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Abstract. In this paper, the attainability of ESS of the evolutionary game among 
n players under the frequency-independent selection is studied by means of a 
mathematical model describing the dynamical development and a concept of 
stability (strongly determined stability). It is assumed that natural selection and 
small mutations cause the phenotype to change gradually in the direction of 
fitness increasing. It is shown that (1) the ESS solution is not always evolution- 
arily attainable in the evolutionary dynamics, (2) in the game where the 
interaction between two species is completely competitive, the Nash solution is 
always attainable, and (3) one of two species may attain the state of minimum 
fitness as a result of evolution. The attainability of ESS is also examined in two 
game models on the sex ratio of wasps and aphids in light of our criterion of the 
attainability of ESS. 

Key words: Evolutonary g a m e -  Dynamical attainability of E S S -  Strongly 
determined stability 

1. Introduction 

A useful tool to calculate a goal of phenotypic evolution is an evolutionarily 
stable strategy (ESS), which is a strategy such that, if most of the members of a 
population adopt it, then no mutant could increase its abundance [16]. It is 
sometimes called an "uninvadable" or "unbeatable" strategy. 

In a constant environment, suppose the fitness of a phenotype x, denoted by 
F(x) ,  depends only on the strategy of its own, x. Then the optimal strategy x* 
is the one which maximizes the fitness: 

F ( x * )  = max F(x) ,  
x 6 O  
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where D is a strategy set. Many authors [4, 5, 10, 20, 23] assume that the optimal 
strategy x* is an evolutionary goal. Certainly, if a mutant type with the strategy 
x different from x* invades the population with most members taking strategy 
x*, it will be selected out because of it having a lower fitness than the wild type. 

On the other hand, evolutionary stable strategy for the coevolution game is 
not so simple as in the former case. This is because, in a coevolution game, a 
species' fitness changes as an opponent species evolves. Thus the fitness of the 
first species, F1, is not only a function of its own strategy (xl) but also a function 
of an opponent species' strategy (x2): 

F1 = El (Xl, x2) 

Similarly the fitness of the second species, F2, can be written: 

F2 - r2(xj, x2). 

Suzuki and Iwasa [21] and Yamaguchi [24] constructed game models, to explain 
the sex ratio of wasps and aphids respectively, using n person games. In their 
paper they assumed the Nash solution [17, 19] in the game theory was a goal of 
coevolution. 

The Nash solution is an uninvadable strategy, which is easily understood by 
the definition of the Nash solution (Eq. (2) in the next section). However, 
whether the strategy attains the Nash solution in the evolutionary dynamics is a 
separate question. To illustrate it, we consider a simple example in which the 
fitness functions are quadratic as: 

F1 = - x ~  +4x lx2+ x~, 

F 2=x~ + 4 x l x 2 - x ~ ,  

where we note that the origin (x~, x2) = (0, 0) is the Nash equilibrium. 
Now we assume that the evolutionary change of the strategy always occurs 

in the direction of the increase of its own fitness; i.e. x~ changes in the direction 
of F~ increasing and so on. F~ is the maximum on the line ~F~/~x~ = 0 for fixed 
x2 because the second derivative is negative (see Fig. 1). Thus in the regions A 
and B, x~ changes to the right (x~ increases) and in the regions C and D it 
changes to the left (xj decreases). We can write down only the direction that x~ 
changes (Fig. 1). Similarly, F2 is the maximum on the line #F2/c?x2 = 0 for fixed 
x~. We can also write down the direction of change in x2. As shown in Fig. 1, 
in the region A or C, the set of strategies of species 1 and 2 evidently goes away 
from the origin (i.e. the Nash equilibrium), and does not attain the origin. 
Therefore it is a serious question under what conditions we can assume the Nash 
solution as an evolutionary goal, as Suzuki and Iwasa or Yamaguchi assume. If 
the strategies of species 1 and 2 attain the Nash solution dynamically, we can 
consider that the Nash solution is an actual goal of evolution. 

In the present paper, we examine the condition for an ESS to be evolutionary 
attainable. Firstly, we will propose two candidates of ESS in the coevolution 
game. Secondly we propose a mathematical model which describes the dynamical 
development of a set of strategies in the coevolution among n species. In order 
to examine evolutionary trajectories, we must know not only the sign of 
movement but also the magnitude of the speed of the evolution, but we cannot 
know both exactly in most cases. Thirdly, to avoid this difficulty we propose a 
stability concept, SDS. Next, using the dynamics of evolutionary games and the 
stability concept we prove several theorems and examine the attainability of ESS. 
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Fig. 1. The direction of  evolution. We assume that the change of strategy of a species always occurs 
in the direction of the increase of  its own fitness. F l is a max imum on the line OF I/Oxl = 0 to a fixed 
x2 and F2 is a max imum on the line 6F2/~x2 = 0 to a fixed xl .  In the region A or C, strategies of  
species 1 and 2 seem to go away from the origin (i.e. the Nash  point) 

In a few examples we demonstrate that the solution with maximum fitness may 
not be attainable in the course of evolutionary games. Finally we check on the 
attainability of several simple examples including the sex ratio game models. 

