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Abstract. The persistence of environmental problems in urban areas and the prospect of increasing 
congestion have precipitated a variety of new policies in the USA, with concomitant analy- 
tical and modeling requirements for transportation planning. This paper introduces the Sequenced 
Activity-Mobility Simulator (SAMS), a dynamic and integrated microsimulation forecasting 
system for transportation, land use and air quality, designed to overcome the deficiencies of 
conventional four-step travel demand forecasting systems. The proposed SAMS framework 
represents a departure from many of the conventional paradigms in travel demand forecasting. 
In particular, it aims at replicating the adaptative dynamics underlying transportation phenomena; 
explicitly incorporates the time-of-day dimension; represents human behavior based on the 
satisficing, as opposed to optimizing, principle; and endogenously forecasts socio-demographic, 
land use, vehicle fleet mix, and other variables that have traditionally been projected exter- 
nally to be input into the forecasting process. 

I n t r o d u c t i o n  

The Sequenced  Nct iv i ty -Mobi l i ty  S imula tor  (SAMS) ,  the micros imula t ion  

model  system described in this paper, is envis ioned as an effective planning 
and po l i cy  tool  that is capable  o f  address ing  m a n y  o f  the current  crit ical 

issues which  convent iona l  approaches  have not  been able to address.  1 The 

contexts in which this model  system originated, the needs for  a new model  

system,  and the reasons why  the conven t iona l  models  are unable  to meet  

these needs, are discussed in this section. 

Contexts  

The Clean Air  Act  Amendment s  ( C A A A )  o f  1990 renewed the United States '  

commi tmen t  to air quality by focusing on efforts to reduce episodic excee-  
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dences of the National Ambient Air Quality Standards, as well as by setting 
specific time-paths for their achievement in different regions according to 
the severity of their ozone and carbon monoxide violations. While technical 
improvements have been made in cleaner fuels and vehicles, estimates indicate 
they will be insufficient in meeting CAAA emissions reduction requirements. 
Continued VMT growth of 2% per year between 1990 and 2010 is expected 
to outweigh the benefits of a cleaner fleet, leaving a shortfall of approxi- 
mately half of the CAAA-required emissions reductions in that time frame 
(Kessler & Schroeer, 1995). In addition, the effects of reduced emissions 
rates in newer model vehicles may be excluded from emissions reductions 
accounting. 

Moreover, the CAAA expects travel demand management (TDM) to play 
an increasing role in addressing this shortfall between mandated emissions 
reductions and that brought about by anticipated technological improvements. 
Theair quality conformity requirements for infrastructure investment demand 
analytical methods to evaluate the effects of added capacity on induced 
demand. A thorough treatment of travel behavior, a complex phenomenon 
involving the trade-offs and decision-making that people make in a variety 
of travel environments, is required to assess the impacts of TDM measures and 
capacity-related changes on mobility patterns, air quality, and land use. 

Further, the 1990 CAAA specifically focuses on preventing episodes when 
the national ambient air quality standards are violated. In order to identify these 
episodes transportation models need to be able to estimate emissions that 
may occur at specific times during the day or year when congestion is peaking 
and temperatures are high, as well as for particular patterns of travel (say, 
holiday or weekend travel). Vehicle ownership models will have to forecast 
fleet rejuvenation by vehicle type and vintage in order to estimate whether 
emissions reductions targets will be achieved within the time frame speci- 
fied in the CAAA, as well as to address the market penetration targets for 
low emission vehicles, ultra-low emissions vehicles and zero emissions 
vehicles. 

In addition to the renewed interest in the link between transportation and 
air quality, there are other factors that mandate the development of new 
transportation modeling capabilities. These factors include socio-demographic 
changes (e.g., the aging of the population, the continued entry of women 
into the work force, changes in household structure) and technological advances 
(e.g., new information delivery systems, the incorporation of advanced com- 
munication systems in transportation system operation and management 
(Lee-Gosselin & Pas, 1995). 
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Needs 

This increasingly restrictive and complex situation demands a far more com- 
prehensive and integrated approach to transportation and land-use systems. 
Policy analysts will require transportation forecasting systems that can measure 
the cost-effectiveness and political feasibility (e.g., equity and distributional 
impacts) of a host of policy measures (singly or in combination) including: 
policies oriented toward transportation networks (e.g., level of service, capacity 
measures), toward travel behavior (e.g., market-based and command-and- 
control demand management measures), toward vehicle production and demand 
(e.g., CAFE, registration taxes, sales taxes, quotas), and toward land use 
(e.g., growth management, pedestrian- and transit-oriented neighborhood 
design). 

The current and emerging policy and planning environment results in 
stringent analytical requirements to be met by the next generation of trans- 
portation model systems. For example, in order to predict travelers' short-term 
responses to TDM schemes, the model systems will need to be able to deal 
with a range of possible responses, including changes in the time-of-day and 
day-of-week of travel, number of trips, mode, destination, trip chaining, and 
substitution between in-home and out-of-home activities. Accurate represen- 
tation of travelers' responses will require a higher degree of spatio-temporal 
resolution in the transportation model. The new model systems will also need 
to be able to endogenously represent the effects of changes in the vehicle 
market on vehicle purchases, retention and disposal, as well as on vehicle 
utilization. Further, the new model system needs to be sensitive to the fact 
that traveler responses to slow and cumulative changes (e.g., changes resulting 
from a gradual build-up of congestion) will differ from the response to sudden 
changes arising from the implementation of a policy measure. Finally, atten- 
tion must be directed to the fact that the most fundamental determinants of 
passenger travel and freight transportation demand have been treated as exoge- 
nous inputs to the transportation demand forecasting procedure. These 
determinants - household structure, land use development and regional 
economy - are results of the socio-demographic evolution of households, 
their location and employment choices as well as the birth, growth and death 
of firms and their location decisions. These processes should be modeled 
endogenously in the new model systems if maintaining internal consistency 
of forecasts is desired. 

