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Abstract. We present a rough-cut analysis tool that quickly determines a few potential cost-effective designs at 
the initial design stage of flexible assembly systems (FASs) prior to a detailed analysis such as simulation. It 
uses quantitative methods for selecting and configuring the components of an FAS suitable for medium to high 
volumes of several similar products. The system is organized as a series of assembly stations linked with an automated 
material-handling system moving parts in a unidirectional flow. Each station consists of a single machine or of 
identical parallel machines. The methods exploit the ability of flexible hardware to switch almost instantaneously 
from product to product. Our approach is particularly suitable where the product mix is expected to be stable, 
since we combine the hardware-configuration phase with the task-allocation phase. 

For the required volume of products, we use integer programming to select the number of stations and the 
number of machines at each station and to allocate tasks to stations. We use queueing network analysis, which 
takes into account the mean and variance of processing times among different products to determine the necessary 
capacity of the material-handling system. We iterate between the two analyses to find the combined solution with 
the lowest costs. Work-in-process costs are also included in the analysis. Computational results are presented. 
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I. Introduction 

In this article, we present a methodology for approximate (rough-cut) but fast analysis of 

cost-effective flexible assembly system (FAS) design alternatives over a broad range of param- 

eter values. Rough-cut analysis, quickly determining a few potential FAS designs, can be 

very useful to the designer, especially at the preliminary design stage. After the determina- 
tion of a small number of alternative designs, the designer can proceed to a more detailed 
analysis such as simulation (Suri and Diehl 1987). The proposed methodology consists 

of quantitative methods for selecting and configuring the components of an FAS suitable 
for medium to high volumes of several similar products. 

The FAS is organized as a series of assembly stations linked with an automated material- 
handling system. Each station consists of a single machine or of identical parallel machines, 
usually assembly robots. To accommodate high volume, we avoid circuitous product routing 
to ensure more-or-less straight-line product flow. However, a part bypasses an assembly 
station if no task is performed there. The resulting system allows a clean flow of mixed 

items through the system with little unnecessary capacity. The methods exploit the ability 
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of flexible hardware to switch almost instantaneously from product to product. One example 
for such an FAS is an automated printed circuit board (PCB) assembly system (Gershwin 
et al. 1985). Our approach is particularly suitable where the product mix is expected to 
be stable, since we combine the hardware-configuration phase with the task-allocation phase, 
thereby building in buffer capacity to account for idle time caused by task indivisibility 
only where it is needed. 

We use two analyses in an integrated manner. For the required volume of products, we 
use enumeration and integer programming to select the number of stations and the number 
of machines at each station and to allocate tasks to stations. We use queueing network anal- 
ysis, in which we take into account the fact that producing multiple products simultaneously 
causes usage fluctuations on the various machines by imposing a suitable variance on task 
processing times. The objective of the queueing analysis is to determine the necessary num- 
ber of automated guided vehicles (AGVs) if conveyors are not used, as well as the number of 
pallets and fixtures. We iterate between the two analyses to find the combined solution with 
the lowest costs. Work-in-process costs are included in the analysis if they are significant. 

This is an opportune time to study FASs. Manufacturers of automobiles, electronic com- 
ponents, computers, and electric consumer products are in the process of designing or im- 
plementing FASs because an increasing number of product variations, shorter product life 
cycles, the need to react flexibly to short-term variations of demand, and a highly competi- 
tive market necessitate a more flexible means of production (Owen 1984; Spur et al. 1987). 
More FASs will be installed because they are becoming technically more feasible, they 
are much cheaper than flexible machining systems, and the cost of manual assembly is 
high (Boothroyd 1982; Riley and Yarrow 1983; Owen 1985; Hitz 1987). 

Flexible and powerful design methods using analytical models are therefore needed to 
retain an overview of the complex interdependencies between the various elements of FASs 
and to provide a small number of good design alternatives quickly, to which more detailed 
models such as simulation can be applied. This is because the variety of possible solutions 
increases with the number of functions integrated in FASs, which leads to a high work 
load for the designers (Spur et al. 1985; Suri and Diehl 1985, 1987). Yet there are few 
procedures in the literature that can be used for FAS design. These are reviewed in section 
2. Section 3 describes FASs as considered in this article. Section 4 states the FAS design 
problems under investigation. Section 5 incorporates the two analyses into a systematic 
solution framework. In section 6, a deterministic mathematical formulation and an optimal 
algorithm are presented, followed by computational results. Section 7 describes the stochastic 
analysis (SA) that employs a queueing network method. Section 8 describes a termination 
rule that exploits a monotonic property of the deterministic analysis (DA) and a bounding 
method for the SA. Section 9 reports our computational experience, while our conclusions 
are in section 10. 

2. Literature review 

Browne et al. (1985) present a three-stage design procedure: design planning, detailed design, 
and implementation. Our methodology contributes to their detailed design phase, which 
specifies the type of flexible manufacturing system (FMS) (flexibility, amount of automation, 
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type and capability of material-handling systems), the number of machines, the number 
of pallets, location of machines, type and size of buffers, tooling strategy, control hierarchy, 
and maintenance strategy. Spur et al. (1985, 1987) give a more complete design procedure 
for an FMS using robots. Their procedure is divided into 1) manufacturing system analysis, 
2) determination of basic data, 3) documentation of information, 4) layout planning and 
assessment, 5) decision of economic feasibility, 6) final detailing of the planned system, 
and 7) planning of the system installation. Our methodology contributes to the fourth and 
fifth phases of Spur's scheme. 

The FAS design literature can be divided into three categories, based upon the modeling 
techniques employed. These are simulation, queueing networks, and integer programming. 

Simulation can represent an FAS at any level of detail. However, in the early stages of 
design of complex systems such as FASs, we may understand very little; hence, we may 
not know which aspects of the system to represent in the model and at what level of detail, 
or which to ignore (Graham 1978). It is also very costly and time-consuming to develop, 
validate, and run simulation software for many design alternatives before one good alterna- 
tive is chosen. Further, we cannot tell how good the chosen alternative is because simula- 
tion does not usually provide an optimal solution or benchmark with which the chosen 
alternative can be compared. Several researchers have used simulation to address FMS 
design-related problems. Liu and Sanders (1986) attempt to find optimal buffer sizes and 
the optimal number of pallets for an FAS, maximizing the throughput rate. They use a 
discrete simulation and a gradient-based search technique. Yano et al. (1988) perform a 
simulation study to evaluate design and operating policies for an FAS producing a large 
product with many options, such as automobiles. Given the assignment of assembly tasks 
to stations, their decisions include the number of parallel machines, buffer sizes for base 
parts and subparts at each station, types of buffers (random or sequential, depending on 
whether resequencing of parts is allowed), and policies for dispatching mating subparts 
to the stations. 

Many researchers have used queueing network models to solve FMS design-related prob- 
lems. A Markovian single-class closed queueing network model is commonly used. Vinod 
and Solberg (1985) and Dallery and Frein (1986) study the optimal configuration problem 
in FMSs, in which the decisions are the number of pallets, AGVs, and flexible machines 
at each station, assuming the number of stations and their workloads are known. The ob- 
jective is to minimize the capital and operating costs while meeting product requirements. 
A more general problem is studied by Lee et al. (1989) and Dallery and Stecke (1990), 
where allocation of a total workload among stations is treated as a decision variable as 
well. Shanthikumar and Yao (1987, 1988) study the optimal server allocation problem in 
FMSs, which involves allocation of a given number of flexible machines to stations in order 
to maximize the throughput rate. They assume that the number of stations and pallets as 
well as the workloads of the stations are known. Shanthikumar and Yao (1989) also study 
the allocation of buffer space maximizing the net profit function (total production profits 
minus total buffer allocation costs). On the other hand, Pourbabai (1987) models an FAS 
as a Markovian open queueing network instead of a closed one. His objective is to maxi- 
mize the throughput rate subject to an upper bound on the probability that the sojourn 
time for a part at a station exceeds a given value. Non-Markovian queueing models also 
appear in the literature. Yao and Buzacott (1985), Whitt (1985), and Kamath et al. (1988) 
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develop approximations to queueing networks with general arrival and service time distribu- 
tions, especially to the GI/G/1 queue, and apply them in the analysis of FMSs. All the 
researchers in this category deal with specific decisions, assuming that many other design 
decisions are already known. Also, they neither consider task assignment nor relate machine 
flexibility to their decisions explicitly. 

