ]  + ()z~ - ~ . ) ' g ( v ) ,  

and from 

g (# )  - -  g (v )  = ( 2  - -  I I# H)[g(-~,)  - g ( ~ ) ]  + ( l lv  II - I1 , 
we see also that condition (iii) holds. [] 
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