Limitations of the conventional approaches 

The limitations of the conventional four-step travel demand forecasting pro- 
cedures have received renewed attention recently in the new policy and 
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planning contexts set forth in the United States by the CAAA and ISTEA. 
Many of these deficiencies have been known for some time now; in fact Pas 
(1990) argues that the existing model systems are fundamentally the same 
as those introduced nearly 40 years ago with the exception that disaggregate 
models have replaced the original aggregate models. However, the recent 
legislation and the landmark lawsuit, brought by the Sierra Club Legal Defense 
Fund and Citizens for a Better Environment against the Metropolitan 
Transportation Commission (MTC) in the San Francisco Bay Area and the 
State of California, have made the need for a new framework more crucial. 

A number of critiques have recently re-examined in detail the deficien- 
cies of the conventional forecasting approaches (Harvey & Deakin, 1993; 
Stopher, 1993; Replogle, 1993; Kitamura et al., 1993). This brief overview 
focuses on the most critical deficiencies of the four-step procedures which arise 
because of the following two properties they commonly share: that they are 
formulated using the trip as the basic unit of analysis (consequently the dis- 
cussions here also apply to many applications of disaggregate choice models 
that also tend to be trip-based), and that they lack the time-of-day dimension. 

Trip based. The four-step procedures are specified with the trip as the unit 
of analysis; the series of trips made by an individual are treated as separate, 
independent entities in the analysis. Consequently the trip-based, sequential 
structure is unable to appropriately reflect the fact that the decisions associ- 
ated with a particular trip are integrally related with the decisions for other 
trips. Furthermore, the recursive formulation posits trip generation as a decision 
made in isolation from the "trip's" potential attributes (and is therefore 
insensitive to congestion and pricing). The resulting model structure cannot 
fully capture the adaptive dynamics in traveler's responses to changes in trans- 
portation supply characteristics, and cannot address issues associated with 
induced and suppressed demand. Another example of the shortcomings of 
this recursive formulation is the lack of recognition that the trips made by 
an individual over a span of time (say, a day) are spatially connected and 
temporally sequenced and that the mode taken in the morning constitutes a 
condition of travel later in the day, or that the mode taken in the morning is 
dependent on planned activities later in the day. 

Lack of  the time-of-day dimension. Another important deficiency of the 
conventional travel forecasting model systems is that it lacks the time-of- 
day dimension. This is rather surprising considering that congestion, which 
arises from the concentration of traffic over time and space, is the major 
factor that has motivated transportation planning studies. This deficiency 
implies that these model systems are unable to predict changes in when trips 
will be made. This is a critical shortcoming in the current policy environ- 
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ment in which there is considerable interest in the implementation of congestion 
pricing schemes. 

Other limitations of the conventional framework include the use of static 
models based on cross-sectional data, an inability to address the evolution 
of the vehicle fleet mix, and the use of exogenous land-use and socio- 
demographic inputs. These deficiencies severely limit the usefulness of the 
four-step procedures in much needed applications such as the evaluation of 
TDM effectiveness and the air quality conformity of capacity increases, and 
in meeting the other requirements identified earlier. Clearly, substantially 
new approaches are called for in travel demand forecasting. 

Overview of  the paper 

This paper offers an overview of the Sequenced Activity-Mobility Simulator 
(SAMS) which is envisaged as the next generation urban transportation demand 
forecasting system which attempts to overcome the deficiencies of the existing 
forecasting systems. In the next section, SAMS is described while focusing 
on the paradigm shifts embodied in this new approach to travel demand fore- 
casting. A brief description of the primary features of the SAMS model 
components is also provided. The discussions of the third section center on the 
key component of the SAMS model system, the Activity-Mobility Simulator 
(AMOS). In the final section, the data needs of the new modeling frame- 
work are described and issues associated with the development and 
implementation of SAMS are discussed. 

SAMS: A new approach to transportation, land-use and air quality 
modeling 

SAMS has been conceived as a policy tool that satisfies the analytical require- 
ments that have emerged in the new planning contexts discussed above. It is 
envisioned as a comprehensive, integrated dynamic microsimulation model 
system that fully represents the interaction between transportation and land 
use; internally models the evolution of households and firms and their location 
behavior; predicts regional vehicle fleet turnover; and depicts the build-up 
and dissipation of traffic congestion through network simulation performed 
along a continuous time-of-day axis (see Figure 1 for an overview illustration). 
SAMS thus conceived, yet only partially implemented, endogenously forecasts 
socio-demographic change, land use development, vehicle holdings, as well 
as travel demand, network performance, and air quality. Below, the paradigm 
shifts embodied in SAMS are summarized, then a brief introduction to each 
of the SAMS model components is presented. 
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Fig. 1. Sequenced activity-mobility simulator (SAMS).* 
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Paradigm shifts embodied in SAMS 

SAMS is fundamentally different from conventional transportation forecasting 
model systems in several crucial aspects. The key paradigm shifts embodied 
in the SAMS modeling framework are summarized in Table 1. The central 
distinguishing features of SAMS are the use of stochastic microanalytic 
simulation forecasting and dynamic modeling based on longitudinal data 
collection and analysis (for further discussions see Goodwin et al., 1990; 
Goulias & Kitamura, 1992). In addition, SAMS incorporates an activity-based, 
rather than a trip-based, approach to travel modeling; it adopts satisficing, 
as opposed to optimizing, as the principle that describes individuals' behavior 
(discussed in the Section for "The activity-mobility simulator (AMOS): A 
key component of SAMS"); it envisions the use of GIS-based spatial analysis, 
rather than zone-based analysis; and it incorporates endogenous forecasting 
of socio-demographics, land use and vehicle transactions. 

Table 1. Paradigm shifts embodied in the SAMS modeling framework. 