2. The dynamics of evolutionary games 

Coevolution usually indicates the simultaneous evolution of two or more species 
which strongly interact with each other, such as host and parasite, prey and 
predator, and among competitors [7]. We may also consider the coevolution 
among individuals in the same species if those individuals play different roles, for 
example, male and female. Hereafter we call both cases, i.e. intra- and inter- 
specific coevolution, an evolutionary game. In evolutionary games, a fitness of 
the ith species (or players), F s (i = 1, 2 . . . . .  n), depends not only on its own 
strategy, xi, but also on the other species' (or players') strategies, xj ( j  4= i), 
where xi is assumed to be a continuous variable and n is the number of species: 

F 1 - F , ( x l ,  x 2 , . . . )  

F2 =- Fz (x , ,  x2 . . . .  ) (1) 

z 

F ,  =- r n ( x ~ ,  x 2 ,  . . . ). 

As mentioned in Sect. 1, our purpose in this paper is to examine whether 
the ESS of evolutionary games is an actual goal or not. Here we will 
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Fig. 2, The contour maps o f F  i in Example 1. The numerics attached to the contour lines in the figure 
represent the values of  Fi. The origin is a Nash point and a saddle of  the dynamics of  Eq. (4) for any 
k i's. Thus the Nash point is not always SDS. a F1; b F 2 

propose two candidates of  ESS in evolutionary games. One candidate of  ESS, 
(x* . . . . .  x*),  satisfies the Nash conditions [17, 18]: 

F i ( x * , . . . , x *  . . . . .  x * )  > Fi(x  ~ . . . .  , x i , . . . ,  x * )  

for a l l x i ~ x *  ( i = 1  . . . .  , n). 

At an interior Nash equilibrium point, the above condition can be rewritten as 

_ _  ~ 2 F i  , 
t?F"(x]~ . . . .  x*) = 0 ,  , x , )  < 0  (i 1, ,n). Oxi ' ~ (Xl . . . .  * . . . .  (2) 

I f  a mutant  of  the ith species with strategy xi + x*  invades the population 
adopting a Nash ESS, x*,  then the mutant  will be driven out because the 
mutant 's  fitness is less than that of  the Nash ESS. 

Example 1. This example has a Nash ESS in the 2-species game. When Fi has a 
quadratic form: 

F i =  - 2 x ~ -  5 x l x 2 - 2 x ~  ( i = 1 , 2 ) ,  

the contour map of the fitness for each species can be drawn as Fig. 2. Since at 
the origin ~?F~/t?xi = 0 and ~?2F~/~x~ = - 4  < 0 (i = 1, 2), the origin is a Nash 
ESS. 

Another candidate, named "strict ESS", satisfies the following condition: 

Fi(x* . . . . .  x*  . . . . .  x * )  > F,(xl  . . . . .  xi . . . . .  x , )  

for all (Xl . . . . .  x: . . . . .  x,)  4= (x* . . . . .  x* . . . . .  x*). 

This is a stricter condition than a Nash ESS. As a consequence of this definition, 
the fitness at a "strict ESS" point is maximum for each species. Thus, just as with 
the Nash ESS, a mutant  will also be driven out. 

Example 2. 

F 1 = - x ~  + 3 x l x 2 -  3x~ 

F2 = --3x~ + 3x l x2 - -  x 2. 
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Fig. 3. The contour maps of F i in Example 2. The numerics attached to the contour lines in the figure 
represent the values of Fi. Although the origin is the maximum point of the fitness of both species 
1 and 2, it is a saddle point of the dynamics of Eq. (4) for any k i's. The maximum point is not always 
SDS. a F~; b 

As in the previous example, Fig. 3 are the contour maps of species 1 and 2, 
respectively. Since at the origin, 

~?F' = ~F~ = 0, 02F' ~?2F' < 0 (3.1) 
0x~ ~x2 axe' ~x~ 

and 

0x~ Ox~ \ 0 x ~ J  > 0 (i = 1, 2), (3.2) 

the origin is a maximum-fitness point for both species. It is a "strict ESS". 
Now we introduce a dynamical model of evolutionary games to examine the 

evolutionary trajectory of a set of strategies. We make two assumptions: (a) a 
strategy of each species changes gradually in the course of evolution and (b) the 
change of  the ith species' strategy always occurs in the direction of the increase 
of the ith species' fitness because of mutation and natural selection. Therefore, 
when #Fi/Oxl > 0, the increment Axi, is positive and when ~Fi/3x~ < O, Ax~ is 
negative. Namely we have 

OF, 
~x~ Ax~ > O. 

