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A b s t r a c t .  Models of single-species and predator-prey systems in a polluted 
closed environment are developed and partially analyzed. Three cases are 
considered: a single influx of toxicant, a constant influx of toxicant, and a 
periodic pollution of the environment. In the case of single-species growth we are 
able to determine some local and global dynamics. In the case of predator-prey 
systems, we investigate the existence of steady states for a small constant influx 
of toxicant. 
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Periodic perturbation 

1 In troduct ion  

The question of the effects of pollutants and toxicants on ecological communities 
is of great interest from both environmental and conservational points of view. 
Some examples are oil pollution in the seas, Nelson (1970), degradation of 
forests, Shukla et al. (1989), Woodman and Cowling (1987), and dumping of 
toxic waste in rivers and lakes, Haas (1981), Jensen and Marshall (1982). 

In a series of papers (de Luna and Hallam (1987); Hallam and Clark (1982); 
Hallam, Clark and Jordan (1983); Hallam, Clark and Lassiter (1983); Hallam 
and de Luna (1984)), T. G. Hallam and his coworkers studied the effects of 
toxicants on various ecosystems by utilizing mathematical models. In particular 
Hallam et al. (1983) have modelled the interaction of toxicant in the environ- 
ment with the population by assuming that the growth rate of population density 
linearly depends upon the toxicant concentration in the population but they do 
not consider the effect of environmental toxicant on the carrying capacity. In 
their models the differential equation governing the concentration of toxicant in 
the population does not explicitly depend upon the density of the population as 
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this concentration has been defined with respect to the biomass of  the total 
population and not with respect to total mass or volume of  the environment 
where the population lives. The equation governing the concentration of  the 
toxicant in the environment which has been defined with respect to the mass of  
the environment does however involve the population density as well as the 
toxicant concentration in the population. We feel that if all the concentrations 
i.e., biomass of  the population, toxicant in the population and toxicant in the 
environment, are defined with respect to mass or volume of  the total environ- 
ment in which the population lives, the model of  the ecotoxicological problem 
becomes more visible as each of  the equations will then in general involve all 
these variables. 

In this paper we therefore consider single-species and predator-prey interac- 
tions in a closed homogeneous environment the carrying capacity of  which is 
also affected by the exogeneous introduction of toxicant. We model the interac- 
tions of  the populations and the toxicants in the population and in the environ- 
ment by means of ordinary differential equations in terms of their concentrations 
defined with respect to mass or volume of  the total environment where the 
population lives. 

We are interested in determining as much as possible, the effects of the 
toxicant on equilibrial levels, and stability of the biological systems. 

In the next section we develop the single-species model and carry out the 
analysis for three cases, namely an instantaneous introduction of toxicant (e.g. a 
one-time dumping of pollutant in a lake), a constant introduction of toxicant 
into the environment (e.g. chimney exhaust into the atmosphere affecting a 
forest), and a small amplitude fluctuating introduction of  toxicant (e.g. oil 
pollution along a shoreline due to wave action after a spill). 

In Sect. 3, we consider the first two cases as affecting a predator-prey system. 
Here, the question of  the existence of a nontrivial equilibrium is itself nontrivial. 
In the final section we discuss our results and suggest future work. 

The population models are based on those described in Freedman (1987). We 
assume that all functions utilized are sufficiently smooth that solutions to initial 
value problems exist uniquely and are continuable for all positive time. 

2 Single-species 

We utilize a modified logistic equation (Freedman, 1987) to model the effect of  
toxin on single-species growth. We let 

x(t) = Concentration of  the population biomass 

mass (or volume) of  the population biomass 

mass (or volume) of the total environment where the population lives 

T(t) = Concentration of toxicant in the environment 

mass (or volume) of the toxicant in the environment 

mass (or  volume) of the total environment 

U(t) = Concentration of toxicant in the population 

mass (or volume) of the toxicant in the total population 

mass (or volume) of  the total environment 

We think of  population change as made up of birth minus death. 
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We assume that the population is affected by the toxicant as follows: growth 
of x is diminished by the presence of toxicant U in x, whereas the carrying 
capacity of the environment is lowered by the presence of toxicant T in the 
environment. Here U and x represent different concentrations. 

