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Abstract. A simple stochastic description of a model of a predator-prey system 
is given. The evolution of the system is described by means of It6's stochastic 
differential equations (SDEs), which are the natural stochastic generalization of 
the Lotka-Volterra deterministic differential equations. Since these SDEs do not 
satisfy the usual conditions for the existence and uniqueness of the solution, we 
state a theorem of existence; moreover we study the stability of the equilibrium 
point and perform a computer simulation to study the behaviour of the trajecto- 
ries of solutions with given initial data and to estimate first and second moments. 
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1. Introduction 

In this paper, we deal with a simple stochastic version of a predator-prey system. 
This system belongs to a wide class of two-dimensional stochastic models 
obtained as an extension of the well-known Lotka-Volterra model; these models 
have received much attention both in the deterministic and stochastic case (see, 
for instance [4, 10, 14, 20, 22, 23]), since they are able to describe interacting 
populations, chemical reactions, genetic evolution, and many other phenomena 
in the life sciences. 

It is well known (see, e.g., [9, 17, 19]) that the need for randomizing classical 
deterministic equations and thus considering stochastic models is related to the 
presence of random environmental fluctuations (external randomness) and/or to 
the effect of internal randomness (due to random fluctuations in growth, 
generations and deaths of individuals into the population) known as demo- 
graphic stochasticity. 

In many classical works, recurrence properties, stability, existence of the 
equilibrium probability distribution, and extinction probabilities for stochastic 
models of interacting populations are considered, with regard to random envi- 
ronmental fluctuations or to noise perturbations of parameters. Indeed, one 
supposes that some parameter c~ (such as the carrying capacity, or a competition 
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coefficient, or intrinsic growth rate) varies randomly according to the equation 
c~ = s o + A ( t ) ,  where % is a constant, being the mean value of c~, and A ( t )  

represents a white noise with mean zero and a certain variance o -2 (see, e.g., 
[ 11, 22, 241). 

The external (environmental) randomness leads to destabilizing effects and to 
extinction of the population under certain conditions [11, 22]. 

In this paper we consider internal randomness. By modelling the process by 
means of stochastic differential equations we are able to prove the existence of 
the solution of these equations for all time, and the impossibility of extinction. 

At this point, it is appropriate to consider the mean of the stochastic 
differential equation, that is in what sense one has to interpret the stochastic 
differential of a process X~. 

At least, two possible definitions of stochastic differential are available, which 
lead, respectively, to It6's calculus and Stratonovich's calculus. Many authors 
have considered which of the two approaches is more suitable in any particular 
circumstance (see, e.g., [25]). For instance, in the case of environmental random- 
ness, Ricciardi has pointed out that Stratonovich's and It6's differential equa- 
tions related to given difference equations describe two different dynamical 
systems, with the first arising when the intrinsic continuity of the process is 
assumed, the latter when this condition does not hold [25]. 

In our model, since we consider internal randomness, a description of the 
evolution of populations by means of birth and death processes is more 
appropriate (similar models have been proposed earlier, e.g., in [6, 15]). This 
leads to a description in terms of martingales. Indeed, the above considerations 
ultimately suggest that we formulate the evolution of the system by means of 
It6's stochastic differential equations (SDE's). These SDEs do not satisfy the 
usual conditions for the existence and uniqueness of the solution; so, we shall 
deal with a theorem of existence of the solution for all time. 

Although other authors have studied systems of stochastic differential equa- 
tions under a variety of "non usual" conditions on the coefficients (see, e.g., 
[18]), our results appear to be new. 

From the existence theorem, it also follows that the extinction probability for 
both populations is zero. This is not surprising, if we compare it with other results 
in the classical literature [22] in which external randomness is considered, and the 
population is soon extinguished if the intensity of random fluctuations is too large. 
Indeed, in our model, if we denote the deterministic component by u, the 
stochastic perturbation is of order u ~/2, as internal fluctuations are represented. 

We assume a Gompertz growth model for prey; one should recall that, in the 
case of a population following the Gompertz law, if external randomness is 
considered (such as random fluctuations of the population's carrying capacity), 
one can prove that persistence of the population in the environment is indepen- 
dent of the intensity of the environmental fluctuations [21]. 

Besides dealing with the existence of the solution, we study the stochastic 
stability of the system of stochastic differential equations obtained, and we 
simulate by means of a computer, the trajectories of the solutions with given 
initial data; so we can consider the effects due to internal randomness of the 
model. 