Existing approaches to transportation modeling SAMS Modeling approach 

Aggregate extrapolation forecasting 

Static models, based on cross-sectional data 

Trip-based travel model 

Optimizing behavior assumed (e.g., discrete 
choice models, network equilibrium) 

Zone-based geographical representation 

Exogenous input of land-use, socio- 
demographic and vehicle characteristics 

Microanalytic simulation forecasting 

Dynamic models and processes, based on 
longitudinal data 

Activity-based travel model 

Adaptation and satisficing behavior assumed 

Point-based geography, based on GIS platform 

Endogenous modeling of land-use, socio- 
demographic and vehicle characteristics 

Underlying SAMS is the transition from deterministic, aggregate extra- 
polation to stochastic, microanalytic simulation forecasting. The motivating 
factor for the adoption of microsimulation as a central driving force of SAMS 
is the fact that activity-travel behavior is a multi-dimensional process that is 
governed by layers of constraints and influenced by numerous factors, many 
of which are stochastic. Arranging activities and trips into a daily itinerary 
itself is a complex operations research problem to which individuals have 
devised routines to find a (not necessarily optimum) solution. Despite the 
simplicity of the activity-based approach that arises from its focus on human 
behavior without introducing artificial constructs, the behavior under inves- 
tigation is indeed complex to analyze. Given the complexity and stochastic 
elements inherent in transportation system performance, constraints and moti- 
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vating factors for activity-travel behavior, and in human decision and behavior 
themselves, microsimulation is the only feasible approach that need not 
embrace over-simplifying assumptions that reduce the realism in the travel 
behavior being represented by the model. 

Immediately following the shift to microanalytic simulation forecasting is 
the paradigm shift from the use of geographical zones as the unit of analysis 
to point-based geographical representation using a GIS platform. Micro- 
simulation of individuals' behavior can be best achieved by having dis- 
aggregate representation of transportation networks and land use as this would 
facilitate the simulation of the precise trajectory of the individual in time 
and space and the explicit linking of the activity type and land use type at 
an adequate level of disaggregation. 

Another critical paradigm shift is from static analysis and modeling based 
on cross-sectional data to dynamic analysis and modeling using longitudinal 
data. This shift reflects a skepticism of the well-accepted and well-practiced, 
yet not validated assumption, that future behavior can be predicted based on 
the extrapolation of cross-sectional observations. Application to forecasting 
of a model estimated on a cross-sectional data set taken at one point in time, 
represents the "longitudinal extrapolation of cross-sectional variations" 
(Kitamura, 1990) in which cross-sectional elasticities observed across different 
individuals are applied as if they represent longitudinal elasticities that 
capture the change in behavior that follows a change in a contributing factor 
within each behavioral unit. This approach is valid only under very restric- 
tive conditions (Goodwin et al., 1990). For example, it requires that behavioral 
response is immediate without involving any time lag; that the magnitude of 
response is invariant regardless of the direction of change; and that behav- 
ioral response is independent of the past history of behavior. The very 
assumption of the equivalence between cross-sectional and longitudinal elas- 
ticities has yet to be validated, while empirical evidence is accumulating that 
this assumption does not hold in general (Kitamura & van der Hoorn, 1987; 
Goodwin, 1977). 

A dynamic, longitudinal framework allows for the explicit incorporation 
of behavioral dynamics including lags and leads in response time, asymmetry 
in response, behavioral inertia and habitual behavioral patterns (e.g., brand 
loyalty). Furthermore, it permits the reformulation of behavioral models as 
dynamic decision models, in which decisions are made considering outcomes 
over a span of time, rather than as a series of repeated myopic choices. Realism 
is gained in the proposed approach because present decisions affect the future 
and are affected by decisions made in the past, as well as by expectations of 
the future (de Jong & Kitamura, 1992). Long-term decisions, such as vehicle 
holdings, employment, and residential location, may be modeled using 
intertemporal utility functions explicitly incorporating varying rates of time 
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preferences. With the focus on behavioral dynamics, the time dimension is 
explicit in the entire model system. 

The last paradigm shift to be discussed here is that SAMS intemalizes the 
projection of the explanatory variables of its components through dynamic 
microsimulation, rather than relying on externally supplied, typically univariate 
projections. Applying dynamic models to forecasting calls for longitudinal 
projections of their explanatory variables. It is critical in this context that 
the multi-variate distribution of these variables be properly represented across 
behavioral units and over time periods. Unfortunately projections available 
to transportation demand forecasting have been marginal distributions of 
individual variables, e.g., age or income. Non-linear models, whether static 
or dynamic, require the joint distribution of all the explanatory variables 
defined for the behavioral unit, however. For example, if a model's explana- 
tory variables include age, income, education, and distance to the nearest 
bus stop, then the joint distribution of all these four variables are needed to 
produce forecasts without aggregation bias. This problem has been recog- 
nized for disaggregate choice models, which are non-linear. The problem is 
compounded for dynamic forecasting because longitudinal projections of this 
joint, multi-variate distribution are needed. Microsimulation of demographic, 
socio-economic, land-use and other explanatory variables is proposed and 
incorporated as SAMS components as an approach to produce multi-variate, 
longitudinal projections of the explanatory variables. 

SAMS organization and components 

At the heart of SAMS is AMOS, a dynamic microsimulator of household activ- 
ities and travel over time and space. The other model components of SAMS 
are: a socio-demographic simulator, an urban system simulator, a vehicle 
transactions simulator, a dynamic network simulator, and an emissions module. 
All spatial elements are manipulated in the simulation on a GIS platform 
without zonal aggregation. The output from these models is used to derive 
mobility, air quality, transportation system performance and welfare (time 
use utility) indices to be used in planning and policy analysis. It is impor- 
tant to note that the simulators operate at different time-scales, ranging from 
a very fine time increment (1 to 3 minutes) for AMOS and the dynamic network 
simulator, to a yearly time increment for the socio-demographic and urban 
system simulators. 