Researchers have also used integer programming. Whitney and Suri (1985) provide 
computer-aided decision tools that select machine types and parttypes from a large number 
of candidates after a decision is made that FMS technology is viable for a given applica- 
tion. Their objective is to maximize cost savings, relative to a conventional system, subject 
to the following constraints: limit on the total number of machines to be purchased, available 
machine times, and available tool slots. Because of the large size of the problem and nonlinear 
interaction among parts such as tool sharing, they develop a solution procedure that uses 
two heuristic algorithms sequentially. Graves and Redfield (1988) present and illustrate an 
optimization procedure that assigns tasks to workstations and selects assembly equipment 
for each workstation in a multiple-product assembly system. Their objective is to find a 
system that is capable of producing all the products in the desired volumes at minimum 
cost. The system cost includes the fixed capital costs for the assembly equipment and tools 
as well as the variable operating costs for the various workstations. These integer program- 
ming models do not take into account the aspects of material-handling systems and product 
flow, of resource contention and machine idle time, and of random events occurring on 
the assembly floor. 

In addition to these studies, several researchers used hybrid methodologies involving the 
iterative or complementary use of at least two of these modeling techniques. Seliger et 
al. (1984, 1987a, b) developed the MOSYS interactive support system for planning FASs, 
which incorporates queueing networks and simulation. FASs with a wide range of parameters 
can be evaluated by either of these two techniques at different stages of design. Therefore, 
the approach involves trial and error by the designer who interactively works with the sup- 
port system. Liu and Sanders (1988) present a hybrid algorithm that uses a queueing net- 
work model to set the number of pallets in the system; then a discrete simulation and a 
gradient-based search technique is used to set the buffer spacings to obtain the optimal 
system throughput. Bulgak and Sanders (1989) extend their work to more complex FASs 
where the flow of assemblies splits and merges due to repair loops. The methodology pro- 
posed in this article also falls in this category in that it combines queueing networks and 
integer programming. 

3. Flexible assembly systems under study 

An FAS consists of a set of assembly stations and a loading/unloading (L/UL) station con- 
nected by conveyors or AGV paths. A base part of an assembly--for example, a PCB--is 
loaded on a pallet and enters the FAS at the L/UL station. As the pallet is carried by con- 
veyors or AGVs through assembly stations, components are assembled with the base part. 
When all the required components are assembled with the base part, it is carried back 
to the L/UL station and leaves the FAS. 



A LINE-BALANCING STRATEGY FOR DESIGNING FLEXIBLE ASSEMBLY SYSTEMS 95 

The FAS under study has three characteristics. The first characteristic is that the FAS 
is a flow system where a base part enters the system and is processed by a series of stations 
containing flexible machines of type I, followed by a series of stations containing flexible 
machines of type 2, continuing in this manner to completion. A part may bypass one or 
more stations but does not revisit any station. A flow system is common for FASs, since 
a large volume and short task times necessitate the efficiency of a flow system. The flexible 
assembly machines (FAMs) of each type are typically of a particular technology with dif- 
ferent capabilities from the other machine types in the system. For example, in the assembly 
of PCBs, the common ones are single in-line package inserters (SIPs), dual in-line package 
inserters (DIPs), multiform modular inserters (MODIs), and variable center distance insert- 
ers (VCDs), and each type inserts one mechanically distinct type of component (Gershwin 
et al. 1985). Often, there is just one type of FAM. 

The second characteristic is that FAMs, usually robots, have finite work space due to 
their physical configurations. Because a component-feeding mechanism associated with 
each assembly task uses some of the finite work space, we can assign only a finite number 
of tasks to a robot (see figure 1, similar to Groover et al. 1986). We assume that each task 
uses the same amount of the work space. This assumption is realistic when components 
are all of relatively similar sizes (Ammons et al. 1985) or when components are carried 
on a part magazine by an AGV to standardized docking stations installed around robots 
(Ranky 1986). Under this assumption, the finite work space of a robot can be redefined 
as its staging capacity, R, where R specifies the maximum number of tasks that can be 
assigned to the robot. The staging capacity can be used as a measure for machine flexibility, 
since among tasks assigned to a robot, there are negligible setup times between task changes. 
We also assume that components and assembly tools are always available when a base part 
is ready to be assembled at each station. This assumption is realistic, since assembly tools 

Part feeders Assembly fixture / ~ Part feeders 

Figure 1. A robot assembly cell. 
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are less perishable than the cutting tools of FMSs (Hall and Stecke 1986) and computer 
controllers at each station keep track of the inventory levels of components. 

The third characteristic is that the FAS operates in mixed-model lines on which different 
product types are assembled simultaneously with a known mix ratio. Processing a mix 
of parts makes it possible to utilize the machines more fully than otherwise. This is because 
different parts spend different amounts of time at the machines (Akella et al. 1988). These 
production lines can also achieve lower inventory of final products than multiproduct model 
lines, where one product type is produced at a time in a cyclic fashion. In the latter, while 
one product type is being produced, demand for other product types is satisfied from their 
inventories. These advantages are possible because of the flexibility of FAMs: negligible 
setup times between task or product changes. 

We use one aggregate product type to collectively represent the individual product types. 
Precedence diagrams of all the product types are merged and represented as one super- 
precedence diagram for the aggregate product type. For example, in automobile assembly 
lines, which assemble products with a wide range of customer options, each workstation 
is responsible for a subset of the entire population of assembly tasks, and each vehicle 
requires only a subset of the available tasks at each workstation. We further assume that 
this superprecedence diagram is acyclic. For example, we do not allow task 1 to precede 
task 2 in one product type and task 2 to precede task 1 in another product type. This assump- 
tion makes sense for assemblies such as automobiles or PCBs, where the product types 
have similar assembly patterns. This precedence representation is used by Thomopolous 
(1970), Macaskill (1972), Graves and Redfield (1988), and Liu and Sanders (1988) for mixed- 
model production. Task times may differ among the product types. Thus, demand and task 
times for the aggregate product type are specified as the sum of demands and the weighted 
average task times among the product types, respectively. Since different product types 
may require different sets of tasks to be performed at each station, the total time required 
to process a part at the station may differ among product types. The variance of processing 
times between product types is an important input to the design of the material handling 
and buffer capacities, and is considered in stochastic analysis (SA), described in section 6. 
We give the following example for clarification. 

Example. Suppose an FAS produces two product types simultaneously, each of which has 
the same demand per period, say, 100. Product type 1 requires five tasks (1, 2, 3, 4, 6) 
to be assembled in the listed order, and product type 2 requires tasks 1, 2, 5, 6 in the listed 
order. Let the task time for task j be j time units for j = 1 to 6. Then, demand of the 
aggregate product type is 200 per period and the superprecedence diagram and weighted- 
average task time tj are shown in figure 2. Suppose the FAS consists of one type of assem- 
bly machine, which is flexible enough to be capable of performing all six tasks. Let its 
staging capacity R = 4. Suppose we have the following task assignments: tasks 1, 2, 3 
and 4 are assigned to station 1 and tasks 5 and 6 to station 2. Then, average processing 
time (i.e., total time required to process one unit of the aggregate product) at station 1 
is 6.5 time units by summing tl to t4. In reality, however, it is either 10 or 3 time units, 
depending on which product type is processed at station 1. Variance of processing times at 
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tl=l t 2 = 2  ~ t6=6 

M._., / 

ts= 2,5 

Figure 2. An aggregate product type. 

station ! while producing 100 units of each product type is computed as {(10 - 6.5) 2 + 
(3 - 6.5) 2} x 100/200 = 12.25. Note that the average processing time and variance depend 
on product types to be produced simultaneously, their demand levels, and task assignment. 

Notion of the aggregate product is introduced in order to make the proposed methodology 
more tractable. The methodology will provide design alternatives (capacities of machine 
and material-handling resources) that meet the demand of the aggregate product at minimal 
cost with other constraints. Thus, it does not guarantee whether the design alternatives 
can meet demands of individual product types. However, the above aggregation is achieved 
such that when demand of the aggregate product is met, the FAS will have sufficient resource 
capacities required to produce individual product types by their demands. Such aggrega- 
tion can be justified in a rough-cut analysis at the initial design stage, where so many deci- 
sions and parameters are unknown and there is a need to determine a few potential FAS 
designs quickly. 

An FAS having the above three characteristics is depicted in figure 3. 