It is assumed that the toxicant in the environment is washed out or broken 
down with rate 6o. Such can occur if the environment is a lake which upon 
occasion drains into another body of water, or if the toxicant is subject to 
chemical decomposition. Further, it is assumed that toxicant from the environ- 
ment is absorbed by the population in direct proportion to their concentration 
(i.e. ~1 x T ) .  The toxicant in the population may also be removed from the total 
environment directly with rate 61. Toxicant may also be removed from the 
population in proportion to their concentrations, some of it (z171 x T )  reentering 
the environment, and some removed from the environment. Finally, toxicant 
may be externally introduced into the environment according to some prescribed 
rate f ( t ) .  

This leads to the following system of ordinary differential equations 

ro x2 
£c = r( U)x  - - -  

K ( T )  

J" = - 60 T -- ~ l x T  + nl ~lXU + f ( t )  
(2.1) 

O =  - 6 1 U  + ~ l X T -  71xU, 

x(O) >>. o, T(O) >i O, U(O) >1 Icx(O), 

where 60, 61, ~l, 71, k are positive constants, and 0 ~< nl ~< 1, and where 60 is the 
depletion rate of toxicant in the environment, 

61 is the depletion rate of the toxicant in the population, 

~1 in the second equation of (2.1) is the depletion rate of toxicant in the 
environment due to its intake by the population, 

71 in the third equation of (2.1) is the depletion rate of toxicant in the 
population due to their death (removal). 

In the model (2.1) we have assumed that the initial toxicant U(0) depends 
upon the initial population kx(O). To explain why this is reasonable consider the 
following particular cases 

(I) x(0) = 0, cq # 0 

(II) x(0) # 0, ~1 = 0 (negligible intake of toxicant by the population). 

Case I In this case from the first equation of (2.1) we have x(t) - O. We then get 
from the third equation of (2.1) 

O :  -~1 U 

o r  

U = U(0) e -~''. 

Since x(t) - 0, from physical considerations we must have U(t) -- 0 [by definition 
of U(t)]. This suggests that U(0) must be zero implying that U(0)=  kx(O) is 
meaningful. (Note x(0) = 0.) 

Case II In this case from the first equation of (2.1) we have x(t) <<, K(O). Then 
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from the third equation we can obtain U(t) =- 0 if U(0) = 0. Thus in this case if 
U(O) = kx(O) is to be meaningful we must put k = 0. 

Thus we may conclude the relation U(0) = kx(O) >>, 0 is correct. Here k ~> 0 
may be interpreted as the proportionality constant determining the measure of 
initial toxicant concentration in the population at t --0. 

r(U)x is the birth component of our population and hence r(U) represents 
the growth rate "constant" which is affected by U. Hence we assume 

r ( 0 ) = r 0 > 0 ,  r ' (U)<O for U~>0, 
(2.2) 

r ( U ) = 0  for some 0 > 0 .  

The death component is given by rox2/K(T), where K(T) represents the carrying 
capacity which is affected by T. Hence we assume 

K(0) = K 0 > 0 ,  K'(T) < 0  for T>>.O, 
(2.3) 

K ( T ) = 0  for some T > 0 .  

The above assumptions imply that increasing toxicant d_ecreases birth rate 
and increases death rate, and in particular the existence of U and ~? imply that 
if the toxicant level is sufficiently high, then the population cannot reproduce or 
grow, and in fact will die (K(T) = 0). 

f ( t )  represents the rate of introduction of toxicant into the environment 
beyond the initial concentration. We analyze our model for three possible types 
of such f( t) ,  namely f ( t )  zero, f ( t )  constant, and f ( t )  a periodic perturbation of 
a constant value. 

Model (2.1) presumes certain averaging effects, that is it presumes a uniform 
environment, an average age class, average fertility, etc. Although individuals in 
any population will vary and environments are inevitably patchy to some extent, 
such presumptions are standard in the literature and in many cases a reasonable 
approximation for modelling purposes (see Freedman, 1987, and the references 
therein). 

2. I f ( t )  - 0 

In this case our model has two nonnegative equilibria in x - T - U space when 
0 ~< T < ~?, 0 ~< U < 0, namely Eo(0, 0, 0) and E1 (K0, 0, 0). To determine the 
local stability of these equilibria, we compute the variational matrices about 
these equilibria, which we denote M0 and M1, respectively. 

r0 0 0 ] 

M0= 0 - 6 o  0 , 
0 0 -61 

- r o  roK'(O) r'(O)Ko 
M l = 0 --~o--oqKo rqT~K o [. 