Each of the key model components of SAMS is briefly described below, 
except for AMOS, which is discussed in detail in the Section for "The activity- 
mo.bility simulator (AMOS): A key component of SAMS". We first discuss 
the simulators for the processes that operate at more coarse time-scales. 
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The socio-economic and demographic simulator 
The socio-economic and demographic simulator is a stochastic microsimulator 
of the socio-economic and demographic evolution of households and firms. 
The latter are the drivers of long-range changes in regional economy and 
land use. That is, this simulator provides the basic parameters (e.g., popula- 
tion, income, employment levels) to determine each sector's demand for 
vehicles, activity participation and related travel and location choices. 

The household component will aim to replicate the progression of a house- 
hold through the life-cycle stages (e.g., young single person, young couple, 
family, old couple, old single person, etc.) and simulate changes in each 
person's socio-economic attributes (e.g., age, education, employment, driver's 
license holding) based on their stage in the life-cycle. This general structure 
is employed in each of the existing transportation-related microsimulation 
models (Mackett, 1985, 1990; Miller et al., 1987; Goulias & Kitamura, 1992). 
This component will consist of a series of sub-models that simulate changes 
in socio-economic and demographic variables pertinent to mobility decisions. 

The business component of this model will simulate the birth, growth and 
death of firms in terms of pertinent variables such as number of employees, 
size and location. While we know of no such model in existence, we believe 
such a model can be initially developed as a descriptive simulator that repli- 
cates observed dynamics in a firm's economic and spatial behavior. 

The urban system simulator 
A recognized weak link in the conventional transportation forecasting model 
is the inadequate representation of the interaction between land-use and trans- 
portation. Further, it is well known that existing land-use models do not 
represent the demand for and supply of urban land in a market context and 
thus land prices and rents are not adequately incorporated in such models. 

The urban system simulator will be a dynamic, market-based microsimu- 
lator of urban evolution representing the household, commercial/industrial, and 
developer sectors where land prices and rents are endogenously forecast 
through market-based land transactions simulation. Household residence and 
job location choice, firms' location decisions, and developers' development 
decisions will all be modeled at microscopic levels. Each unit's search and 
transaction behavior will be simulated to form a market model that repli- 
cates selling, buying, development and redevelopment decisions, within 
anticipated zoning and other restrictions. 

The vehicle transactions simulator 
Most existing discrete-choice models of household vehicle ownership are 
cross-sectional vehicle holdings models that describe the likelihood that a 
household of given attributes will hold a particular set of vehicles. While 
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such models have quantified the effects on vehicle demand of various vehicle 
attributes and household socio-economic characteristics, they contain limita- 
tions that may restrict their usefulness in forecasting. 

First, the number of household vehicles that can be handled is usually 
limited to two, because the number of alternatives in such models becomes 
astronomical when the fleet size exceeds two. Second, vehicle holdings models 
take the viewpoint that a household compares vehicle fleets of different 
composition and selects the most suitable fleet. Such models are based on 
the implicit assumption that the household compares the "utilities" of the 
alternative fleets and chooses the one with the highest utility. This assumption, 
however, is not realistic, because the household acquires, replaces, and disposes 
of vehicles sequentially over time and the household fleet might not be 
optimum at a particular point in time. Third, vehicle holdings models estimated 
using cross-sectional data are essentially static and are therefore unable to 
forecast how quickly new types of vehicles will penetrate the market. However, 
this ability is critical in connection with analysis of the effectiveness of low- 
and zero-emission vehicles. 

The vehicle transactions simulator is a dynamic, stochastic microsimu- 
lator of the time-path of vehicle fleet rejuvenation based on models of decisions 
to acquire, dispose and replace vehicles, and the choice of vehicle types. By 
focusing on transaction decisions, such models offer new possibilities to correct 
many of the deficiencies of vehicle holdings models. Most importantly, a 
large number of household vehicles can be easily incorporated, and the fre- 
quency of transactions is explicitly modeled. They also allow the representation 
of vehicle ownership cost as an endogenous variable that is a function of the 
holding duration. For further discussions on the advantages of vehicle trans- 
actions models, see de Jong & Kitamura (1992). Examples of household vehicle 
transactions models can be found in Hocherman et al. (1983); Smith et al. 
(1989) and Hensher (1994). These models, however, address only limited 
aspects of vehicle transaction behavior (e.g., replace a vehicle vs. do not replace 
a vehicle). An ongoing model development effort that attempts to develop a 
full-fledged vehicle transactions model system is described by Golob et al. 
(1992). 

Dynamic network simulator 
The dynamic network simulator is closely intertwined with AMOS and operates 
on a continuous 24-hour time axis to provide temporal variations in traffic flow 
characteristics. This is made possible by the fact that AMOS offers output 
of travel demand on a continuous time-of-day basis, and therefore the network 
assignment in SAMS takes as input non-stationary traffic volumes and rep- 
resents the build up and dissipation of traffic congestion. 

While the development of dynamic network assignment algorithms is a 
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challenge, advances in computer speed and dynamic network assignment 
methodology promise that truly behavioral network assignment is possible 
while incorporating realistic models of route choice behavior. That is, the 
modeling approach may emphasize the availability of information, learning 
and satisficing (as opposed to the currently prevailing assumption of equi- 
librium) when constructing route choice models for pre-trip as well as en-route 
decisions. 

The proposed microsimulation approach has many advantages, including 
the ability to model the driver's response to traffic information, a capability 
that is invaluable in analyzing the effectiveness of advanced route guidance 
systems. Another important advantage of micro-time increment network 
simulation is the ability to suitably represent traffic conditions at critical 
locations (e.g., carbon monoxicide "hot spots"). Examples of the use of this 
capability include pollutant emissions due to vehicles queued at a metered 
on-ramp, congested intersections, or up-grade on-ramps where acceleration 
takes place. The proposed network microsimulator will also serve as a valuable 
experimentation ground for the development of incident management strate- 
gies, and determining the optimal placement of detectors and other traffic 
surveillance devices. 