FAM type 1 

staging capacity R 1 
a set of tasks 
& precedences 

FAM type 2 FAM type 3 

4~ staging capacity R~ ~ staging capacity R 3 
a set of tasks a set of tasks 
& precedences & precedences 

base parts complete assemblies 

Figure 3. Flexible assembly system under study. 
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4. Problem statement 

Given the description of the FAS in the previous section, we now state the problem that 
will be investigated in this article in the following order: basic data available, decisions 
of interest, objective, and constraints. 

Basic Data. We assume that the products to be produced and the types of assembly machines 
have already been selected. The basic data are classified into four groups. 

1. Aggregate Product 
A (super) precedence diagram 
Weighted-average task times 
Demand per period 

2. Assembly Machines 
A sequence of machine types that a part visits 
For each machine type: 

Staging capacity 
Total available processing time (processing capacity) per machine per period 
A set of assembly tasks that it can perform 

3. Material-Handling Systems (MHSs) 
AGVs or conveyors 
Types of pallets and fixtures 
Average transfer time between each pair of stations 

4. Cost Data 
Work-in-process (WIP) inventory cost 
Purchase and maintenance cost for each resource (machines and MHS equipment) 

Design Decisions. Taking the above basic data as input, the problem is to determine the 
following five critical design decisions for the FAS: 

1. The number of stations 
2. Assignment of tasks to stations 
3. The number of parallel assembly machines per station 
4. The number of pallets and fixtures 
5. The number of AGVs (not necessary if conveyors are used instead) 

Objective. The objective of the problem is to minimize the total cost. The total cost is 
the sum of WlP inventory cost, and maintenance and amortized purchased costs for assembly 
machines and material-handling equipment. 
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Constraints. The solution must satisfy the following three types of constraints. 

1. The demand for the aggregate product type must be satisfied 
2. The number of tasks assigned to each station must not exceed the staging capacity 
3. Tasks must be assigned to stations such that precedence relations among the tasks ensure 

that a part does not revisit any station in a flow system 

5. Line-balancing approach to FAS design 

The solution approach we propose to solve the problem is based upon a strategy of balanc- 
ing the average workload per machine. This strategy has been commonly used when design- 
ing traditional manufacturing systems as well as FMSs (Berrada and Stecke 1986). The 
solution approach decomposes the entire decision process into two analyses: deterministic 
analysis (DA) and stochastic analysis (SA). 

DA treats the weighted-average task times as constant to determine the processing capaci- 
ties. It assigns tasks to machines such that the number of assembly machines is minimized, 
the aggregate demand is met, and the average workload per machine is balanced. Given 
decisions from DA, SA takes into account the variance of task times over different products 
in order to determine the material-handling capacities. The objective of SA is to minimize 
the associated resource costs plus the WIP inventory cost, subject to a constraint of meeting 
the demand. 

The solution approach iteratively performs DA and SA as cycle time decreases. Cycle 
time is the average interdeparture time by a completed part from the system. Thus, in order 
to meet the demand d, cycle time must be less than or equal to lid. The reason that cycle 
time below 1/d may be needed is as follows. Variable processing times at stations, a situa- 
tion that results from simultaneous production of different products, can force robots to 
be idle and causes loss of some processing capacities. As the variance increases, this effect 
becomes more significant, Consequently, the FAS may not satisfy demand if it sticks with 
the decisions obtained from DA with cycle time 1/d. To resolve this problem, we need 
to add some slack processing capacity to the FAS. One way to do this in the solution ap- 
proach we propose is to repeat all the analyses with a smaller cycle time. These concepts 
lead to the following methodology (see figure 4): 

A line-balancing methodology for the FAS design 

Step 1. Apply DA with an initial cycle time 1/d. 
Step 2. Apply SA, given the decisions from DA. 
Step 3. One design alternative is obtained at the current cycle time. Check a termination 

condition. If it is not met, reapply DA with a smaller cycle time and go to step 2. 

This methodology generates a set of FAS design alternatives as the cycle time reduces 
from 1/d by trading off machine cost versus cost for other resources and WIP inventories. 
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C <-- C -  

I C <-- 1/d 

Deterministic Analysis 

Stochastic Analysis 

No 

C Stop ) 

�9 minimizes machine cost 
determines processing capacities: 
- the number of stations 
- the number of machines at each station 
- the assignment of tasks to stations 

�9 minimizes cost for material handling 
resource and WIP inventories 

determines material handling capacities: 
- the number of pallets and fixtures, 
- the number of AGVs if required 

Figure 4. A line-balancing methodology for the FAS design. 

One termination condition is introduced in section 8, where experimental results for the 
methodology are presented. The following two sections elaborate DA and SA in order. 

6. Deterministic analysis (DA) 

6.1. Mathematical formulation 

We first focus on a special case of  DA by making two assumptions. The first assumption 
is that all machines in the FAS are of  the same type, which is flexible enough to perform 
all tasks. The second assumption is that an FAS consists of a single line (stations having 
a single machine),  but not of parallel-machine stations. Later, in section 6.3, we will relax 
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Table I. Notation. 

C 
R 
d 
i 

J 
n 

aj 
9 
M 
N 

So 
Si 
Wi 
CN 
CS 
TC 
TH 

Cycle time of the FAS 
Staging capacity of a flexible assembly machine 
Demand of the aggregate product 
Index for stations 
Index for tasks 
The number of tasks in the aggregate product type 
Staging space of task j, set to 1 for j = 1 to n from the assumption of equal staging space 
Weighted average task time of task j for j = 1 to n 
The number of stations in the FAS 
The number of pallets circulating in the FAS 
The number of AGVs if required 
The number of parallel machines at station i for i = 1 to M 

The sum of average task times assigned to station i, i.e., average service time at station i 
Amortized cost for a pallet and fixture, and WIP 
Amortized cost per machine for purchase and maintenance 
Total system cost 
Throughput of the FAS that is estimated from the closed queueing network model 

the assumptions to study more general cases. In that section, we will also address the issue 
of balancing the average workload per machine. First, in table 1, we summarize notation 
that is frequently used. 

DA for FASs assigns tasks to stations, subject to the constraints of cycle time and staging 
capacity. The cycle-time constraint recognizes that the average processing time (the sum 
of average task times) at each station should not exceed a given cycle time. This assures 
that the average interdeparture time by a completed part from the system does not exceed 
the cycle time. The staging-capacity constraint limits the number of tasks that may be assigned 
to a particular station to that of its staging capacity. Task assignments are also constrained 
by precedent requirements among tasks, since a part does not revisit any station in a flow 
system. The objective is to minimize the number of single-machine stations, i.e., the number 
of the flexible machines. 

Thus, the special case of DA can be mathematically stated as 

Problem 1. 

Min M 

subject to 

j = l  
i = 1 . . . . .  M ,  (1) 

aj x,.: _< R, 
j = l  

i = 1 . . . . .  M,  (2) 
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M 

Z Xij = 1, j = 1 . . . . .  n, (3) 
i=1 

X U = 0 or 1, for all i and j ,  (4) 

M M 

Z i Xij < Z i Xik 
i=1 i=1 

when task j must precede task k, (5) 

where Xij is an assignment decision variable that is set to 1 when taskj is assigned to the 
ith station; otherwise, it is set to 0. Constraints (1) and (2) are the cycle-time and staging- 
capacity constraints, respectively. Constraints (3) and (4) are assignment constraints that 
force each task to be assigned to only one station. Constraint (5) models the precedence 
relations among tasks and ensures that a part does not revisit any station in a flow system. 

6 2. Solution procedure for problem 1 

We develop an optimal algorithm for problem 1 by generalizing an optimal algorithm for 
the traditional assembly-line balancing problem (ALBP) for two reasons. Problem 1 without 
constraint (2), that is, problem 1 with R = oo, becomes exactly a traditional ALBE Con- 
straint (2) itself is well structured due to aj = 1, which makes the generalization easy. 
We will name the optimal algorithm for problem 1 as the ALBP for FASs, to contrast with 
the traditional ALBP throughout this article. 

We generalize Johnson's (1988) algorithm for the traditional ALBP for the following three 
reasons. First, experiments with 64 ALBPs used in the literature (Talbot et al. 1986) showed 
that it is the fastest optimal algorithm among those known. Second, it is designed to find 
a good feasible solution very quickly; hence, it can be easily modified to form a good 
heuristic algorithm. Third, it has low memory requirements. 