Thus we assume that the change rate of xi can be expressed as 

dxi = ki(xl  , . .  x~) OFi 
dt "' ~x~ ( i = l , 2 , . . . , n ) ,  (4) 

where the coefficients are positive-valued functions of x~, x z . . . .  , xn : 

k i ( x l , x2  . . . .  ) > 0  for a l lx .  

Since the first derivatives are equal to zero at both a Nash ESS and a strict ESS 
(Eqs. (2) and (3)), ESS points in both cases are also equilibrium points of 
evolutionary dynamics. 

In this equation the derivative terms represent the direction of evolution due 
to natural selection, ki is a function which should be determined on some genetic 
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bases or paleontological data. But in the present discussion we do not specify the 
functional form of ki because it is generally an unknown factor. Some authors 
(Lande [14] and Roughgarden [18]) use the similar dynamical form: in Rough- 
garden's case ki = 1, and in Lande's case k~ = h2a2/W, where h 2 is the heritabil- 
ity, a2 is a phenotypic variance and W is the average fitness. Thus Eq. (4) is an 
expanded version of  Lande's and Roughgarden's works. 

3. Strongly determined stability and theorems 

Since in the present discussion we do not know an exact functional form of ki, 
we cannot directly examine both the trajectory of evolutionary games and the 
local stability of the equilibrium point for a given Fi and Eq. (4). Therefore we 
propose a stability concept: strongly determined stability (SDS). It is defined by 
two conditions: 

(I) An equilibrium point is locally stable for any functional form of ki > 0. 
(II) Condition (I) remains unchanged under small perturbations for F,.. 

The stability condition is similar to the D-stability proposed by Arrow and 
others [1-3]. The difference between the two concepts is the above condition 
(II). We need the structural stability of  the evolutionary dynamics (Eq. (4)), 
which is expressed by condition (II), because fitness functions are usually 
perturbed in the course of evolution. 

Using this notation of  stability, we can examine the attainability of ESS even 
if we do not know an explicit functional form of ki; i.e., if an equilibrium point 
is SDS, we can assure that the evolutionary trajectory of a set of strategies can 
attain the equilibrium point. 

First we consider a relation between an n-species system and a subsystem 
consisting of less than n species. We fix a pair (F, x*), where F = (F1 . . . .  , Fn) is 
the fitness functions and x* = (x*, x* . . . . .  x*)  is an equilibrium point of F, that 
is, x* satisfies (~Fi/Oxi)], = 0 for each i. Now, we define the subsystem of (F, x*) 
which consists of m-species Pl,P2, • . .  ,Pro with 1 £ P l  <P2 < " ' " <Pm ~ n .  Let 

Gi(Yl . . . . .  Ym) = Fe(z,, - - -, z,,), 

where 

)?j if i = pj for some j, 

z i=  x* otherwise. 

Then G=(G1 . . . . .  Gin) has an equilibrium point y * = ( y * , . . . , y * , ) =  
( x L ,  , . . . .  xpm ) corresponding to x*. This pair (G, y*) is called the subsystem of  
(F, x*). The number of subsystems of m species is n ! / m ! ( n - m ) ! .  And the 
number of all subsystems is 

~-] n! 

m~=l m!(n -- m)! 
- 2  n - 2 .  

Then the following theorem about SDS holds. 

Theorem 1. I f  an equilibrium point of  an n-species system is SDS, then the 
corresponding equilibrium point y* of  any subsystem is SDS. 
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Proof  Here we will prove the contrapositive proposition of Theorem 1; i.e., if 
there exists a subsystem such that the corresponding equilibrium point is not 
SDS, then the equilibrium of an n-species system is not SDS. 