0 o~lg 0 --]~lgo - 61J 

From the above, it is clear that Eo is a hyperbolic saddle point, locally stable 
in the T and U directions and locally unstable in the x direction. E~ is locally 
asymptotically stable. However, we can say much more in this case as given by 
the following theorem. 
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Theorem 2.1 I f  x(O) > O, then E 1 is globally asymptotically stable with respect to 
the nonnegative orthant. 

Proof. First note that 

2(0 = r ( U ) x  - -  - -  

Hence lim x(t) <<. K o. Now consider 
t~o:3 

( x2) 
r ° x 2  -- Koo K(T)  <<" ro x 

J" + (_7 = --3o T - (~1 U -~- ( / ~ 1  - I)71xU ~ --3(T + U), 

where 3 =min(6o,31). Then T ( t ) +  U( t )~<(T(0)+ U(O))e 6t and hence the 
system is dissipative. 

From the above it follows that lim T(t) = lira U(t) = 0. Hence in the limit 
t ~  

x(t) is given by solutions of 2(0 =r0x(1 -x /Ko) .  Since x (0 )>  0, the theorem 
follows. 

This case corresponds to a single introduction (possibly instantaneous) of 
toxicant into the environment. Theorem 2.1 shows that provided the concentra- 
tion was not sufficient to kill all the population, eventually the toxicant would be 
removed and the population would recover to its former level. 

2.2 f ( t )  = Q > 0 

Again, provided 0 <~.T < T  and 0 ~< U < U, there are two nonnegative equilibria, 
E2(O, Q/6o, 0) and E(2, T, U). 

We now formulate criteria for /~ to exist. We require that the system of 
algebraic equations 

r ( t~ ) -  r o 2  = 0  
K(T)  

6o/= + ct,~ 7= - ~17,~U - Q = 0 (2.4) 

~1 " ~  - -  "~1 - ~  - -  (~1 ~'~= 0 

has a positive solution. The first of these gives ~ = r(U)K(T)/ro. Substituting for 
in the other two equations gives 

cq ~ = ~'1 ~ r ( U ) K ( T )  

Here, we have 

and 

which implies 

6oT = Q - [61 + (1 - 7 ~ l ) ~ l r ( ~ f ) K ( T ) l r o ] ~ f .  

t? 
T = Q - I 6 1  + ( 1 - n l ) ~ o r ( f J ) k ( T ) 1 6  ° 

T ~ Q  when U ~ 0  

(2.6) 
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and 

T ~ I ( Q - g ,  0) when U ~ O f o r  T<~P. 

This implies that Q ~> 61 D for T ~> 0. We can also obtain, 

dT 1 [ g , + ( 1  n l ) r~ r (~ )K(~) ]  
dU 6o 

~(1 -- nl) VA r'((])K(7") + r((J)K(T) ~-~ 
gO ro 

When U ~.0, dT/dU is negative for T < T. When U -~ ~7, we get, 

provided 

where - r'(U) ~< am. 

1 dU go 
<~0 

6, ~> U(1 - n,)V~K(O)am 
go 

Thus, in our model we assume the following conditions in addition to (2.2) 
and (2.3), 

(i) Q>~6,0, 7"<T 

(ii) bl >/U(1--zc,)VlK(0)am 
r 0 

(iii) - r ' (U)  ~< ~m. 

AS far as Eg. (2_5) is concerned, T is an increasing function of ~" since 
dl'/dU > 0 for U < U, T < T. This can be checked after differentiating T from 
(2.3) with resepct to 0. 

With the above assumptions, Eq. (2.5)represents T as an increasing from 
zero function of U and Eq. (2.6) represents T as a decreasing from Q/6o function 
of U, which approaches or intersects zero. Hence the two graphs must intersect 
and provided the intersection values T < T and U < U, then E exists. 

We refer to Fig. 1 for the graphs of Eqs. (2.5) and (2.6) in the nonnegative 
- T plane. 

The variational matrices corresponding to E2 and/~ are denoted by M2 and 
M, respectively and are computed as follows. 

m 2 

r o 0 0 ] 
-aTQ/6o -3o 0 , 
al Q/go 0 --31 

-r(U) r2(~])K'(T)/ro r( U)K( T)r'(n, y, 2 U)/ro] 

- Z l 2  -51  J" 

Again, E 2 is a hyperbolic saddle point, with a one-dimensional unstable and 
a two-dimensional stable manifold. 
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Q . 5 )  
6o 

0 

21 

Fig. 1. The intersection of the graphs given by 
Eqs. (2.5) and (2.6). The intersection values 
form the 77 and U coordinates of/~ 

With respect to/~,  we are not able to show that it is always asymptotically 
stable. However, we are able to get sufficiency conditions for this property to 
hold. 