Johnson's algorithm proceeds by assigning tasks to stations, such that no task is assigned 
to station i before station i - 1 is completely assigned. His algorithm enumerates, either 
explicitly or implicitly, a tree of feasible solutions using a depth-first branch-and-bound 
algorithm. In the tree, every node at levelj corresponds to an assignment of j  tasks among 
the first i stations for some i. Station i may still have capacity for further task assignments, 
in which case we say that there is a fractional number of stations corresponding to this 
node. More precisely, if a fraction fc  of the capacity of station i is used, then the fractional 
number of stations, Mc, for this node is i - 1 + fc. His algorithm forms the tree one 
branch at a time and reaches feasibility quickly in a single path. In order to speed up the 
enumeration process, his algorithm exploits the precedence structure and uses eight fathom- 
ing methods, each of which identifies situations where a node cannot contain a solution 
that is superior to a solution already found. Thus, in executing the tree-generation procedure 
of Johnson's algorithm, a node is fathomed either by explicitly constructing the subtree that 
emanates from the node or by successful application of one of the eight fathoming methods. 
When the latter case occurs, the tree-generation procedure stops constructing the subtree 
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of the node and backtracks to reach another node. This process continues until an entire 
tree of feasible solutions are enumerated. We document below the necessary modifications 
to the algorithm, starting with the tree-generation procedure. 

6. 2.1. Modified tree-generating procedure 

Step 1. Obtain problem data: number of tasks, n; task times, tj; cycle time, C; staging 
space, aj = 1; staging capacity, R; and precedence relations among tasks 

Set the current station number, k = 1. 
Set unused.__Station__k__time to C, 
Set unused__Station__k__space to R. 
Set the newly__selected.__~sk = 1. 
Set the number of tasks currently assigned, p = 0. 

Step 2. Add a task to the current station. 

Assign the newly__selected task to station k. 
Subtract t(newJy_se~cted task~ from unused__Station__k__time. 
Subtract  a(newly__selecte d task) from unused___Station k__space. 
Add 1 to p. 
Record newly__selected___~sk as Task__assignment___p. 
Set backtrack__task = 0. 

If p equals n, go to step 6. 

Step 3. Add another task at station k. 

Task j is selected as the newly__selected.__task, where 

1. Task j is not already assigned; 
2. j > previous newly__selected task; 
3. j > backtrack__task; 
4. tj < unused Station__..k__time; 
5. aj _< unused Station___k__space; and 
6. All required preceding tasks of task j are already assigned to a station. 

If no such task exists and newly__selected task > 0, then apply all eight fathoming 
methods; if the current node is fathomed, go to step 7, otherwise go to step 4. 

If no such task exists and backtrack___task > 0, then go to step 7. 
Apply fathoming methods 4 to 8; if fathomed, repeat step 3 to look for another task. 
Otherwise, task j becomes the newly__selected____~sk. Go to step 2. 

Step 4. Start a new station. 

Add 1 to k. 
Set unused.__Station__k__time to C. 
Set unused__Station___k__space to R. 
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Step 5. Task j is the newly__selected task, where task j is the lowest-numbered task j 
that satisfies 

1. Task j is not already assigned; 
2. All required preceding tasks of task j are already assigned to a station; and 
3. j > backtrack__task. 

If no task exists and p = 0, enumeration is complete. Stop. 
If no task exists and p > 0, go to step 7. 
Apply fathoming methods 5 to 8; if fathomed, repeat step 5 to look for another task. 
Otherwise, go to step 2. 

Step 6. A complete solution has been found. 

Save it as the Incumbent___Solution if it is the first solution, or if it is better than 
the previous Incumbent__.Solution. 

If the number of stations of this Incumbent___Solution equals the lower bound of the 
number of stations, stop with the optimum solution. 

Step 7. Backtrack. 

If unused___Station__k._time = C, reduce k by 1. 
Set backtrack___task = Task___assignment p. 
Remove backtrack__task from station k. 
Increase unused__Station____k__time by t(backtrack___task). 

Increase unus~__._Station__k_._space by a(backtrack__task ). 
Decrease p by 1. 
Set newly__selected__task = 0. 
If unused__Station_k__time < C and unused.___Station.._k__space < R, then go 

to step 3. 
Otherwise, go to step 5. 

The task renumbering procedure and task-duration incrementing rule of Johnson's algo- 
rithrn are not affected by the addition of the staging-capacity constraint (2). This is because 
they exploit only precedence relations and the differences of average task times. 

~2.2. Modified node-fathoming methods. The eight fathoming methods are grouped into 
two parts. Four of the methods employ dominance rules and the other four employ bound 
arguments. We present the modifications of the eight methods that are necessary due to 
the additional constraint (2). 

No modifications are necessary for the first three dominance rules. They are Jackson 
Rule-1 dominance, Jackson Rule-2 dominance, and the first-station dominance. This is true 
since swapping two tasks that are assigned to different stations does not violate the staging- 
capacity constraint due to aj = 1 for all j .  

The fourth dominance rule, which is the labeling-dominance rule, is affected by the gen- 
eralization. This rule employs Schrage and Baker's 0978) labeling scheme, which assigns 
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a numerical label to each task in such a way that the sum of labels of any feasible set of 
tasks is unique. In Johnson's algorithm, a one-dimensional array with an array size of 32,600, 
addressed by the sum of labels, is maintained to store the fractional number of stations 
for each node. For our algorithm, we modify the concept of the fractional number of sta- 
tions. Consider a node in the tree with i stations and letfc and Mc have the same meaning 
as before. LetfR denote the fractional (staging) capacity of station i that is occupied, and 
let MR = i - 1 + fR denote the fractional number of stations occupied in terms of staging 
space requirements for tasks in the node. Our algorithm uses a two-dimensional array with 
an array size of 2 by 32,600. In this array, which is addressed by the sum of labels of tasks 
in the node, two values (Mc, MR) are stored instead of one value Mc only. I f  each of the 
two numbers, M c and MR, associated with a newly formed set is greater than or equal 
to the corresponding number obtained from a previous grouping of the same set of tasks, 
then the node is fathomed. 

In order to make the modified labeling dominance rule more effective, we form pairs 
of elements from this two-dimensional array. Let P~, P2,/3, and P4 be the different nodes 
(i.e., the different groupings) for the same set of tasks such that Pk is generated by the 
tree-generation procedure before Pi, if k < i. Clearly, the nodes have the same label. 
Denote as Mc(Pk) and MR(Pk) the fractional number of stations occupied by node Pk for 
k = 1 to 4 in terms of the task times and staging space, respectively. Suppose that P~ does 
not dominate P2, nor vice versa by this dominance rule; hence, either Mc(P1) < Mc(P2) 
and MR(P 0 > MR(P2) or Mc(PO > Mc(P2) and MR(P1) < MR(P2). Then, these values 
are stored in one pair of the two-dimensional array addressed by this label. When the tree- 
generation procedure generates node P3, the modified labeling-dominance rule executes 
the following logic. If  Mc(Pk) <- Mc(P3) and Me(Pk) < MR(P3) for k = 1 or 2, then node 
P3 is fathomed and the tree-generation procedure backtracks. If  Mc(Pk) >_ Mc(P3) and 
MR(P~) >_ Me(P3) for either k = 1 or 2, then Mc(P3 ) and MR(P3) replace Mc(Pk) and 
Me(P~), respectively. If Mc(Pg) >-- Mc(P3) and MR(Pk) >- Me(P3) for both k = 1 and 2, 
then Mc(P3) and MR(P3) replace Mc(PO and MR(PO, respectively, and memory spaces for 
Mc(Pz) and MR(PE) are left available for P4 if P4 is not fathomed. In any other ease, no 
change takes place in the array. When node P3 is not fathomed, the tree-generation pro- 
cedure constructs a subtree of this node by adding the next task to the node. 

A limitation of the labeling dominance rule is that the sum of labels of feasible sets of 
tasks frequently exceeds the available array space. Therefore, testing is performed only 
for sets of tasks that have a sum of labels less than the selected array size. Throughout 
the experimentation, an array size of 32,600 is used as in Johnson's algorithm. Limiting 
the array size in this way is not perceived to be a major drawback, as Johnson (1988) points 
out, since the greatest power of dynamic programming probably is elimination of nodes 
at the early portion of the tree, which is exactly where the sum of labels is sufficiently small. 