Consider an n-species system and an equilibrium point of the system, 
(x*, x ~ . . . .  , x*). The Jacobian matrix at the equilibrium point can be written as 
follows: 

where 

J = {aij } : n × n matrix, 

~2Fi • 
a,j = M x ~ ,  . . . , x*, ) ~ • 

Hereafter, • means the derivative value at the equilibrium point. Next we 
consider an m-species subsystem consisting of p~, P2 . . . . .  pm-th species and the 
corresponding equilibrium point, y*, of it. The Jacobian matrix of the subsystem 
is a submatrix of the above matrix (J), obtained by selecting p ~ , p > . . .  , p m - t h  
lines and P a , P 2 , . . .  , p m - t h  columns from J. If  there exists a set of k,'s 
(i =P~,P2 . . . .  ,Pm)  such that the corresponding equilibrium point of the m- 
species subsystem is unstable (i.e., if it is not SDS), then the equilibrium point of 
the n-species system can be unstable when k~'s (i = p ,  ,P2 . . . .  , p,,) become very 
large. Thus the equilibrium point of the n-species system is not stable irrespective 
of k~; i.e., it is not SDS. (Q.E.D.) 

Theorem 2. The necessary and sufficient conditions for  an equilibrium point o f  1, 
2 and 3-species system to be SDS are as follows, respectively: 

Case n = I 
02F1 • 
~x 2 < o  (5. |)  

Case n -= 2 

and 

02F" • 
Ox 2 < 0  ( i = 1 , 2 )  (5.2) 

{ ~ F 1 0 F z ~  OeF102F2 ~2F, 02F2 , 

J * \ a x l '  Ox2) ax~ ax 2 axlax20x~ax2 >0 ,  

where J(  . , . ) is a Jacobian. 

Case n = 3 

M,2,M>M3,>0, 
and 

0:F; • 
0x 2 < 0  (i = 1, 2, 3), 

where 

Mij  = \ O x ~  ~ x ~ ) ,  J*  \ & ,  % )  

A proof is given in Appendix 1. 

(5.3) 
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Here it should be noticed that, since Eq. (5) contains only the derivatives of 
the fitness, whether an equilibrium is SDS or not is not altered by adding a 
constant to each fitness function. Although we use fitness functions with negative 
values in some examples in the present paper, we can change them by adding a 
positive constant as the result remains unchanged. 

The first condition in the 2-species case is the same as the Nash condition, Eq. 
(2). The Nash condition, therefore, is a necessary, but not a sufficient, condition 
for a 2-species system to be strongly determined stable (SDS). Thus from this 
theorem we can examine the attainability of  a Nash ESS irrespective of ki by 
checking only the second condition. The Nash ESS is attainable if the determinant 
of the Jacobian is positive and the dynamical trajectory never attains the Nash 
ESS if the determinant is negative. The SDS condition of a 3-species game is 
slightly complicated and consists of 4 inequalities. The first two conditions are the 
same as the SDS condition of a 2-species system. In comparing between the SDS 
conditions of n = 1, 2 and 3 systems, the condition of a 2-species system includes 
the condition for a 1-species system. And the condition of a 3-species system 
includes the condition of  1 and 2-species system and so on (see Theorem 1). 

We will go back to the previous two examples. In Example 1 the Nash 
solution, which satisfies Eq. (2) is ( x * , x * ) = ( 0 , 0 ) .  Since Fi = - ( 2 x l  +x2)  
(x, + 2x2) > 0 in the regions B and D of Fig. 2, both species can obtain higher 
fitness in these regions than at the Nash point. The Jacobian of Example 1 is 

(OF, ~ F 2 ) = - 4  _-5 4 = - 9 < 0 .  
- 5  

Using the SDS condition of a 2-species game (Eq. (5.2)) we find that the Nash 
point is not SDS and furthermore that it is locally unstable for any functional 
form of k~. Thus the dynamics of evolution from any initial point does not attain 
the Nash equilibrium. Although the Nash solution is generally accepted as one 
of the equilibrium points in game theory, it is not always possible to attain the 
Nash solution. Results of our analysis also show that there is a large difference 
between the statical and dynamical approach to evolutionary games. 

In Example 2, both species can obtain the highest fitness at the equilibrium 
point. However, as in the previous example, it does not satisfy the SDS condition 
because the determinant of the Jacobian, 

(0FI 0F2~ - 2  
J* k, ax, ' ~x2 } = l 3 -32 '  

is negative. As shown by the example, the maximal condition is not sufficient for 
SDS nor is it a necessary condition for SDS (compare Eq. (3) and (5.2)). Strictly 
ESS, the fittest strategies for both species, seems to be considered as the solution 
of evolution in evolutionary theory. However, although both species 1 and 2 
improve their own strategies, they cannot obtain the highest fitness in Example 
2; the dynamics of this example cannot attain the strictly ESS point. 