Theorem 2.2 Let the following inequalities hold. 

2~1T < r (0 )  + ( 1  + rq)?l U 

- r2( /~)K' (T)  < aoro 

-r(fT)K(T)r'(U) < roT,(1 - rt,)~, + roa,. 

Then E is locally asymptotically stable. 

(2.7a) 

(2.7b) 

(2.7c) 

Proof If inequalities (2.7) hold, then by Gershgorin's theorem (Lancaster and 
Tismanetsky, 1985, p. 371), all eigenvalues of M have negative real parts, and the 
theorem follows. 

In the following theorem, we are able to write down conditions which 
guarantee that E is globally stable. First we need a lemma which establishes the 
existence of a region of attraction for our system. 

Lemma 2.1 The region 

d = {(x, T, U)" 0 <. x ~ Ko, 0 <~ T + U ~ Q/a, a = min(6o, 51)} 

is a region of attraction. 

Proof As before, lira x(t) <<.Ko, and 
lira [T(t) + U(t)] = Q/t~,~roving the lemma. 
t ~ o o  

J~ + (7 <<. - f ( T  + U) + Q. Hence 

Theorem 2.3 In addition to assumptions (2.2) and (2.3), let r(U) and K(T) satisfy 
i n d  

Km ~ K(T) <~ Ko, 0 <~ --K'(T) <<. 

0 4  -r ' (U)  <~0, 
(2.8) 
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for some positive constants Kin, ~c, ~. Then 

[roKot¢ + ~ 
+ ~,'/1 t?j ~ ] 

i f  the following inequalities hoM 

r o 
< K ~  (60 + cq2) (2.9a) 

r o 
< ~ ( 6 ,  + 7,2) (2.9b) 

^ t l )  

[rqTj + al]2K~ < (60 + a12)(6, + 712), (2.9c) 

ft. is globally asymptotically stable with respect to solutions initiating in the interior 
o f  the positive orthant. 

Proof  Since d is an attracting region, and does not contain any invariant sets 
on the part of its boundary which intersects the interior of R 3, we restrict our 
attention to the interior of d .  

We consider the positive definite function about 

V(x, T, U) = x - 2 - 2 ln(x/2) + ½(r - ~)2 + ½(U - t?) 2. 

Then the derivative along solutions, l)is given by 

( ~ - )  [ r ° x ]  
fz= 1 -  x r(U) K ~ ) j + ( T - f ) [ - 6 o T - T l X T + r q ~ l x U + O ]  

+ (U - U)[alxT - 7 txU -- 61U]. 

After some algebraic manipulations, this can be written as 

(x -- )?) [r(U) - 
fox  ] 

K(T)J + (T - T)[--6oT - ~1 )~T -~ ~ l  ~l 3 ~  ~- Q] 
r 

-~- ( U  - -  ~.~)[O~lXT - -  7 1 2 U  - -  61 U]  

+ [ --rox~(T ) - -  O~ 1 T + ~ 1  11)1 ~ .~](X - -  2)(T -- ii~) 

-3f-[?/(U) -Jr- ~1 ~ -  ~1 U](x  - x ) ( U  - ~f) ~-[2I'l ~ 1 -[- a l ] X ( T -  ]~ ) (U - f-~), 

where f 

K'(T) (2.10a) 
K(T)2, T = 

[(r(U) - r (O)) / (U-  g3, U ~ & (2.lOb) 
, 7 ( u )  = ( r ' ( U ) ,  d = r_.?. 

We note from (2.6) 
1,7(v)l~. 

We now note that 

and the mean value theorem, that I¢(r)l~<~//rL and 

r(~ rox ro 
K ( T ) -  K(T)  (X--  2) 

- -6oT -- ~12T + 7z1712~7 + Q =- - (60  + ~12)(T - ~') 

~12T--;'12U-- 6~ U= --(6~ + ;,,2,)(U- g). 
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Hence 1)" can be written as the sum of three quadratic forms, 

V =  - - l  a~  (x - £)2 + a,2( X _ £c)(T - T~ - ½az2(T - ~)2 

-- ½a,, (x - 27) 2 + a,3(x  - ~ ) ( U  - (J) -- ½as3(U -- ~)2 

_ ½a22(T _ ~)2 + a23(T - T ) ( U  - U) - ½ a s 3 ( U  - U) 2, 

where 

23 

(2.11) 

all = ro /K(T) ,  a22 ---- go ÷ ~13~, a33 = (31 -}- ]21)~), 

a12 = - r o x ~ ( T )  - cq T + ~171 (Y, a13 = tl(U) + ~1 7" - 71 U, 

a23 = (7~171 ÷ ~l )X.  