It is recognized that development of this network microsimulator presents 
a significant challenge and may take some time. A number of efforts are 
currently underway to address the development of dynamic network simula- 
tion. In the interim, it is suggested that creative use be made of existing 
equilibrium assignment packages. 

The activity-mobility simulator (AMOS): a key component of SAMS 

AMOS is an activity-based model of travel decisions that captures pertinent 
factors at work in the adaptation of activity engagement, scheduling and 
travel behavior exhibited by individuals and householders. The approach is 
necessarily microscopic and individual-based because an adequate forecasting 
procedure and policy tool can be formulated only through rigorous analysis 
and modeling of decision-making units. Below, we highlight the behavioral 
underpinnings of AMOS and then provide a brief introduction to each of the 
AMOS model components. 

The behavioral underpinnings of AMOS 

The key paradigm shifts embodied in AMOS are described in this section, 
including the central premises of the activity-based approach to travel demand 
analysis and the key concepts related to adaptation behavior. 
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The central premises of the activity-based approach 
The intent of activity-based travel analysis (Jones et al., 1983; Kitamura, 1988a; 
Pas, 1990; Jones et al., 1990; Axhausen & Garling, 1992) is to provide a 
conceptual structure that represents the mechanism of trip making in a more 
fundamental and comprehensive manner than trip-based procedures allow. 
Because trips are made in order to engage in activities, the best account for 
trip making can be achieved by analyzing and explaining individuals' and 
household members' activity engagement. That is, travel behavior can be 
best understood by examining how engagement in discretionary activities is 
decided, how in-home and out-of-home activities are traded off, how the 
location of each activity is chosen, how allocation of time to various activi- 
ties is adjusted to accommodate for a loss or gain of discretionary time, and 
how household members interact in their activity engagement decisions. 

Activity engagement is synonymous with time use. By analyzing the patterns 
of time use and revealing the underlying decision structure, it is possible to 
construct a model system for activity engagement. Also by analyzing the 
parallel and inter-related decision of location choice for each episode of 
activity, it is possible to thoroughly account for the generation of trips. These 
two combined can be used to determine how changes in time availability caused 
by changes in the travel environment (e.g., increased or decreased levels of 
congestion) may affect overall time use and travel patterns. For example, 
Kitamura et al. (1992) and RDC (1993b) examined the relationship between 
commute trip duration and time allocation to discretionary activities and travel. 
In fact, the most rigorous treatment of the issue of induced (and suppressed) 
travel can be attained by analyzing time use. Additional examples include 
congestion pricing, non-traditional work schedules (e.g., flexible work hours 
or compressed work weeks), and the examination of individuals' responses 
to these new TDM schemes over a multi-day period (say, a week). For an 
overview of time use research and its potential in travel demand analysis, 
see Pas & Harvey (1995). The needs to examine the relation between activity 
choice and location choice have been identified by Landau et al. (1981). To 
the knowledge of the authors, no study has examined how the transition 
between activity episodes is related to the change of activity locations. 

The activity-based approach facilitates an accurate depiction of an indi- 
vidual's response to a change in the travel environment in contrast to the current 
generation of models. In the trip-based, four-step approach, the adaptation 
process is decomposed and represented by changes in trip frequency, desti- 
nations, modes and routes, without any coherent relationships among these 
attributes, without any recognition of the cognitive process that leads to changes 
in behavior, and above all, without any regard to the reasons why trips are 
made. The behavioral responses captured by the four-step procedures include 
only a partial list of a wide range of response patterns; uncaptured responses 
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include decisions to chain trips, to change departure time, or to consolidate 
chores into selected days of the week. 

The activity-based approach can accommodate the effects of interpersonal 
dependencies that exist among household members as they negotiate resources 
(e.g., household vehicles and incomes), allocate tasks (e.g., paid-work and 
running errands), and engage in joint activities (e.g., a Sunday outing) to arrive 
at an overall pattern of activity engagement and travel behavior (Pas, 1985). 
This perspective has led to the identification of household life-cycle stage, and 
particularly the presence or absence of children, as one of the key contributing 
factors to travel behavior (Jones et al., 1983). 

Another distinguishing feature of the activity-based framework for travel 
analysis is its focus on inter-day dependencies (Pas, 1985). Individuals and 
households schedule their activities over time spans that are longer than a 
day; some activities may be scheduled with a weekly cycle (e.g., shopping) 
while others are planned over much longer periods (e.g., an out-of-town trip 
or a vacation, see Hirsh et al. (1986); Kitamura (1988b); Pas (1988). Under- 
standing the scheduling behavior by which activities and travel are assigned 
to different days is imperative for the incorporation of the day of week into 
the travel demand forecasting procedure. Furthermore, it is believed that 
intensifying congestion, labor-force participation by women, non-traditional 
work schedules, and some TDM strategies will lead individuals to consoli- 
date certain activities on certain days or to change the day of travel. Accurately 
accounting for inter-day dependencies in activity and travel is another focus 
of the modeling approach outlined in this paper. 

A variety of "constraints" are highlighted by the activity-based approach 
to travel analysis (Jones et al., 1983). All individuals are constrained by the 
fact that there are only 24 hours available in a day; workers by their work 
schedules; shoppers by store hours; parents by operating hours of the day- 
care facility; bus users by bus routes and schedules; and minors by the fact 
that they cannot drive. Individuals and households attempt to devise a workable 
plan for their activity engagement while being governed by the constraints. 
Although constraints play predominant roles in shaping an individual's activity 
and travel behavior, they have received only very limited attention in the 
past (car availability in mode choice appears to be the only occasion where 
constraints are routinely incorporated into the analysis). 