All four bound arguments are modified slightly. Given node P with partial assignments, 
let Bc( j, P) and Be(j, P) for j  = 1 to 4 be thejth bound argument of Johnson's algorithm, 
specifying lower bounds on the number of stations needed to accommodate the task times 
and staging space, respectively, of the remaining tasks. Max j{max{Mc(P) + Bc(j, P), 
Me(P) + Be(j, P)}} is computed at each node and, if it is greater than or equal to the 
number of stations of the incumbent solution, the node is fathomed. 
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63. Extensions 

We studied in the previous section ALBPs for FASs with a single line and one machine 
type. In this section, we consider more general ALBPs for FASs. 

6.3.L Parallel lines. We allow stations to have more than one machine. However, search 
in DA will be confined to parallel lines where the number of parallel machines is identical 
for all stations using the same machine type; search for general configurations is prohibited 
due to its search size unless an FAS uses a very small number of machines. Search for 
parallel lines may lead to a smaller number of flexible machines by finding a better work- 
load balance. This may happen for an FAS with a single line in which staging capacity 
R is sometimes large compared to cycle time C, so that a large portion of R is not used 
up before a new station starts to be filled. Suppose an FAS has np parallel lines. Since 
each of the parallel lines is identical, each line is supposed to produce d/np in order to 
meet demand. This means that the cycle time for each line becomes at most np/d, which 
is np times that of a single line that produces d. Thus, when we let M~' be the minimum 
number of the machines obtained by solving the ALBP with a single line and cycle time 
np/d, the minimum number of the machines for FASs with np parallel lines is M~'times np. 

Algorithm 1 below finds the minimum number of the machines when parallel lines are 
permitted for an FAS. It searches for the optimum number of parallel lines by sequentially 
increasing the number of parallel lines and applying each time the optimal ALBP algorithm 
for FASs with a single line. The algorithm terminates when increasing the number of parallel 
lines cannot lead to a better solution, that is, when the minimum number of machines found 
up to np parallel lines _< (np+  1) • TM where T~t is the theoretical minimum number 
of machines for each line by staging space, which is the rounded-up integer of the sum 
of staging space of tasks divided by staging capacity R. 

Algorithm 1. 

begin 
minimum__no ~ a large positive number; 
np *-- 1; 
terminate ~ false; 
while not (terminate) do 

begin 
solve problem 1 with C specified as np/d 
if Mp • n o < minimum__no then 

begin 
minimum__.no ~ M o • np; 
save task assignments; 
end 

if minimum__no _< (np+  1) • T~t then 
terminate ~- true 

else 
np ~ np + 1; 

end {while} 
end. 
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Since there are usually multiple optimal task assignments for problem 1, we introduce 
a balancing workload procedure that finds among them one that balances average work- 
load per machine. (This is akin to the type II assembly line balancing problem as defined 
by Baybars (1986).) The procedure finds the smallest cycle time for which the optimal solu- 
tion for problem 1 gives the same minimum number of machines. Given the optimal number 
of parallel lines, n~', from algorithm 1, this procedure sequentially decreases the cycle time 
from C = n~/d. The procedure checks if there exists a feasible solution for problem 1 
for a given cycle time and M~. This can be easily done by a variant of the optimal 
algorithm for problem 1. The procedure finds the smallest cycle time when it finds no feasible 
solution for the first time. 

6.3.2. Multiple machine types. Since basic data available (see section 3) include a sequence 
of machine types visited by a part and a set of tasks performed by each machine type, 
we simply apply algorithm 1 followed by the balancing workload procedure to each machine 
type separately. 

6.4. Experimental results 

Experiments were performed on 64 ALBPs assembled by Talbot et al. (1986), which have 
been used in the literature of ALB as a benchmark of comparing different algorithms for 
ALBP. The number of tasks of these problems ranges from 7 to 111. The algorithm was 
coded in FORTRAN and run on an IBM 3090-600, using the VS-opt3 compiler. Each prob- 
lem was run with a three-second time trap. When the run time exceeded three seconds, 
the program stopped executing and printed out the incumbent solution. Twelve different 
staging capacities were used for each of the 64 problems. They were R = 2 to 10, 15, 20, 
and 30. For each R, we collected the following statistics: total CPU time taken to solve 
the 64 problems, the number of the verified optimal solutions found among the 64, and 
the number of problems among the 64 for which the last new incumbent solution was found 
after .1 and .5 seconds of CPU time, respectively. The last two statistics were collected 
to see how quickly the algorithm found a (near) optimal solution. These statistics are sum- 
marized in table 2. Table 2 also includes the statistics for Johnson's algorithm, which was 
shown to be successful for the traditional ALBP (Johnson 1988). 

The total CPU time monotonically increased and then decreased with respect to staging 
capacity, R. The number of the verified optimal solutions monotonically decreased and 
then increased wth respect to R. The interpretation of this monotonic behavior is as follows. 
For small R such as R = 2 and 3, the staging-capacity constraint was more constrained 
than the cycle-time constraint, which made task assignments easy. For 4 < R ___ 10, it 
appeared that one constraint did not dominate the other and both constraints played an 
active role in assigning tasks to stations, whch resulted in more computation time. For 
large R such as R > 10, the cycle-time constraint was more constrained than the staging- 
capacity constraint. At R = 7, the algorithm had the longest CPU time (32.607 seconds) 
and the smallest number of the verified optimal solutions (55 out of 64). This means that 
for nine problems, the tree-generation procedure did not enumerate the entire tree of feasible 
task sequences with the three-second time trap. 
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Table 2. Experiment with the optimal ALB algorithm for FASs. 

Problem Type R Total CPU Time a No. of V. Opt. b LNS > .1 c LNS > .5 a 

Traditional ALB 

ALB for FASs 

0 o  6.309 64 3 1 

2 1.811 64 2 0 
3 5.342 63 1 0 
4 11.931 61 0 0 
5 20.212 59 2 1 
6 20.625 58 3 0 
7 32.607 55 4 2 
8 28.694 56 5 2 
9 25.537 57 5 2 

10 15.820 60 3 1 
15 7.077 63 4 1 
20 6.907 63 3 1 
30 6.902 63 3 1 

aTotal CPU time: CPU time in seconds to solve the 64 ALB problems on IBM 3600-600, with a three-second 
time trap for each problem, using the FORTRAN VS-opt3 compiler. 
bNo. of V. Opt.: the number of problems among 64 for which the verified optimal solutions were found by the 
optimal algorithm with a three-second time trap. 
CLNS > .1: the number of problems among 64 for which the last new incumbent solution was found after .1 
CPU seconds. 
~LNS > .5: the same as "LNS > .1" except .5 CPU seconds instead of .1. 

The last two columns of  table 2 show that there were at most five (two) problems for 
which the last new incumbent solution was found after .1 (.5) second. This means that 
the algorithm found an optimal solution very quickly and most computation time was spent 
to verify its optimality by enumerating the tree and showing that there was no better solu- 
tion. Thus, it is possible that the optimal algorithm with a small time trap can be used 
as a good heuristic. 

We also solved one example to demonstrate the ALBP algorithm for FASs with parallel 
lines and multiple machine types. In the example, a part is processed first by machine type 
1 and then by machine type 2. We used Sawyer's 30-task ALBP (1970) and Kilbridge and 
Wester's 45-task ALBP (1961) to characterize the group of  tasks processed by machine type 
1 and 2, respectively. 1 The staging capacities of the two machine types were specified as 
R 1 = 20 and R2 = 15, and cycle time C as 54 seconds. The theoretical minimum number 
of machines per line was found to be two for machine type 1 and three for machine type 
2. Algorithm 1 was applied to each group of  tasks. The results are summarized in table 3. 

Table 3 shows that the smallest number of machines required for the FAS is six type-1 
machines that are configured as two or three parallel  lines, and ten type-2 machines that 
are configured as one or  two parallel  lines. When there are multiple optimal solutions, we 
choose one with a larger number of  parallel  lines, since an FAS with more parallel lines 
is more reliable and has the smaller number of stations visited by a part, which subsequently 
requires a smaller number of material-handling operations. Hence, in this example, the 
FAS is configured as two stations, each with three parallel  machines of type 1, which are 
followed by five stations, each with two parallel machines of  type 2. This FAS is depicted 
in figure 5. In order to find a solution that balances average workload among solutions 



A LINE-BALANCING STRATEGY FOR DESIGNING FLEXIBLE ASSEMBLY SYSTEMS 109 

Table 3. Deterministic analysis for the FAS with parallel lines and two machine types, 

Machine Type 

Number of Minimum Number of Total Number of The Smallest Cycle 
Parallel L ines  Machines per Line Machines Time at M~ 

% M~ np x M~ c :  

1 1 7 7 b 
2 3 6 b 
3 2 6 162 

2 1 10 10 b 
2 5 10 106 
3 4 12 b 

aThe required cycle time 
bNot computed, since the 
parallel lines. 

is 54 for a single line. 
balancing workload procedure was applied to only the optimum solution with more 
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Figure 5. An example for deterministic analysis: an FAS with two machine types. 

having this configuration, the balancing workload procedure was applied to np = 3 of 
machine type 1 and np = 2 of  machine type 2, and the smallest cycle time was recorded 
in the last column of  table 3. Note that two seconds were reduced for np = 2 of  machine 
type 2. 