Then a sufficient condition for l)" to be negative definite is that 

a22 - - a l l a 2 2  < 0 (2.12a) 

a~3 - alia33 < 0 (2.12b) 

a~3 - -  a22a33 < 0 (2.12c) 

hold. However (.2.9a) implies (2.12a), (2.9b) implies (2.12b) and (2.9c) implies 
(2.12c). Hence V is negative definite and so V is a Liapunov function with 
respect to E, whose domain contains d ,  proving the theorem. 

The above theorem shows, that provided inequalities (2.9) hold, the system 
settles down to a steady state of population (at a lower carrying capacity) and 
toxicant (at a level determined by influx and washout). 

2.3 f ( t )  = Q + ~(p(t), (p(t + co) = ~o(t) 

In order to analyze system (2.1) in this case, we write it as 

= F(z)  + eGO), z(0) = z0, 

where (zl) 
Z ~- Z 2 ~ 

Z3 

r(z3)z I -- roz2/K(z2)  ) 

F(z)  = -6oZ2  - -  ~IZlZ2 ~- ~ lTIZIZ3  ~- Q , 

--(~lZ3 ÷CXIZIZ 2 - 7 1 Z 1 Z 3  

(2.13) 

(2.14) 

We would like to establish the existence of a periodic solution of period co of 
system (2.13) for sufficiently small e, which tends to ff as e ~ 0. We will have done 

Note that z(t, O, O) =- 2. 

(x0) 
G ( t ) =  ( p )  , Zo= To • 

Uo 

Let z(t, 4, 0 be the solution of Eq. (2.13) such that z(0, 4, e) = ~ + 4, where 

,% 
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so if we show that  ~ can be chosen as a function o f  e for  ~ small, ~ --, 0 as e --* 0, 
such that  z(co, ~, e) = ~ + 4. 

With  this in mind,  we define 

J(~, ~) = z(co, ~, e) - ~ - ~. (2.15) 

I f  we can show that  J(¢, e) = 0 can be solved for  ¢ as a funct ion o f  e, ~(e), such 
that  ~(0) = 0, we will have shown the existence of  a periodic solution. To  do this 
we utilize the implicit funct ion theorem (Freedman ,  1968). 

First  we compu te  J (0 ,  0). N o w  J(0 ,  0) = z(co, 0, 0) - z = z - z = 0. Then we 
mus t  compu te  det[J~(0,0) l and show that  it is not  zero. N o w  
J , (0 ,  0) = z,(co, 0, 0) - / ,  where I is the identi ty matr ix.  

Using var ia t ional  formulas ,  we have that  z¢(t, ~, e) is the matr ix  solution of  

i¢(t, ¢, e) = Fz(z(t, ¢, e))z¢(t, ¢, ~), z¢(O, ¢, e) = I. 

Hence setting ~ = 0, e = 0, we get that  z¢(t, 0, 0) is the matr ix  solution o f  

~( t ,  O, O) = Fz(z(t, O, O))z~(t, O, 0), z,(O, O, O) = I. 

But z(t, 0, 0) = Z and ~(zO = ~r. Hence  

~,(t, 0, 0) = ~rz,( t ,  0, 0), z¢(0, 0, 0) = I .  (2.16) 

The solution of  (2.16) is clearly 

z¢(t, 0, 0) = e ~ ,  (2.17) 

and hence 

J~(0, 0) = e ;t'° - I. (2.18) 

This leads to the following theorem.  

Theorem 2.4 I f  ~'I has no eigenvalues with zero real parts, then system (2.1) 
with f ( t )  = Q + e(o(t), ~o(t + co) = (o(t) has a periodic solution ~ ° f  period co, 
(x(t, ~), T(t, ~), U(t, e)) such that (x(t, 0), T(t, 0), U(t, 0)) = (2, T, U). 

Proo f  I f  M has no eigenvalues with zero real parts ,  then 1 is not  an eigenvalue 
o f  e ~t~. This means  that  det J¢(0, 0) = detle ~t°' - I I # 0, and the theorem follows 
f rom the implicit funct ion theorem.  

Corollary.  I f  ff'I has no eigenvalues with zero real parts, then for  e sufficiently 
small, the stability o f  the periodic solution is the same as the stability o f  E. 