4. Applications 

4.1. Competitive cases 

In this section we consider a competitive case in which two species compete with 
each other. 
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Theorem 3. I f  a set of  the fitness functions, FI and F2, has a Nash equilibrium 
(x*, x*),  and there exists a function of  h(z) such that 

F~ = h(F2) and dh/dz < 0 (6) 

for some neighborhood of  (x*, x*),  then 

0F1 * ~F2 
(i) 3x 2 =c~x~[*=0 '  

2 F  1 • ' . . 6 3 2 F  2 

Ox iOxj = h ( z )  z=F2(x,,x 2 ) ~  . ( i , j = l , 2 )  

and 

(ii) Nash solution is SDS. 

A proof  is given in Appendix 2. 
Condition (6) means that the increase of the first species' fitness (F1) for 

some neighborhood of a Nash equilibrium always leads to the decrease of the 
second species' fitness (F2) and vice versa; i.e. the interaction between two species 
is competitive. In this case, the Nash solution is always SDS. Thus we can adopt 
the Nash solution as a goal of the evolutionary game. 

Collorary of Theorem 3. (zero-sum games). When a zero-sum game (F1 + F2 = O) 
has a Nash solution, the Nash solution is always SDS. 

Proof. We consider a function of  h(z) =- - z .  This function satisfies the condition 
(6) of Theorem 3 because F~ = - F 2  and dh/dz = - 1. According to Theorem 3, 
the Nash solution is always SDS. (Q.D.E.) 

Thus zero-sum games, already treated in the game theory, represent one class 
of example for the competitive case. In this case the Nash solution is always 
SDS. Here we show two examples included in the competitive case with Nash 
solution. 

Example (a) 

FI = - x  2 + 3xlx2 + 2x 2 

F2 = x ~  - 3 x ~ x 2  - 2 x ~ .  

Since F~ + F2 = 0, the Nash solution of the example (0, 0) is SDS from the 
collorary of Theorem 3. 

Example (b) 

F1 = - x  2 + 3xl Xe ÷ 2x 2 

F2 = exp(x~ - 3xl x2 - 2x2). 

Since F 1 and F 2 satisfy the condition (6) (i.e. h(z) = - l n  z and dh/dz = - 1/z < 0 
because of F2 > 0), the Nash solution (0, 0) is SDS. 

4.2. Biological examples 

(a) Wasps game. In order to explain the greatly different sex ratios among 
gregarious parasitoids, Suzuki and Iwasa [21] constructed a model for the 
non-cooperative game among two haplo-diploidy female wasps. They especially 
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focused on the difference in strategies of two females that oviposit on the same 
host. The first female attacks an unparasitized host and the second an already 
parasitized host. They denote the inclusive fitness of the ith wasp with 
Fi (i = 1, 2): 

F~ = (1 - p ) ( r a  + rs)(1 - x , ) N ~ h ( N , )  + pNIh(N1 + N2) 

X r a ( 1 - - X l ) + r , x  I ) V ~ I + N z x  2 1 , 

{ 1)} F 2 =  N2h(N1 + N2) rd(1 - x2) + rsX2 N 1 ~  + N2x2 

where xi is the progeny sex ratio of the ith player, ra, rs is the relatedness of 
daughters and sons respectively, Ni is the number of eggs by the ith wasp, p is 
the proportion of doubly parasitized hosts among parasitized hosts and h(N)  is 
a decreasing function describing the density effect on the reproductive success. 

(x I , x2) as a goal of They analyzed the model and obtained a Nash equilibrium * * 
the evolutionary game among the first and second females. The Nash solution is 

J J ( 1 - p )  
~(1 + N )  ~(1 + N )  - ~ + 1  

l - p + 2  + 2 

where J = 2r~/(r d + rs), N = N2/N,  and f =  h(N  1 + N2) /h(NO.  
Using Theorem 2, we can analyze whether the Nash equilibrium of this wasp 

game is SDS or not. In Table 1, we show the second derivatives of F~ and F2. It 
should be noted that 

0 2F 1 * 0 2F 2 * 

c3xl~x2 = - p ~  " 

Thus the Nash equilibrium point is SDS for all positive parameter values 
(ra, r~,p, h(N),  N1, N2) as long as the Nash solution is an interior equilibrium 
point (0 < x~', x* < 1). 