The behavioral principle of adaptation 
AMOS is a microsimulation model where adaptation behavior is treated as a 
learning process in which the individual gains knowledge about various aspects 
of the new travel environment as he/she attempts to adapt to it. Adaptation 
behavior is viewed as a trial-and-error process in which the individual tries out 
alternative activity-travel options until a suitable option is found. To the 
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knowledge of the authors of this paper, however, no quantitative models have 
been developed so far that operationalize the adaptation concept and are 
applicable to demand forecasting and quantitative policy analysis. AMOS is 
believed to be the first model system that achieves this. 

While the concept of adaptation was introduced into the field almost 20 
years ago (Fried et al., 1977), it did not assume a central role until recently 
(Goodwin et al., 1992). Adaptation is a central concept in AMOS, and the 
activity-based framework provides for a broad range of adaptation strategies. 
An individual can respond to a change in the travel environment in many 
different manners that cannot possibly be captured as independent changes 
in trip frequency, destination, mode, and route. By examining how the indi- 
vidual may adapt to a new travel environment by modifying his/her activities 
in time and location, a more comprehensive treatment of travel demand 
becomes possible and a more realistic depiction of adaptation processes can 
be achieved. 

Although a few principles are conceivable (e.g., minimization of adjustment 
costs, minimization of behavioral changes), to the knowledge of the authors 
none has previously been postulated in the travel behavior analysis field for 
adaptation (except the principle implicit in the extrapolation of cross- 
sectional relations into the future which posits that the same relationships which 
characterize behavioral change over time can be observed in cross-sectional 
data). The optimization principle has often been applied to describe observed 
behavior. Its application, however, is justifiable only as an operational (as 
opposed to behavioral) axiom with the premise that a central tendency exists 
and embodies the optimization principle, and that deviations of individual 
observations from that central tendency can be accounted for by error com- 
ponents. This premise, however, is valid only when deviations from the central 
tendency are purely random. 

This assumption of optimization is unrealistic as a behavioral axiom when 
applied to everyday behavior of activity engagement and travel by individ- 
uals and households. For example, the individual must possess complete 
information to be able to locate an optimum solution, and must be capable 
of sorting out an enormous number of possible options and discriminating 
among them. Optimization also assumes that the individual can perfectly detect 
minute differences among options. Practical decision-making is only loosely 
related to this ideal. Optimization thus assumes superhuman abilities in 
ordinary travelers and is unrealistic as a behavioral proposition. The infor- 
mation we have is partial and incomplete; the number of items we can 
incorporate into our cognitive system is limited; our perceptive ability to dis- 
criminate between stimuli is limited; the outcome of a decision is usually highly 
uncertain; and our decisions may not be internally coherent and consistently 
rational. Moreover, there is evidence that behavioral inertia is prevalent, and 
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that we tend to resist behavioral changes. Our travel behavior is most probably 
not in the state of equilibrium which the paradigm of optimization assumes 
(Goodwin et al., 1987). 2 

The development of AMOS reflects the intention to adopt the most real- 
istic modeling framework that best replicates activity-travel behavior. Instead 
of assuming the presence of cross-sectional equilibrium based on optimization, 
the behavioral process of adaptation is explicitly modeled in AMOS. In AMOS, 
adaptation simulates a trial-and-error learning process based on "satisficing" 
as the governing behavioral principle (Simon, 1955). It is important in this 
context to recognize that there may exist many different adaptation princi- 
ples that direct each individual's behavior. Even the same individual may follow 
different principles from situation to situation. This likely heterogeneity in 
the causal mechanisms underlying adaptation behavior or, "causal hetero- 
geneity" (Pendyala, 1992), must be properly addressed in future efforts. 

Asymmetry and slow or cumulative changes 
Among the behavioral dynamics associated with the adaptation process are 
asymmetry in people's behavior and differences in people's adaptation behavior 
in response to slow or cumulative changes in the environment. Individuals' 
and households' response to a change may not be symmetric, i.e., response 
characteristics may vary depending on the direction of the change in the 
environment. There are many reasons for asymmetric behavioral response. 
First, apparent asymmetry may be a result of differences in the speed of 
response. Individuals may respond more quickly to a change in one direc- 
tion than to one in the other direction. For example, a household member 
gaining employment may lead to immediate acquisition of an automobile 
because it is needed to commute, but a member losing employment may not 
necessarily lead to the disposal of a household vehicle because the vehicle, 
once acquired, can be retained at a low marginal cost. Finally, asymmetry 
can also be due to differences in thresholds of perception, i.e., changes in 
one direction may be more noticeable than those in the other direction. For 
further discussions, see Kitamura & van der Hoorn (1987). 

Change in the travel environment is not always sudden; some slow changes 
are appreciable only after their effects have accumulated over time (Goodwin 
et al., 1992). Response time lags are intrinsic in the adaptation to slow or 
cumulative changes. The central issue in adaptation to slow changes revolves, 
then, around the perception of changes. Until there is such a perception, a 
response or adaptive behavior won't ensue. A key element is the threshold 
of perception, and how it is related to the rate of change in cases of cumula- 
tive changes. For example, at what point is ever increasing Commute travel 
time due to congestion perceived as intolerable, and at what point will that 
perception lead to an adaptive behavior such as residential relocation or mode 
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change? And how is all this related to the rate at which congestion has been 
building up? Likewise, there are small changes that may take place over a span 
of time and which are singly insignificant, but which collectively command 
response. For example, a new baby in the family may not alone prompt acqui- 
sition of a new car, but this combined with the mother going back to work may 
warrant the acquisition. Additional complexity arises when considering the role 
of information and uncertainty in the formation of perceptions. Modeling 
adaptation to slow, and/or cumulative changes is a new research area in which 
much work is needed in the future to address these and many additional 
issues. 