Proo f  This is clear since the periodic solution does not  arise out  o f  a bifurcat ion 
where stability changes can occur. 

T o  complete  the mathemat ica l  analysis o f  this section we show how to 
const ruct  the periodic solution up to order  of  ~. In order  to do this we need to 
compute  the vector  z,:(t, 0, 0). 

First z,:(t, ~, ~) is the solution of  

~,:(t, 4, e) = F__(z(t, ~, e))z,:(t, ~, e) + G(t), z,:(0, ~, e) = 0. 

Hence z,:(t, 0, 0) is given by the solution o f  

~,:(t, 0, 0) = ~Iz,:(t, O, O) + G(t), z,:(0, ~, e) = 0, 
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which is 

z~(t, O, O) = e £4t .t~ e-Zt'G(s) ds. (2.19) 

We now use Taylor series to write 

z(t, 4, e) = 5 + z~(t, O, 0)~ + z~(t, 0, 0)e + H.O.T. (2.20) 

But ~(e) = ~'(0)e + o(e), where 

4'(0) --= - J~(0 ,  0) -'J~:(0, 0) and J~(0, 0) = z~(o~, O, 0). 

Hence ~ ' (0 )=  - ( e - ~ m - I )  -1 e;t°~°o'e £4SG(s)ds. Then substituting all known 
functions into (2.20) gives 

[; ; ] z(t, 3, ~) = z + e ~t' e -~ 'G(s)  ds - (e-#to) _ I) 1 e~t~ e-£4"G(s) ds ~ + o(E). 

(2.21) 

3 Predator-prey 

We develop our model by applying the same type of toxicant effects to a 
modified form of the intermediate predator-prey system discussed in Freedman 
(1987). 

In addition to the assumptions made in the previous section, we assume that 
the predator functional response is decreased by the presence of toxin in the 
predator. As well, we assume that the predator death rate is toxin dependent, 
and that the ability of the predator to convert prey biomass into its own is also 
toxin dependent. 

The toxin assumptions, in addition to those of the previous section are that 
toxin can enter the predator directly from the environment, or by consumption 
of prey. Toxin may leave the predator out of the system, or it may disperse back 
into the environment. 

Hence if 

x(t) = concentration of the prey biomass 

mass (or volume) of the prey biomass 
= 

mass (or volume) of the total environment 

y(t) = concentration of the predator biomass 

mass (or volume) of the predator biomass 
= 

mass (or volume) of the total environment 

T(t) = concentration of toxin in the environment 

mass (or volume) of toxin in the environment 
that is not in the predator or prey 

= 

mass (or volume) of the total environment 

U(t) -- concentration of toxin in the prey 

mass (or volume) of toxin in the prey 

mass (or volume) of the total environment 
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V(t) = concentration of toxin in the predator 

mass (or volume) of toxin in the predator 

mass (or volume) of the total environment'  

the model becomes 

fO x2 
Yc = r(U)x yp(x, V) 

K(T)  

= y( - q(V) + c( V)p(x, V)) 

J~ = - 6o T -- cq x T  -- ~2yT + ~, 7J x U  + ~272Y V + f ( t )  

g)= - 6 ,  U + ezxT  - 7 , x U -  fl(U)yp(x, V) (3.1) 

f~= - 6 2  v + ~2yT + ~(U)yp(x, V) - ~2yV, 

x(0) = Xo ~> 0, y(0) =yo~>0, r(0) = To>~0, U(0) = k ,  xo, 

V(O) : k2Yo, kl ,  k2 > 0 

and have a similar interpretation as k of the previous section. 
Here p(x, V) is the predator functional response, q(V) is the predator death 

rate, c(V) is the biomass conversion rate, and fi(U) is the toxin transfer function. 
They satisfy the following hypotheses. 

p(0, V) = 0, px(x, V) > 0, pv(x,  V) < 0 

q(O) = qo > O, q'(V) > 0 
(3.2) 

c(O) = Co > O, c '(V) < 0 

/~(o) = 0, /~'(u) > 0. 

Note that since we have not considered any delay effect in our model, it is 
assumed that the changes in population biomass, and toxin transfer through the 
environment to the population in a cyclic manner are instantaneous. It is implied 
that, though the population consists of individuals, the concentration of toxicant 
in them are changed instantaneously through the environmental chain (not from 
one individual to another, and hence the assumptions on fl(U)). 