(b) Aphids game. Another example we show here is a non-cooperative game 
model among the mother aphids subject to local mate competition [24]. 
Yamaguchi assumed in her paper [24], 

Table 1. The second derivatives of F i 

~2F i 32F i 02Fi 
~x~ "~xl ~x2 ~x 2 

i = 1 --2pNlx2g(x 1 , x2) p(Nlxl - -  N 2 x 2 ) g ( x  1 , x2) 2 p N 2 x l g ( x l ,  x2) 

i = 2 2N 1 x2g(x I , x2) -(N1 xl - Nzxz)g(x~, xz) -2Nzxl g(xl, x2) 

r~Ni N2(N1 + N2)h(N1 + Nz) 
where g(x l ,  x2) 

(Nix1  - N2x2) 3 
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(1) Females differ in their total parental investments: 

P ~ < P 2 <  <Pn ,  

where Pi is the total parental investment of the ith female. 
(2) Each female can control her offspring sex ratio, x~, which is the proportion 
of Pg invested in sons. 
(3) Natural selection will favour offspring sex ratios that maximize each moth- 
er's inclusive fitness. 

The inclusive fitness of the ith mother (F~) in a patch founded by n mothers can 
be written as 

rRyPi 
F, = Wd { ( 1 - x i )  +xiB/A}, 

where r is the relatedness of a mother to her offspring, Rf is the reproductive 
success of  a daughter, A = ~ Psx i and B = ~ Pi (1 - x l ) .  Yamaguchi obtained 
the Nash solution as the optimal sex ratios: 

x* ~ Pin - 1  A* n--1 
- -  Pi 2n 2 ' -- 2n ~ Pi. (7)  

We apply Theorem 2 to the example. The second derivatives of F~ are obtained 
by substituting Eq. (7): 

02Fiox 2 *- lq--Sn-- I PiBi (8.1) 

OZFi * -4n(n - 2) PjB~, (8.2) 
( i # j ) ~  - ( n - l )  2 

where 

Bi rRfPi 
y 

When n = 2 (the game between 2 females), 

• 02Fi • {OF, OF2) 
( i # j ) ~  =0 ,  J*\OXl'~xz] =256P'P2B1B2>O 

are obtained from Eqs. (8.1) and (8.2). Thus, according to Eq. (5.2), the 
equilibrium point is SDS. 

When n = 3, substituting n = 3 into Eqs. (8.1) and (8.2), we can obtain 

02F~ • 02Fi • 
Ox~ = - 12PiBi < 0 (i = 1, 2, 3), 0x~. 0xj = -3PjB~, 

(OF, OF2 OF3~ 
J* \Oxl ' Ox2' Ox3J = -1458P1P2P3BIB2B3, 

D = - 1458/( -- 12) 3 = 27/32 > 0, 

M12 = M23 = M31 = 15/16 > 0, 

1 ~ . 5 / 4  = , ~  < ~ + ~ 3  + ~ = 3w/~/4.  
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Thus, according to Eq. (5.3), the equilibrium point of the 3-females game is SDS 
for all parameter values (r, R f ,  P~, wa,  ws).  

Furthermore, for any n, we can find a global Liapunov function of this 
example as follows. Let 

F ( X l ,  • . . , 

where P = ~ Pi ,  X,. = p i x i ,  X = 

And so, for any k 1 . . . .  , kn, F 

x.) PCX"- Z 2 + 
- 2 + X ,  

~, Xi. Then we have, for each i, 

3 F  i 1 r R f O F  

Ox~ - X 2 wa ~x i  " 

is the Liapunov function of 

d 

As a result, the equilibrium point (x* . . . .  , x*) is asymptotically stable for any 
kl . . . . .  kn. It is a "dissipative system", as pointed out by Logofet [15]. Thus it 
is SDS (in detail, see [15]). 

5. Discussion 

ESS is often regarded as a goal of evolution without considering the dynamics of 
evolution. However, the analysis based on the present dynamical model of 
evolutionary games has shown that in order to confirm the attainability of ESS, 
it must be checked carefully. The dynamical stability of ESS has been studied by 
many authors [6, 9, 11, 12, 22, 25, 26] in recent years. Taylor and Jonker [22] 
examined the stability of ESS, using the continuous-time dynamics of mixed 
strategy of a single population; i.e. the time change of frequencies of individuals 
adopting n discrete tactics, and confirmed that ESS is locally stable. A series of 
studies by Hofbauer and his colleagues [ l l ,  12] or Zeeman [25, 26] showed the 
same result as Taylor and Jonker's and other properties of the dynamics. 
Furthermore Eshel and Akin [6] proposed the coevolutionary game model 
describing the discrete-time dynamics of mixed strategies of multi-species. Their 
main result is that no equilibrium of mixed strategies is locally stable. Hines [9] 
also showed that a non-trivial equilibrium of mixed strategies of two species 
without intraspecific interaction is necessarily unstable in the discrete-time model. 