Components of AMOS 

Starting from an initial set of activity-travel patterns, AMOS simulates each 
individual's adaptation process and finally determines how individuals and 
households will adapt to the new environment. The first event that must take 
place for behavioral change to proceed is that the individual recognizes the 
change in the travel environment and perceives the need for behavioral 
modification. Given this, a search for a desirable behavioral modification 
commences with the identification of possible response options. This is not 
a systematic, exhaustive procedure; individuals will operate with imperfect 
information and will be unable to systematically enumerate all possible options. 
Once an individual identifies a response, or a preferred set of responses, the 
next step is to try out the options, one at a time, until a "satisfactory" pattern 
is established. This experimentation process is represented by repeating the 
simulation procedure for a period adequate to achieve stability. 

AMOS is comprised of four major elements that operate in an iterative 
procedure: a baseline activity-travel pattern synthesizer, a response option 
generator, an activity-travel adjuster, and an evaluation routine. These elements 
are described in the following sub-sections. Figure 2 illustrates the organiza- 
tion of the AMOS model. 

The baseline activity-travel pattern synthesizer. The impact of a change in 
the travel environment is evaluated in AMOS by estimating, for each house- 
hold or individual, changes in the activity-travel pattern from the baseline 
pattern. The latter is developed from observed daily travel patterns contained 
in typical trip records (e.g., purpose of the trip, travel mode used, departure 
and arrival times, origin and destination zones, vehicle occupancy, and parking 
characteristics). These records facilitate the reconstruction of the household 
members' travel patterns over the geographical space along a continuous 
time dimension. Combined with land use and network data, trip diary data 
generate an adequate data base for the analysis of household responses to TDM 
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INPUTS 

• Trip Diaries 

• Socio-demographic Characteristics 

• Transportation Network Description 

• Land-use Description 

• Policy Initiatives 

AMOS 

Base line Activity-Travel Pattern 
Synthes zer I 

I Response Option Generator t ~  

Activity-Travel Pattern Adjuster 

+ 
1 

OUTPUTS 

• Predicted (Modified) Travel Patterns 

Fig. 2. Activity-mobility simulator. 

measures. The synthesizer identifies the types and durations of out-of-home 
activities from the trip record of each individual, and determines, based on a 
set of rules, types of constraints associated with the trips made (e.g., the 
individual must arrive at work no later than the arrival time of the work trip 
found in the trip record; see discussions under "The Activity-Travel Adjuster"). 

The response option generator. The purpose of this component is to generate 
and prioritize a series of options that individuals are likely to consider when 
faced with changes in their travel environments. The intent is to simulate 
the cognitive process in which each individual devises alternate options, 
prioritizes them and selects possible options. Generating possible travel options 
is viewed here as the first step in the process of adapting to the new travel 
environment. Response options include those identified earlier, e.g., chain trips, 
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change trip frequency, change departure time, change mode, or any combi- 
nation of these responses, plus doing nothing (i.e., to maintain the same 
activity-travel pattern). 

The method of generating options is based on connectionism theory. 
Connectionism is an approach in the study of cognition. Benjafield describes 
it as: "the two basic connectionist ideas are that information can be broken 
down into elements, and that there are connections between these elements. 
These connections can have different strengths, and the (model) system learns 
by modifying the strength of connections between elements so that proper 
output occurs to a particular input." In this approach, thinking is viewed as 
the process of linking objects or concepts with certain patterns (Benjafield, 
1992, p, 38). 

This idea leads to the formulation of "connectionist networks," which can 
be viewed as a special case of neural networks. Connectionist networks are 
used in AMOS to determine which response options an individual may 
conceive as a result of changes in the travel environment. Input to the con- 
nectionist network will be pertinent person and household attributes, travel 
characteristics and potential changes in the travel environment (e.g., conges- 
tion pricing) and output will be response options (e.g., chain trips) individuals 
may conceive and prefer to take. Each input and output are represented by a 
node. Between the input and output nodes are intermediate "latent" nodes, 
which represent the consequences of a change in the environment (e.g., 
increased inconvenience, etc.). The network can be "trained," i.e., the strength 
of the link connecting each pair of nodes in the network is determined such 
that the network will best replicate input-output relationships exhibited by indi- 
viduals. This can be achieved using data obtained from interview surveys 
specifically designed for this purpose. 

The activity-travel adjuster. Once the individual sorts out what options are 
available, the next step is to experiment with the options. In AMOS, a micro 
world is created on the computer in which daily travel experience is simu- 
lated for each sample individual and for each option that might be taken. 

AMOS employs a screening procedure to eliminate infeasible activity-travel 
patterns that may result from the option chosen by each individual. The 
screening process will be based on a set of rules, e.g., drivers who need to drop 
off children at day care will not be able to make certain changes in their 
baseline travel pattern. In other words, the screening process will limit the 
potential responses that a particular individual can actually execute given 
their situational constraints. 

Feasible activity-travel patterns will then be simulated initially based on 
trip-time tables by time of day and by mode, and ultimately on a GIS-based 
urban highway/transit network model using dynamic network assignment. This 



286 

network simulation will provide the actual travel time and arrival time for each 
trip, and thus will generate events such as "arrived five minutes late for work," 
or "arrived 20 minutes too early." In short, this step will create, on computer 
simulation, what the individual would experience if they adopted a particular 
option. (It is anticipated that computational requirements for such dynamic 
network analysis will be met within the next several years, and will enable 
the microsimulation of all trips in an urban network. For ongoing effort, see 
Barrett et al. (undated.). 

The simulation will involve all sample individuals in the data base (which 
may be expanded with synthetic individuals), from different home locations, 
different demographic and socio-economic attributes, different constraints 
and different activity agendas. Their trips are properly weighted to represent 
the population of the area, and "loaded" onto the transit and highway network 
such that link volume, speed, and travel time can be evaluated through network 
simulation. Note that the outcome for an individual will depend on the behav- 
iors of the other individuals; the simulation thus captures supply-demand 
relationships in transportation networks. This is crucial in the analysis of some 
TDM strategies such as congestion pricing. 