In the remainder of this section, we consider the same three functional forms 
for f ( t )  as in the previous section. 

3.1 f ( t )  = 0  

In this case, we note that there are at most three equilibria, denoted 
Fo(O, O, O, O, 0), F1(Ko, O, 0, 0, 0) and F(2,~,  O, O, 0). F o and F1 always exist. F 
exists and is globally stable in the positive xy  quadrant if and only if there exists 
2 < K0 = K(0) such that p(2, O) = q(O)/c(O) (Freedman, 1987). Noting that 

T + (.l + l )=  - 6 o T - ~ , U - 6 2 V - ( 1 - r c , ) ~ l x U - ( 1 -  rc2)TzxV <O (3.3) 

then lirn(T + U + V) = 0. Hence if ff exists, it is globally asymptotically stable, 
with respect to the positive orthant. I f  F does not exist, then F~ is globally 
asymptotically stable. F0 is always unstable. 
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3.2 f ( t )  =- Q 

In this case, there are always equilibria of the form F2(0, 0, Q/6o, 0, 0), which is 
unstable, and F(2, 0, T, U, 0) where )7, T, U are determined from the previous 
section. However, the question of whether or not one or more positive equilibria 
of the form F*(x*, y*, T*, U*, V*) exists is not easily answered. In general, one 
would need to show that there exists a positive solution to the system of 
algebraic equations 

FO x 2  
r(U)x yp(x, V) = 0 

K(T)  

- q(V) + c( V)p(x, V) = 0 

- 6 o T  - e l x T  - -  ~ 2 y T  -I- 7rl])IXU Jr- 1r,2Y2yV + Q = 0 

-61  U + eqxT - 7~xU - fl(U)yp(x, V) = 0 

- 6 2  V + e2yT + fl(U)yp(x, U) - 72yV= O. 

In general we are unable to do so. 

(3.4) 

However, we are able to show the existence of F* in two cases and determine 
its stability in one of them. 

Firstly, if F is globally asymptotically stable in x - T - U  space, and unstable 
locally in the y direction, and is furthermore hyperbolic, then using the persis- 
tence results described in Butler, Freedman and Waltman (1986) and in Freed- 
man and So (1985), we can conclude that F* exists, but cannot determine its 
stability. 

The second case is the case that Q is so small, that we may think of system 
(3.4) as a perturbation of the same system with Q = 0. Then we can show the 
existence of F* for sufficiently small Q by the implicit function theorem. 

To this end, let 

H(x, y, T, U, V, Q) = 

r(U)x - rox2/K, (T) - yp(x, V) 
- q(V) + c(V)p(x, v) 

- -6oT -- e lXT - -  ~ 2 y T  + ~lYlXU -~- 7~2~2yV Jr- ( 

--(~1 U -~- ~ I X T  --  y l x U  - fl(U)yp(x, V) 
--62 V + ~2yT + fl(U)yp(x, V) - -  72yV 

(3.5) 

Then H(~, )3, 0, 0, 0, 0) = 0. Hence we would like to determine whether or not 
H(x, y, T, U, V, Q) = 0 can be solved for x, y, T, U, V as function of Q near 
x = 2 ,  y =-)3, T =  U =  V = 0 .  If we let 

x 

w = Y , 

U 
V 

~ =  ~ , 

then the Jacobian matrix Hw 1,,=~.--/~w is computed as 

LO3= L22J 
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where 

11 

/~2 

f ro - 2ro2/Ko -- fip~(2, O) 
c( O)px(Y, o) 

[ro22K'(o0 )/K~ r'(O)20 

- -  60 - -  O~ 1 2 - -  0~2. ~ 

~1 ~ 
e2Y 

032 ..is the 3 x  2 zero matrix. 
det Hw = (det Ll l)(det  L22). 

-P(~'o °)1 

-?pv(~, o) ] 
-q'(O) + c(O)p~(~, o) + c'(O)p(~, o) 

~1 71 2 JT'272Y 1 

--~l ~ -- 61 -- /~'(0)))P( 9~, 0) 0 J ,  
/~'(O)yp(~, 0) -72Y - 6~ 

From the structure of  /tw, we see that 

We can now state and prove our result. 

Theorem 3.1 I f  ff exists, then F* exists for sufficiently small Q > O, and is 
asymptotically stable. 

