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Abstract. Components and processes in the aquatic microbial loop are com- 
pared with the composition and functioning of the soil microbial loop. Relative 
to their bacterial and/or fungal food sources, many of the soil water-film fauna 
(e.g., protozoa, nematodes) are conspicuous by low biomasses and high turn- 
over rates of carbon and mineral nutrients. Comparisons with production and 
turnover rates of aerial (pore-inhabiting) fauna are made, and the highly patchy 
nature of soil microhabitats is shown to be similar to that of aquatic (marine) 
habitats. 

My principal objectives are to compare and contrast the concept of the microbial 
loop in aquatic ecosystems (e.g., Sherr and Sherr [20] and Bratbak et al. [2]) with 
the microbial loop as it has been used in soil ecology studies. As described by Sherr 
and Sherr [20], the structure of the microbial loop in aquatic systems was set forth 
in early papers of Larry Pomeroy relating to the ocean's food web. I suggest that 
Pomeroy has had an even more marked impact on an appreciation of the incredible 
diversity of microbial interactions, which occur in all ecosystems, as was discussed 
in his earlier seminal paper [17]. Turnover rates in seven different ecosystems, 
ranging from the rumen to coral reefs, forests, and oceanic plankton, were com- 
pared. Pomeroy noted that one needs to consider the turnover times of available 
versus total biomass of essential elements when considering the fate of standing 
stocks of principal nutrients, such as nitrogen and phosphorus. 

This Pomeroy paper [17] is one of the earliest to make the case for the major 
influences of protozoa as one of the principal microbial grazers in all terrestrial 
systems. Numerous other authors have come along in the 24 years since this 
landmark paper and tested their ideas against his early suppositions and suggestions 
for future work. Interestingly, but not surprisingly, the roles of microfauna and 
microbial turnover rates and patterns are still honored more in the breach than in 
mainstream practice. The following is a brief historical perspective on studies of 
soil protozoa. 

Studies of the effects of protozoa date from the early work of Russell and 
Hutchinson [18], who performed partial-sterilization experiments to see if they 
could mimic the putative effects of protozoan grazing. Are protoza feeding so 
heavily on bacteria that they significantly affect soil health? This struck a respon- 
sive chord, resulting in studies carried out in virtually every decade of this century 
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[6, 8, 10, 14, 22-24], showing the impacts of protozoa on bacterial and fungal 
production and nutrient remineralization. The general consensus is that protozoan 
grazing stimulates mineralization, with subsequent plant uptake of N enhanced by 
ca. 15-20% over control systems that lack protozoa. 

Raoul Franc6, a German sociologist, made analogies between aquatic plankton 
and the small and medium-sized organisms in the soil, which he termed "Das 
Edaphon" [12]. This euphonious term was appealing, and gave a feeling of synon- 
ymy between systems, but did not, however, lead to any insightful experiments. 
Ironically, John Stout, a pioneer soil protozoologist in New Zealand derived inde- 
pendently the terrestrial plankton concept [21]. Stout noted the considerable 
amount of water present in water films, and suggested that at least part of the 
available energy of the system is released in the form of soluble nutrients from 
frass, honey dew, or other products of phytophagous arthropods, and from dead 
plant litter. An additional significant source of these labile compounds comes from 
rhizosphere exudates and exfoliates as well [5]. Stout makes the prescient state- 
ment: "It is this pool of soluble nutrients which constitutes the main substrate of 
microbial proliferation, supports the terrestrial plankton, and which directly or 
indirectly provides the basic nutrients of the great majority of soil animals" [20] 
(Fig. 1). Stout included the following biota in the terrestrial nannoplankton: zymog- 
enous microflora (bacteria and yeasts), microfauna (herbivores), including proto- 
zoa, rotifers, nematodes, copepods, and microdrili such as enchytraeids, and mi- 
crofauna (predators) (Fig. 1, [21]). 

The biochemical competence of the soil protozoan fauna should be considered as 
well. A constitutive bacteriolytic enzyme, a hexosaminidase, was isolated from a 
culture containing Acanthamoeba castellanii (Drozanski, 1972, cited by [19]). 
Indeed soil amoebae with chitinase and cellulase enzyme activities have been 
isolated [25]. Many amoebae and some ciliates are able to lyse fungal cell walls, 
with three enzymatic systems capable of degrading the chitin polymer: lysozymes, 
exochitinases, and endochitinases [15]. These competencies are especially impor- 
tant as researchers [3, 4] extend their work into biological control mechanisms; 
several amoebae were shown to be significant control agents of Gaeumannomyces 
graminis tritici, the notorious "take-all" fungus of South Australian wheatlands. 

Viruses probably play some significant roles in microbial ecologies of soil 
environments. Farrah and Bitton [11] observed that: "Lytic phages could act to 
restrict the growth of susceptible bacteria, and other phages could transmit genetic 
information between bacteria. However, there is limited information on their num- 
bers and activities in soil." Pantastico-Caldas et al. [16] found that temperate 
phages in desert systems (which dominated in their studies) were inactivated on soil 
particles at acid pH (4.5-6). These phages had essentially no effect on populations 
of soil bacteria in Arizona soils, but persisted at low densities in their hosts, in 
contrast to the often-cited impacts of virulent phages on Escherichia coli in liquid 
chemostat cultures. 

The principal influences of protozoa vs. other meso- and macrofauna were 
summarized by Coleman et al. [9] (Table 1), drawing, in part, on earlier work of 
Clarholm [7]. In short, protozoan activities within the water-film communities are 
extensive, with an average 10-12 turnovers per year. Protozoa, particularly amoe- 
bae and flagellates, probably have more impact on soil microbial C and N turnover 
on a per unit mass basis than any other fauna. 
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Fig. 1. The relations of the terrestrial plankton to the other fauna and flora and to the flow of energy 
and supply of nutrients in a forest organic cycle [21]. 

Another insight from our recent studies in the Georgia Agroecosystem project 
was developed by Beare et al. [1]. The context and location-specific nature of the 
milieu needs to be considered when determining the function of the microbial loop. 
There are at least five quite different "spheres" of influence, including not only the 
well-known rhizosphere and detritusphere, but also regions influenced by termites, 
earthworms (drilosphere), and the macro- and microaggregates, or aggregatusphere 
(Fig. 2). Although only a minor proportion of the total soil volume, these "hot 
spots" are where most of the trophic and nutrient regeneration activities occur, with 
impacts on aggregate status as well. For example, Hu et al. (unpublished) measured 
higher mannose/xylose ratios (indicating greater microbial than plant contribution 
to carbohydrates) in soil microaggregates with fungal hyphae present vs. those with 
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Fig. 2. "Spheres" of influence, being "hot spots" of activity in many soil systems. "Drilosphere," 
portion of the soil which is earthworm burrow-influenced; "porosphere," that portion which contains 
water-films and channels between aggregates; "aggregatusphere," the micro- and macroaggregates 
which contain bacteria, fungi, and some micro- and mesofauna feeding upon them; "rhizosphere," the 
region of soil directly root-influenced; "detritusphere," the litter, fermentation, and humification layers 
above the mineral soil, which are havens for microbes (including mycorrhizae) and fauna feeding upon 
them [1]. 

markedly reduced hyphal biomass in our field mesocosm studies. The fungi signif- 
icantly enhanced stability of  water-stable aggregates as well [ 1 ]. 

It is important to note than many insights into soil function are possible if soils 
are viewed as being an opaque aquatic milieu. The insights of  Pomeroy have aided 
in achieving a synthesis between the aquatic and terrestrial microbial loops. 
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