In the present paper, we proposed the continuous-time model describing 
the evolutionary dynamics of phenotypic traits of multi-species with frequency- 
independent fitness, and we have examined the dynamical attainability of ESS in 
evolutionary games. We have obtained the conditions given by Theorems 2 and 
3 as a convenient tool for checking the attainability of ESS. The main point of 
Theorems 2 and 3 is that we can check the attainability of ESS even if we do not 
know the exact form of d x i / d t ;  i.e., we can check it as long as we know the set 
of fitness functions, F~ (i = 1, 2 . . . . .  n). 
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It should be noted that there are many strange cases in evolutionary games. 
By using Theorem 2, we show that both the Nash solution and the solution with 
maximum fitness (strict ESS) are not always attainable (Examples 1 and 2). 
Furthermore it may happen that a species attains the point with lowest fitness in 
the course of evolutionary dynamics, as exemplified in the following. 

Example 3 

F1 = - 2 x  2 + 5xlx2 - x~ 

F 2 = 2x~ - 2 x  1 x 2 q- X 2 . 

We, furthermore, assume kl = k2 = 1. Then the evolutionary dynamics is given 
by 

dxl/dt = -4x~ + 5x2, 

dxz/dt = - 2 x l  + 2x2, (9) 

and the Jacobian is given by 

J * \ ~ x  ' ~ x 2 / =  242 ~" 

In this case the second species has the minimum fitness at the equilibrium point 
(0, 0). However, from tr J* < 0 and det J* > 0, the equilibrium point of Eq. (9) 
is locally stable (see Fig. 4). Therefore the trajectory of the dynamics attains the 
equilibrium point. As a result the second species finally obtains the minimum 
fitness although it changes its trait in the direction of fitness increasing. 

Now we will try to analyze the attainability of ESS in the single-species 
evolution in a continuous phenotype scheme in order to clarify the difference 
between evolutionary games and single-species evolution. When a species has a 
fitness function, F, depending on n trait-values, x i (i = 1 . . . . .  n), of its own, it 
can be written as: 

F ~ F(xl,  x2 . . . .  ). 

X 2 

0 

a b 

Fig. 4. a The trajectories from some arbitrary initial points in Example 3. b The contour map of F 2. 
It has the minimum value, 0, at the origin, i.e. the equilibrium point. Since the equilibrium point of  
Eq. (9) is stable, the trajectory attains the equilibrium point. As a result the second species finally 
obtains the minimum fitness although it changes its trait in the direction of fitness increasing 
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Just before, the evolutionary dynamics of n trait-values is given by 

QF 
dXs=ks(X'dt . . . .  . . . . .  x=l~x ~ ( i = 1  . n). (10) 

The equilibrium point x* satisfies aF/3xi = 0, which is the necessary condition 
for maximal fitness. Equation (10) is very similar to "the gradient system", 
except for the multiplicity of ks. The derivative of F by t is given by 

dF OF dx i ( ~F~ 2 
dZ - 2 ~x i dl - Z  k' \~x~) >~0. 

dF/dt is equal to zero if and only if it is on an equilibrium point. Thus F 
increases with time like a Liapunov function and approaches one of the maximal 
points. It may be considered as a goal of evolution. Therefore the solution 
obtained by the optimal strategy theory is always SDS [15]. 

In this paper we have presented only simple examples each of which has a 
single equilibrium point. When there is more than one equilibrium point, we 
must analyze the global properties of our dynamical model. In such cases then, 
we cannot discuss whether the trajectory actually attains those equilibria or not 
without knowing the initial condition. It should also be noticed that when the 
equilibrium point is located on the boundary of a possible strategy set, we cannot 
directly apply the present criterion. In this case, we must analyze the dynamical 
model by assuming ki = 0 on the boundary. 

Appendix 1 

Proof of Theorem 2 

The linear part of Eq. (4) at the equilibrium point (x*, . . . ,  x*) is given by 

(,) 
o) (< <), 

J* \~x~ . . . . .  & . J  

where k* = ki(x* . . . . .  x*) for each i = 1 . . . . .  n and x* satisfies n equations 
#Fi/Oxs=O ( i =  1 . . . . .  n). For ease of notation, we drop "*" of k*. By 
condition (II), the stability must persist under any small perturbation of this 
linear part. Hence, the degenerate cases are eliminated and all of the eigenvalues 
of ( .)  have negative real parts for SDS equilibrium points. 