The evaluation module. Knowing the consequences of an option, the indi- 
vidual would now proceed to decide whether the option is: satisfactory and 
is acceptable for long-term adoption; to be modified and further pursued; or 
inadequate, and thus to be abandoned in favor of a new option. The focus of 
this component is on the development of measures that may be used to deter- 
mine how good a particular adjusted activity-travel pattern is, or more precisely, 
how good the outcome of that option is in the individual's eye. It is desired 
that the measure represents the value system the individual has, as closely 
as possible. At the same time, the measure must be prescribed in terms of 
well defined, measurable variables such that its value can be objectively 
evaluated and used in forecasting. 

Note that the individual may not be looking at just travel alone, but the 
entire itinerary of the day including both trips made and activities under- 
taken. Also note that what matters to the individual is the value of the activities 
engaged in and the convenience and ease of doing so, which is in part 
determined by trip characteristics. Therefore, it is critical that the evaluation 
measure reflect the types of activities pursued, the amounts of time allocated 
to the respective activities, the timing of the activities, as well as the 
attributes of the activities and travel. Finally, it is also critical that differ- 
ences across segments of individuals or households be properly captured by 
the measure. 

Two approaches are conceivable for the development of a robust evalua- 
tion measure. The first approach, which is being implemented, capitalizes 
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on the results of a time use study in which consumer benefit measures have 
been developed based on daily time use and on a utility model of time use 
(RDC, 1993b). The second is a stated-preference (SP) approach based on a 
survey formulated to address time-money trade-offs, as well as preferences 
toward activity timing and activity sequencing. One advantage of the latter 
approach is its ability to focus on specific aspects of interest that may be 
difficult to evaluate from revealed-preference (RP) data, e.g., scheduling 
flexibility and convenience. 

Discussion and conclusion 

This section addresses a number of outstanding issues that are involved in 
the development and implementation of the type of integrated, complex and 
dynamic framework that SAMS represents. An overview is provided in this 
section of the general types of data required, and data collection methods being 
adopted for SAMS' development. The section concludes with a summary of 
the capabilities and paradigm shifts that SAMS presents to transportation, land 
use and air quality planning and policy analysis. 

The development and validation of SAMS requires extensive and diverse 
information. A new layer of data requirements emerges with the microsimu- 
lation approach that is at the core of SAMS, calling for innovative approaches 
in the collection of complex behavioral data. Confining ourselves to the 
development and validation of AMOS, which is in an advanced stage of 
development, three types of data are required: 

1. reported behavioral data (often called revealed-preference data) and demo- 
graphic and socio-economic data from those who report their behavior; 

2. observational data (e.g., link flows and travel times, network structure, 
household turnover rates, etc.); 

3. data describing respondents' stated intention about how they would react 
to changes ("stated adaptation" data; see Lee-Gosselin, 1995), as well as 
their preferences for alternative activity and travel options, e.g., activity 
timing, sequencing, etc. (called stated-preference data). 

SAMS is a dynamic model system; therefore, longitudinal data are needed 
for the development as well as validation of the various modules (with the 
possible exception of network simulation and the emissions module). The 
demographic and socio-economic simulator, land use simulator, and vehicle 
transactions model all require longitudinal panel data to develop and validate. 
The development and validation of the adaptation process model in AMOS 
will greatly benefit from short-range longitudinal panel data of the "before- 
and-after" type and from data collected through laboratory experiments that 
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simulate adaptation processes on a compressed time scale in a hypothetical 
environment (see, for example Ettema et al., 1994). 

Stated preference surveys specifically designed for AMOS development are 
being used not only to obtain respondents' preferences and reactions toward, 
for example, congestion pricing, but also to examine preference structures in 
connection with time use and scheduling. 3 In particular, stated preference 
questions can be structured to probe into the cognitive process underlying 
individuals' adaptation processes. 

Time use diaries are being used as part of SAMS development in a project 
implementing an AMOS prototype. The time diary method offers the possi- 
bility of a fuller, more detailed and more complex account of travel-related 
behavior because respondents are asked to provide a continuous recollection 
of all activity across the day. In this way, it forces respondents to report the 
totality of their daily activity into a single account, one that for most people 
is more in line with the way events are stored sequentially in memory. The 
open-ended nature of activity reporting means these activity reports are auto- 
matically geared towards detecting new and unanticipated activities (e.g, 
aerobic exercises, use of new communications technologies, etc.), as well as 
capturing the context of how daily life is experienced. 

SAMS is conceived as a large-scale, integrated model system comprised 
of a number of modules. The development, validation and implementation 
of the complete model system will take a number of years. The fact that 
SAMS is an innovative model system that is based on an entirely new set of 
paradigms implies the presence of a number of research issues. For example, 
satisficing rules must be developed for AMOS (laboratory experiments are 
being designed to probe into travelers' experimentation and learning behavior); 
evaluation functions to assess the utility of activity-travel patterns must be 
developed while considering time use, scheduling convenience and travel costs; 
mechanisms must be developed for the generation of synthetic households 
and activity-travel patterns; inter-personal interaction must be represented in 
AMOS to depict household behavior; and the modeling framework in AMOS 
must be expanded to address multi-day activity-travel behavior. However, 
elements of the model system can be developed and implemented in the 
short- to medium-term, either in conjunction with more traditional model 
systems or used on their own in the analysis of specific policy questions. 
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No~s  

1. Detailed discussions of SAMS development can be found in RDC (1992) and RDC (1993a). 
2. For an example of an activity scheduling model system based on optimization, see Reeker 

et al. (1986a, 1986b). An extensive review of activity scheduling models can be found in 
Garling et al. (1994). 

3. The stated adaptation survey which was conducted as part of the ongoing implementation 
effort of AMOS in the Metropolitan Washington Council of Governments area include the 
following TDM strategies: i) parking tax; ii) bicycle/pedestrian facility improvements; iii) 
combination of i and ii; iv) employer-supplied travel voucher with elimination of employer- 
supplied free parking; v) congestion pricing; and vi) combination of iv and v. 
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