Proof To show the existence of an equilibrium for small Q,^from the above 
considerations, we need only conclude that det ~//w = (det L~l)(det L22) # 0. 
det Lll = c(O)p(2, O)px(2, 0) > 0. To show that det L22 # 0, we again utilize the 
Gershgorin circles, using columns of  L22. For  the first column, the centre is at 
( - 6 o - e 1 2 - c ~ 2 ~ , 0 )  of  the complex plane, and the radius is 
0~ 1 2 -4- ~2Y < 60 -/- (~1 2 + 0~2y. Hence the circle lies to the left of the imaginary axis. 
Since fl'(0) > 0 and 0 ~< ni ~< 1, i = 1, 2, the same can be said for the other two 
Gershgorin circles. Hence all three eigenvalues of  L22 have negative real parts 
and therefore det L22 # 0. 

Hence, by the implicit function theorem, H(x, y, T, U, V, Q ) =  0 can be 
solved for w as a function of  Q in a neighborhood of w = ~, Q = 0, in the form 

w(Q) = r~ - I2Iwl I?-IoQ + o(Q), (3.6) 

where /~o  = Ho]~_~. We see from (3.5) that 

iOo  / i o =  0 

Since 2 > 0  and 9 > 0 ,  then for Q sufficiently small, x*(Q)>0 and 
y*(Q) > 0. We now wish to show that T*(Q), U*(Q) and V*(Q) are positive as 
well for Q positive and small so that F* will exist. 

From (3.6) we can note that 

tiT* (0) = - ( ~ ,  1)33 
aQ 

_(det f~,l) det ( - 7 , 2  - 6 ,  -- fl'(O)f~p(2, 0) O )  
/~'(O)2p(2, o) - ~ , Y  - 62 

(det Lll)(det  L22) 

Now since the eigenvalues of  i22 are in fact negative, det  L22 < 0. 
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Hence sgn(dT*/dQ)(O) = sgn(712 + 8, + fl'(O)33p(2, 0))(7233 + 82) > 0, i.e. (dT*/ 
dQ)(O) > 0. Similarly, we can show that (dU*/dQ)(O) > 0 and (dV*/dQ)(O) > O. 
Hence T*(Q) = (dT*/dQ)(O)Q + o(Q) > 0 for sufficiently small Q > 0. Similarly 
U*(Q) > 0 and V*(Q) > 0 for small, positive Q and so F* exists~. 

Finally, the stability of F* is the same as the stability of F since only a 
perturbation and not a bifurcation occurs, proving the theorem. 

3.3 f ( t )  = Q + e~p(t), ~p(t + e~) = ~p(t) 

In this case, the analysis is similar to that of Sect. 2.3. If  F* exists when ~ = 0, 
then a periodic solution of small amplitude exists when e is sufficiently small, and 
its stability is the same as that of F* in the hyperbolic case. 

4 Discussion 

In this paper, we have described modes representing the effects of a toxin 
introduced into the environment of single-species and predator-prey systems. The 
single-species growth model is of a modified logistic form. We have allowed for 
a general predator functional response in the predator-prey model. 

We have only considered cases where the toxin at any level will wash out of 
the environment at some rate (perhaps small) whether the toxin is free in the 
environment, or contained within a population. Such an assumption is valid, for 
example, in stream dynamics, lake dynamics, forest dynamics, etc. 

For  each model, we have considered three cases, namely, when there 
is a single introduction of toxin, a constant introduction, and a periodic 
introduction. 

In both models in the case of a single introduction, we have shown that the 
toxin eventually washes out of the environment in its totality. This agrees with 
our intuition. Of course, the time for this to occur could be very long if the 
washout rates are small. 

In the case of a constant influx of toxin, we have shown that the single- 
species population can be expected in many cases to settle down to a steady 
state. We have actually obtained criteria for the asymptotic stability and even the 
global stability for this steady state. We note that as expected, the criteria for 
global stability are more stringent than the criteria for local stability, since the 
former criteria involve inequalities which must be satisfied in a region, and the 
later criteria involve inequalities to be satisfied at one point. 

In the periodic case, we have shown that a small periodic influx of toxin 
induces a periodic behaviour in the population dynamics. This is not surprising 
if one thinks of the toxin as influencing the carrying capacity of the environment. 

In the predator-prey case with constant influx of toxicant, the existence and 
stability of a positive equilibrium in general is an open problem. For  both 
models, the existence of periodic solutions for general period influxes of toxicant 
is also open for discussion. 

Our models can be generalized in obvious ways to food chains and compet- 
itive systems. In particular, the question of reversal of outcome for competitive 
systems due to the presence of toxin is of great interest. These questions are left 
to future research. 
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