7.  S tochas t i c  ana lys i s  (SA)  

DA balances average workload per machine for a given cycle time C by determining task 
assignment to stations and the number of  parallel machines at each station, with the objec- 
tive of  minimizing the machine cost only. SA complements DA by taking into account 
the variance of  task times over different products. Taking the decisions from DA as input, 
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SA determines material-handling capacities. The objective is to minimize the WIP inven- 
tory cost plus the associated resource costs subject to a constraint of meeting the aggregate 
demand. 

In order to build a model representing the FAS, we need to describe the dispatch policy 
that controls the release of base parts into the FAS. The dispatch policy under consideration 
releases a pallet containing a base part into the system when a pallet containing a complete 
assembly arrives at the L/UL station and leaves the system. This is the case when a base 
part is fixtured on a pallet outside the system and waits for a pallet containing a completed 
assembly to arrive at the L/UL station. At this point, the two pallets are exchanged by 
a human worker or automated pallet changer. Thus, under this policy a constant number 
of pallets and fixtures (and a constant WIP of base parts) perpetually circulate in the system. 
This policy has been widely used in the literature on FMSs (Solberg 1977; Stecke and Solberg 
1985; Kamath et al. 1988). One reason for this is that it seems natural to regard the number 
of jobs in the system as the independent variable and the production rate of the system 
as the dependent variable (Whitt 1984). The number of jobs in the system is often subject 
to control. For example, in production systems, new jobs usually do not arrive at random; 
they are scheduled. 

The FAS using this dispatch policy can be modeled as a single-class closed queueing 
network (CQN). We assume that service time at each station is exponentially distributed 
and that each station has sufficient buffer spaces such that the effect of buffer blocking 
on the production rate of FASs is negligible. No buffer blocking occurs when each station 
has N buffer spaces or more. With these two assumptions, we have a product-form CQN 
model for the FAS from which several performance measures can be computed exactly. 
A performance measure of particular interest to us is the throughput, which is defined 
as the number of pallets containing complete assemblies that leave the system per period. 
When the throughput is greater than or equal to the demand per period, we consider the 
FAS to be capable of meeting demand. 

This product-form CQN model has been successful and widely used for effective represen- 
tation of several practical systems, such as computer and communication systems and FMSs, 
despite the fact that the underlying assumptions are often seriously violated by real systems 
(Kleinrock 1976; Solberg 1977; Spragins 1980; Hildebrant 1981). Denning and Buzen (1978) 
explain this phenomenon using the concept of operational analysis. Suri (1983) provides 
a theoretical explanation that the main performance measures of the model, particularly 
throughput and utilization, are very robust to violations in the Markovian assumptions. 
In addition, readers can refer to Stecke and Solberg (1985) for more references for justifica- 
tions and validations of the model. 

The large variance of service time imposed by the exponential service time assumption 
can be justified in two ways for the FAS. First, the FAS assembles multiple products simul- 
taneously, each of which may require a different set of tasks to be performed at an assembly 
station (see the example in section 3). Second, there are random perturbations affecting the 
system. These include machine tool jams, which occur when a machine jams while trying 
to insert a component. This small but regular disturbance (approximately once every 100 
insertions in PCB assembly) can be modeled as part of the task time (Akella et al. 1988). 
The assumption of sufficient buffer spaces can be also justified to the PCB assembly system 
considered by Akella et al. (1988) where about 30 buffer spaces are available at each station. 
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The throughput per period, denoted as TH,  is computed as a function of the following 
eight parameters: 1) the number of stations M, 2) the number of pallets N, 3) average trans- 
fer time between two stations T, 4) the number of AGVs So if required, 5) server vector 

= ($1, Sz, �9 �9  SM) where S i is the number of parallel machines at station i, 6) service 
time vector W = (W~, I411, . . . ,  W~t) where W/is the sum of average task times assigned 
to station i, 7) processing capacity vector P = (P~, P2, . . . ,  PM) where Pi is the total avail- 
able processing time of a machine at station i per period, and 8) the total available handling 
time of an MHS (AGV or conveyor) per period Po. Note that T, I i, W, and Po have a com- 
mon time unit. After solving DA for a cycle time, we have M, S, and W given. For exam- 
ple, for the FAS with two machine types in figure 5, we have M = 7 and Si = 3 for i 
= 1 to 2 for the first two stations of machine type 1, and Si = 2 for i = 3 to 7 for the 
following five stations of machine type 2. 

Therefore, SA can be mathematically stated as follows. 

Problem 2 

Min z(N, So) 

subject to 

TH(M, S, "~, 1 ~, Po, T; N, So) --- d (6) 

where z is any increasing cost function with respect to N and S o. Letting Wo be the work- 
load of MHSs required to produce one unit, we have 141o = (M + 1)T, since there are 
M + 1 stations including the L/UL station. Then, TH of equation (6) can be written below, 
using the central-server CQN model (Stecke and Solberg 1985) where the central server 
represents MHSs and is referred to as station 0. W denote #i = Pi/Wi where/zi is a service 
rate per period by a server at station i for i = 0 to M. For convenience, we omit some 
obvious notation. 

TH(N) - G ( N -  1) 
G ( N )  (7) 

where G ( N )  denotes the normalizing constant and is defined as 

M n i 

c(u  -- E II II 
n o + . . + n M = N  i=0 j=0 

(8) 

when n i is a nonnegative integer for i = 0 to M and f ( j )  is given as 

f ( j )  = 1 f o r j  = 0, 

= [Ui" min(j,  Si)] -1  fo r  j > 0. (9) 
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The throughput TH(N) can be computed using efficient algorithms such as the convolution 
algorithm (Buzen 1973) or the mean value analysis (MVA) algorithm (Reiser and Lavenberg 
1980). TH(N) is approximate when MHSs are pick-and-drop AGVs 2 (i.e., So < N), since 
the central-server CQN does not explicitly model contention of finished parts at stations 
over idle pick-and-drop AGVs to be delivered to the next stations. On the other hand, when 
MHSs are conveyors or stop-and-go AGVs 3 (i.e., So = N), TH(N) is exact, since transfer 
time between two adjacent stations can be represented as a delay node and all the delay 
nodes (M + 1 nodes) can be exactly consolidated into one delay node (Posner and Bernholtz 
1968). This delay node corresponds to station 0 of the central-server CQN model. 

An algorithm to solve problem 2 can be easily developed using the property of the 
throughput by Shanthikumar and Yao (1987, 1988): TH is increasing and concave in N and 
So, respectively. Problem 2 is a special case of the problem studied by Vinod and Solberg 
(1985) and Dallery and Frein (1986), where decision variables are not only N and So but 
also S. Their algorithms can be directly applied to solve problem 2. 

We now briefly discuss how the proposed methodology can be extended to handle FASs 
with more complex topologies that allow splitting and merging of the flow of the assemblies 
due to repair loops for defective parts. For example, after a base part is completely proc- 
essed at an assembly station, it is inspected and a defective part is sent to a repair station 
before it is sent to the next assembly station. Suppose that we are given defective ratio p 
and exponential repair time with average repair time z for the repair station. We want to 
determine the number of servers at the repair station as well. Using station index M + 1 
for the repair station, we have average workload WM+I = p r  at the repair station. The 
product-form CQN model is still a valid representation for this FAS. Then SA is solved 
with the additional decision variable SM+I using algorithms by Vinod and Solberg (1985) 
or Dallery and Frein (1986). As the number of repair stations increase, it takes more time 
to solve SA due to the increasing number of decision variables. One difficulty for this ap- 
proach is that the defective ratio and repair time depend on a set of tasks performed at 
the assembly station and have to be estimated each time after DA is solved. FASs with 
feedback loops (or feedforward loops) are more challenging. For such FASs, the balanced 
workloads obtained from DA may not be achievable, since a part can be processed more 
than once in a station (or can skip a station). These issues are left for future research. 