(i) Case n = 1. The condition that the eigenvalue has a negative real part is 
calculated easily as follows: 

, 02FI * 
k~(x, )V~x2 ~ <0. 

Thus the SDS condition is 

2F  1 • 

8x~ < O. 
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(ii) Case n = 2. When each eigenvalue, 2, which satisfies the following equation, 
has a negative real part, the system of 2-species is locally stable: 

22 + a l 2  +a2 = 0, 

where 

O2F 1 a2F2 • 
a , = - k  I 0x 2 , - k 2  

a2 = k l k f l ,  \Oxl ' ~x2,]" 

The stability condition is al > 0 and a 2 > 0. Thus the stability condition for 
arbitrary positive functions kl, k2 can be written as Eq. (5.2). 

(iii) Case n = 3. When each eigenvalue, 2, which satisfies the following equation, 
has a negative real part, the system of 3-species is locally stable: 

2 3 ~- a12 2 + a22 q- a s = 0, 

where 

02F, • 0 2F 2 • 02F3 
a, = - k ,  Ox~- - k z  Ox~- - k 3  ax~ * 

a2 = k , k z J ,  \ ~ x ~ '  Ox2/I + k : k 3 J ,  \Ox2 ' OX3J -[- k 3 k l J ,  \0x3 '0x~J (A1) 

(OF, OF 2 ~F3~ 
a3 = - k l k z k 3 J ,  \ O x l '  OXz' OX3]" 

From Theorem 1 and Eq. (5.1), 

a~Fi 
c3x~ < 0 (i = 1, 2, 3). (A2) 

In addition, the 2 x 2 minors should be strictly positive according to Theorem 1 
and Eq. (5.2). Thus, M~2, Mz3 and M3~ are all positive. The Routh-Hurwitz  
conditions of local stability are [8, 13] 

al > 0, (A3.1) 

a3 > 0, (A3.2) 

ala2 > a3. (A3.3) 

Equation (A3.1) is already satisfied by Eq. (A2). Substituting Eq. (A1) into Eqs. 
(A3.2, 3) and dividing Eqs. (A3.2, 3) by 

(¢32F, O2F 2 02F3 '] 
- k ,  k2k3 \ l ax 3 J, > 0  

(the left-hand side is positive from Eq. (A2)), we obtain 

= (0zr ,  ~32F2 02F3~ -I (0F1 ~Fz ~?r3~ 
D \ ex21 Ox 2 ~x 2 i], J* \ O x , '  ~x 2 ' ¢3x3] > 0 (a4)  
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(~' k' ) (5M2,+') 1 M 3 k' 
'z + k-~l M23 + \k ' ,  ~ M 3 ,  

M31 -1- ~33 M12 -4- MI2 q- M23 -4- M31 > D, 

~ (a2ria%-, (ari OF,) 
k', = k ,  ex-7 ' M~' = \-~x~, g~,x~ ) J* \ ax, ' e x /  

The left-hand side of Eq. (A5) is larger than or equal to 

2 ~ +  2 ~  + 2 M3x/~IM12 + M,2 + M23+ M3, 

(When the equality holds for k;:  k~: k~ = x/-~23 : x/~31 : x~12. )  Thus 

~ < ,/~,~ + ,/-<;2, + ,/~7, 

(AS) 

Appendix  2 

If a set of the fitness functions, F1 and F2, has a Nash equilibrium, then 

OF1 * OF2 * 02Fi • 
C3Xl =~x2 =0,  c3x2 <0  ( i=1 ,2) ,  (A6.t) 

where • means the derivative coefficient at an equilibrium. If there exists a 
function of h(z) such that F~ = h(F2) and dh/dz < O, 

C3Fl h'(z) c3F2 aFl , c~F2 
ex-7 = ax-7' ~x2 = h (z) ~ .  

From (A6.1) and h'(z) < O, 

~Fj * = OF2 
~x2 axt * = 0. (A6.2) 

The second derivatives at the Nash equilibrium are easily obtained in terms of 
Eqs. (A6.1, 2) as follows 

0 2F 1 • 0 2F 2 , 
Ox~ exj = h'(z)L-=r2¢xt, x ~  (i,j = 1, 2) (A6.3) 

Thus the former part of Theorem 3 holds. If Eq. (A6.3) is satisfied, the Nash 
equilibrium point is SDS because 

(aF',OF2~ -a2Fla2F2 ~2F2 h(Z) Ox~-~2 >0  
J* \ax~ &2J &2 &2 ax~ ax2 

from Theorem 2. Thus the latter part of Theorem 3 holds. (Q.E.D.) 
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