8. Monotonic behavior of the methodology 

The line-balancing methodology generates a set of FAS design alternatives as the cycle time 
reduces from 1/d by trading off machine cost versus cost for other resources and WIP inven- 
tories. There is some evidence that this tradeoff behaves nicely. First, the following lemma 
states the monotonic behavior of the number of machines with respect to the cycle time. 

Lemma 1. The number of machines obtained by DA is nondecreasing for each machine 
type as the cycle time C decreases from 1M. 

Proof. Without any loss of generality, we fix a machine type arbitrarily and show that the 
lernma holds true. Let C1 and C2 be two cycle times such that (72 > C1. Suppose DA is 
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applied with each cycle time. Let M~(Ck) and n~(C k) for k = 1 and 2 be the optimal 
number of stations and the optimal number of parallel lines obtained from DA with Ck, 
respectively. Clearly, the optimal task assignment from DA &ith C~ is feasible to DA with 
C2, that is, feasible to problem 1 with M~(CO and C = n~(C~) • C2. This is because 
n~(Cl) • C2 > n~(CO • C~ and other constraints of problem 1 are still met by the task 
assignment. Thus, the lemma follows directly. 

Second, it appears that cost for material handling and WIP inventories also has a mono- 
tonic behavior with respect to the cycle time. When the cycle time is very small, the FAS 
is provided ample processing capacities and DA assigns many machines to the FAS. As 
a result, an arriving part seldom waits to be served, and the cost for material handling 
or WIP inventories can be minimal. In the other extreme case, when the cycle time is set 
to the initial value 1/d, utilization must be near 1 to meet demand for some stations whose 
average service times are close to 1/d. This will cause a long queue of parts in front of the 
stations, and the associated cost for material handling and WlP inventory will be maximal. 

We now give one termination condition for the methodology. From lemma 1, we know 
that the resource cost for machines from DA is nondecreasing as the cycle time decreases. 
We also obtain lower bounds of the number of pallets and AGVs for SA using the asymp- 
totic bound analysis (Muntz and Wong 1974). Subsequently, these bounds provide the lower 
bound of cost for those resources and WIP inventories. At a particular cycle time, if the 
cost of the incumbent solution is less than or equal to the sum of machine cost from DA 
at the cycle time and the lower bound of the cost for SA, then the methodology terminates, 
since it cannot find a better solution for any smaller cycle time. 

9. Experiments with the line-balancing methodology 

We conducted a number of experiments for the line-balancing methodology. The methodol- 
ogy was coded in FORTRAN and run on IBM 3090-600. The two-second time trap was 
used each time problem 1 was solved in DA. We set the size of cycle-time reduction,/~, 
to one time unit, since we used integer-valued task times. 

We used the following parameter values for the aggregate product. We experimented with 
two demand levels for a period: d = 100 and 300. The number of tasks was set to n = 100. 
Task times were randomly generated from a discrete uniform distribution ranging from 
1 to 10. The precedences between tasks was also randomly generated using a density param- 
eter that was defined as the ratio of a number of present precedent arcs to the total number 
of possible precedent arcs, i.e., (~).  Each arc was equally likely. We experimented with 
two density values, 0.1 and 0.5. A graph with a higher density was generated by adding 
arcs to a graph with a lower density until the desired density was reached. Redundant prece- 
dent arcs are counted in the density computation. 

We used the following parameter values for the resources. We considered an FAS with 
one machine type. Its staging capacity was specified as R = 30, which was used by Ammons 
et al. (1985) for a PCB assembly system manufacturing computers. The available processing 
(handling) time of each machine (MHS) was given as 10,000/period and the average transfer 
time between two stations was given as 20, about average processing time for four tasks. 
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We assumed that conveyors or stop-and-go AGVs were in use to move pallets between sta- 
tions. This is realistic because in an FAS with high demand and short task times, an AGV 
is unlikely to drop the pallet off and then go and service other material-handling require- 
ments (Hall and Stecke 1986). We had the total system cost specified as the following linear 
function: 

M 

TC = C s •  + Cu • N 
i=1 

where C s is resource cost per machine and CN is the sum of cost for one WIP inventory 
and resource cost for one AGV (if required), one pallet, and one fixture. We experimented 
with three sets of (Cs, CN): (2000, 50), (2000, 400), and (2000, 1200). Note that since 
the total cost function is linear, the ratio of Cs to CN only counts. 

Experimental results for two replications are summarized in tables 4 and 5. For each 
problem, the following statistics are recorded: the best solution (M, N, (Si)) found, its total 
cost (TC) and throughput TH, the number of times that the two analyses (DA and SA) 
were solved, and total CPU time taken. The assignment of tasks to stations were not shown 
for simplicity. All the solutions listed in both tables were verified to be the optimum, since 
problem 1 was successfully solved each time before the two-second time trap expired. 

When demand d increased from 100 to 300, more machines and material-handling equip- 
ment were needed, as expected. The solutions obtained were insensitive to the density of 
the graph except that CPU time slightly increased for the higher density. Within each replica- 
tion, the solutions were identical for the two densities. One possible interpretation for this 
insensitivity is that the staging capacity (R = 30) is large enough so that additional prece- 
dent arcs do not have an adverse effect on the assignment of tasks to stations. As Cjv in- 
creased from 50, the number of pallets N decreased and the total number of machines, 
M times S~, increased in order to look for a better tradeoff between the two cost terms 
in the linear function. 

Table 4. Experiment with the line-balancing methodology: replication 1 with R = 30. 

Problem Solution Total Cost Throughput Number of CPU Time 
(d, density, C s, CN) M, N, (S 0 TC TH Analyses (sec.) 

(100, 0.1, 2000, 50) 7, 32, (1) 15,600 100.2 3 1.4 
(100, 0.1, 2000, 400) 4, 11, (2) 20,400 100.4 4 1.6 
(100, 0.1, 2000, 1200) 4, 11, (2) 29,200 100.4 5 2.0 
(100, 0.5, 2000, 50) 7, 32, (1) 15,600 100.2 3 3.1 
(100, 0.5, 2000, 400) 4, 11, (2) 20,400 100.4 4 3.8 
(100, 0.5, 2000, 1200) 4, 11, (2) 29,200 100.4 5 5.0 
(300, 0.1, 2000, 50) 4, 34, (5) 41,700 301.2 4 2.5 
(300, 0.1, 2000, 400) 4, 34, (5) 53,600 301.2 5 2.7 
(300, 0.1, 2000, 1200) 4, 34, (5) 80,800 301.2 5 2.8 
(300, 0.5, 2000, 50) 4, 34, (5) 41,700 301.2 4 4.3 
(300, 0.5, 2000, 400) 4, 34, (5) 53,600 301.2 5 4.9 
(300, 0.5, 2000, 1200) 4, 34, (5) 80,800 301.2 5 4.9 
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Table 5. Experiment with the line-balancing methodology: replication 2 with R = 30. 

Problem Solution Total Cost Throughput Number of CPU Time 
(d, density, Cs, CN) M, N, (Si) TC TH Analyses (sec.) 

(100, 0.1, 2000, 50) 6, 63, (1) 15,150 100.1 3 1.2 
(100, 0.1, 2000, 400) 4, 10, (2) 20,000 101.6 4 1.5 
(100, 0.1, 2000, 1200) 4, 10, (2) 28,000 101.6 5 1.8 
(100, 0,5, 2000, 50) 6, 63, (1) 15,150 100.1 3 2.6 
(100, 0.5, 2000, 400) 4, 10, (2) 20,000 101.6 4 3.4 
(100, 0.5, 2000, 1200) 4, 10, (2) 28,000 101.6 5 4.2 
(300, 0.1, 2000, 50) 6, 72, (3) 39,600 300. l 4 2.1 
(300, 0.1, 2000, 400) 4, 28, (5) 51,200 302.2 6 2.5 
(300, 0.1, 2000, 1200) 4, 28, (5) 73,600 302.2 7 2.7 
(300, 0.5, 2000, 50) 6, 72, (3) 39,600 300.1 4 3.6 
(300, 0.5, 2000, 400) 4, 28, (5) 51,200 302.2 6 4.9 
(300, 0.5, 2000, 1200) 4, 28, (5) 73,600 302.2 7 5.4 

We also conducted experiments to see the effect of machine flexibility on the solution 
obtained by the methodology. We considered another type of FAM that can perform all 
the tasks with the same speed but is less flexible and less expensive. This machine type 
is capable of processing only up to ten tasks simultaneously, i.e., its staging capacity is 10. 
We used C s = 1500. The rest of the problem parameters remain unchanged. The metho- 
dology was reapplied, and experimental results are summarized in tables 6 and 7. 

For R = 10, the FAS needs at least ten stations to accommodate 100 tasks, compared 
to four stations for R = 30. Machines spread over the larger number of  stations, which 
leads to the smaller number of parallel machines. A part needs to visit more stations, which 
leads to more material-handling operations and subsequently larger cost for the MHS. This 
becomes evident for larger C s .  When C s = 1200, the solutions with R = 10 cost more 
than their counterparts with R = 30, except for one case (see table 6). However, this disad- 
vantage is somewhat offset at larger demand, since larger demand requires more machines 

Table 6 Experiment with the line-balancing methodology: replication 1 with R = 10. 

Problem Solution Total Cost Throughput Number of CPU Time 
(d, density, Cs, CN) M, N, (Si) TC TH Analyses (sec.) 

(100, 0.1, 1500, 50) 10, 15, (1) 15,750 100.5 2 1.3 
(100, 0.1, 1500, 400) 10, 15, (1) 21,000 100.5 3 1.4 
(100, 0.1, 1500, 1200) 10, 15, (1) 33,000 100.5 6 1.7 
(100, 0.5, 1500, 50) 10, 16, (1) 15,800 100.1 2 1.5 
(100, 0.5, 1500, 400) 10, 16, (1) 21,400 100.1 3 2.1 
(100, 0.5, 1500, 1200) 11, 14, (1) 33,300 100.5 6 3.3 
(300, 0.1, 1500, 50) 10, 75, (2) 33,750 a 300.4 5 3.7 
(300, 0.1, 1500, 400) 12, 43, (2) 53,200 a 301.1 10 4.6 
(300, 0.1, 1500, 1200) 10, 28, (3) 78,600 a 301.7 13 5.5 
(300, 0.5, 1500, 50) 11, 54, (2) 35,700 a 300.4 6 8.4 
(300, 0.5, 1500, 400) 12, 43, (2) 53,200 a 300.5 11 11.1 
(300, 0.5, 1500, 1200) 13, 39, (2) 85,800 301.7 15 13.0 

aThis solution costs less than its counterpart with R = 30 in table 4. 
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Table 7. Experiment with the line-balancing methodology: replication 2 with R = 10. 

Problem Solution Total C o s t  Throughput Number of CPU Time 
(d, density, Cs, CN) M, N, (Si) TC TH Analyses (sec.) 

(100, 0.1, 1500, 50) 10, 14, (1) 15,700 101.8 2 0.6 
(100, 0.1, 1500, 400) 10, 14, (1) 20,600 101.8 3 0.7 
(100, 0.1, 1500, 1200) 10, 14, (1) 31,800 101.8 6 1.0 
(100, 0.5, 1500, 50) 10, 14, (1) 15,700 101.5 2 1.4 
(100, 0.5, 1500, 400) 10, 14, (1) 20,600 101.5 3 1.8 
(100, 0.5, 1500, 1200) 10, 14, (1) 31,800 101.5 6 2.8 
(300, 0.1, 1500, 50) 10, 56, (2) 32,800 a 300.0 5 4.1 
(300, 0.1, 1500, 400) 11, 44, (2) 50,600 a 301.5 9 4.6 
(300, 0.1, 1500, 1200) 10, 27, (3) 77,400 306.8 14 6.2 
(300, 0.5, 1500, 50) 11, 44, (2) 35,200 a 301.1 7 8.6 
(300, 0.5, 1500, 400) 11, 44, (2) 50,600 a 301.1 10 11.4 
(300, 0.5, 1500, 1200) 12, 28, (2) 81,600 300.4 13 12.7 

aThis solution costs less than its counterpart with R = 30 in table 5. 

and since a machine with R = 10 costs 500 less than the other. When demand d = 300, 
more than half  of  the solutions with R = 10 cost less than their counterparts (see the foot- 

note in tables 6 and 7). On the other hand, when d = 100, all the solutions with R = 10 
cost more than their counterparts. It is important to mention that in this comparative study 
between two machine types, we did not take into account other design factors such as reli- 

ability or routing flexibility for which the solutions with R = 30 are much favored over 
their counterparts. 

These experimental results show that the proposed methodology provides a small number 
of cost-effective design alternatives quickly over a broad range of  parameter  values. For 
all the problems tested, no more than 15 seconds of CPU time was required to find the 

verified optimal solutions on an IBM 3090-600. 

10. Conclusions 

In this article, we presented a methodology to design an FAS, organized as a flow system, 
in which different products are assembled simultaneously. This methodology uses two ana- 
lytical models (integer programming and queueing network) and addresses five critical design 
decisions in an integrated manner. These decisions are the number of  stations, the number 
of parallel machines at each station, task assignment to stations, the number of AGVs (if  
required), and the number of pallets and fixtures. Common approaches addressing these 
design issues rely on simulation, which is very time-consuming and costly when many 
alternatives must be evaluated at the early stages of  design. Other approaches using analytical 
methods often ignore material-handling issues, or address only isolated issues, assuming 
that other decisions are already given. Through a large number of experiments, we demon- 
strated that the methodology indeed meets our research objective of providing a small number 
of cost-effective designs quickly under a broad range of parameter values. The methodology 
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enables us to quantitatively evaluate the effect of machine flexibility on the design alterna- 
tive where machine flexibility is measured as the number of tasks that can be processed 
with negligible setup times between task changes. 

The methodology is based on a strategy of balancing average workload per machine that 
is commonly used when designing traditional manufacturing systems as well as FMSs. The 
methodology takes the form of an iterative procedure that repeatedly solves deterministic 
and stochastic analyses as the cycle time decreases. DA balances the average workload among 
machines while SA takes into account the variance of processing times. The methodology 
generates a set of FAS design alternatives with respect to the cycle time by trading off machine 
cost versus cost for other resources and WIP inventories. We also showed some evidence 
that this tradeoff behaves nicely. 

For DA, we presented an optimal algorithm for solving the ALBP for FASs. The optimal 
algorithm generalized Johnson's algorithm for the traditional ALBP, based on the justifica- 
tions given earlier. The computational results showed that the algorithm with a three-second 
time trap found from 55 to 64 verified optimal solutions among 64 ALBPs, depending 
on the staging capacity, and that computation time is sensitive to the value of the staging 
capacity. The results also showed that the optimal algorithm found a (near) optimal solution 
very quickly; hence, the optimal algorithm with a small time trap such as .1 CPU seconds 
for about 100 tasks can be used as a good heuristic. Search in DA was confined to only 
balanced configurations in which the number of machines is identical among stations using 
the same machine type. This search may be rigid and may need to include unbalanced 
configurations in future research. 

For SA, we used a single-class product-form CQN model to represent the FAS from 
which the throughput of the FAS was estimated. With some of CQN parameters specified 
from DA, SA determines design decisions for material-handling resources. In future re- 
search, we can use a more realistic queueing model. For example, in FASs assembling 
PCBs, the mean time between failures for insertion robots is of the order of ten hours, 
while the mean time to repair the machines is approximately an hour (Akella et al. 1988). 
Our CQN does not explicitly model this phenomenon. For this purpose, SA can use Vinod 
and Sabbagh's (1986) approximation method to compute the throughput of an FAS. SA can 
also incorporate other job-dispatch policies to the FAS. This necessitates other means of 
estimating the throughput of the FAS (Shanthikumar and Stecke 1986), but the rest of the 
methodology remains unaffected. One step further, SA can be interfaced to simulation for 
detailed analysis or to address other design decisions such as buffer size selection and sub- 
part delivery policies (Ho et al. 1984; Liu and Sanders 1988; Yano et al. 1988). In addi- 
tion, we briefly discussed, in the SA section, extensions and difficulties of the methodology 
to design FASs with more complex topologies such as repair loops. These issues are also 
left for future research. 
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Notes 

1. We changed one task duration among Kilbridge and Wester's 45 tasks from 55 seconds to 30, since no task 
duration can be longer than the cycle time, 54 seconds. 

2. A pick-and-drop AGV delivers a pallet to a station, and then leaves for another station to serve other material- 
handling requests before it has to return to the same station to pick up the pallet. 

3. A stop-and-go AGV is dedicated to each pallet from start of the assembly to the finish. 
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