Numerical simulations allow us to study the behaviour of the solution as a 
function of time, with regard to the stochastic stability of the nontrivial equi- 
librium point. Many simulation runs are carried out to estimate the first and 
second moment of solutions. 
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In Sect. 2 we deal with the mathematical framework for the biological model 
which is described by means of a system of It6's stochastic differential equations. 
To make their meaning more transparent, we start with a birth-and-death-like 
model and show our stochastic differential equations follow naturally from it. 

In Sect. 3 we study stability and in Sect. 4. we state a theorem of  existence, 
for the solution of  the system of  SDEs considered. Section 5 is finally devoted to 
numerical simulation. 

2. Mathematical description of the biological model 

First, let us consider a population of prey in the absence of predators. The time 
evolution of  such a population can be described in terms of "birth-and-death" 
processes. Indeed, let X(t)  be the number of prey individuals at time t, where X(t) 
is a random variable (r.v.), since its values depend on many random factors. 

Let us consider now a single individual of the prey population. If AoX(t)  is 
the increment of  the r.v. X(O during the time interval (t, t + At), due to the 
individual considered, AoX(t) is also a r.v. which can take the values _+ 1, 0 
corresponding, respectively, to the birth of a new prey, the death of the 
considered prey, and the case in which it merely remains alive, during the time 
interval (t, t + A t). 

More generally, we can speak of "growth" of prey, rather than "birth"; if the 
prey population is very simple (e.g., unicellular organisms) growth simply means 
birth of a new individual. For more complex populations, we may have to wait 
some convenient time g for the generation and birth of a new individual. 

We can suppose that we are in the case of nonoverlapping events, i.e. during 
the time interval (t, t + At) one and only one of the above mentioned events can 
occur. 

So, if we consider a time interval of length dr, we have 

P ( d o X ( t  ) = + l/F,) = 21( 0 dt 

P(doX(t) = - 1/Ft) = #1 (t) dt + q)(X(t)) dt (2.1) 

P(doX(t) = O/F,) = 1 - [2, (t) + #, (t) + qo(X(t))] dt, 

where doX(t) represents the increment of the population due to the single 
individual considered over the interval of length dt, P(-/-)  is the conditional 
probabilty that the r.v. X(t)  has an increment doX(t) over (t, t + dr), given all 
events until the time t, and F t denotes the a-algebra of the past  (i.e. F, is the 
a-algebra generated by {X(s), 0 ~< s ~< t}). 

The quantity ~1 (t) is the growth rate of prey, #1 (t) is the death rate of prey; 
the term ~o(X(t)) introduces a further death rate due to the boundedness of 
disposable food resources (this term is typically proportional to X(t)). 

The parameters in Eqs. (2.1) are called the intensities of the process, as a 
natural generalization of the Poisson process. If we consider not only a single 
prey, but the whole population, all the right members of Eqs. (2.1) have to be 
multiplied by X(t)  and we obtain 

P(dX(t)  = + 1/F~) = P(doX(t  ) = 1/Ft)X(t ) 

P(dX(t)  = - l /F,)  = P(doX(t  ) = - 1/F,)X(t) (2.2) 

P(dX(t)  = O/Ft) = 1 - [P(dX(t) = + l /F,)  + P(dY(O = - l/F,)], 
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where dX(t) represents the increment of the whole prey population over the 
interval (t, t + dt). 

So, from (2.2) we obtain the conditional expectation, that from now on we 
shall assume as positive, for the increment dX(t) 

E(dX(t)/Ft) = [21( 0 dt - {#1(0 + (p(X(t))} dt]X(t) > 0. (2.3) 

If  we define a process Mo(t) (with M0(0 ) = 0) as having increments 

then 

aMo(O = aX( t )  - F4dX( t ) /F , ) ,  (2.4) 

E(dMo (t)/F,) = 0, (2.5) 

that is the process 

Mo(t) = X(t) - Ji' [2, (s) - {#1 (s) + q~(X(s)) }]X(s) ds (2.6) 

is a martingale. 
The equation (2.5) is the Doob-Meyer  decomposition of the sub-martingale 

X(t). The process X(t) is a counting process and the equation 

X(t) = O(t) + Mo(t) - f[21(s) - {#,(s) + q)(X(s)) }]X(s) ds + Mo(t) (2.7) 

gives the process X(t) as a function of the intensity O(t)= [ 2 , ( 0 -  {#,( t)+ 
~o(X(t))}]X(t) and of a random noise component (the martingale Mo(t)). 

The conditional variance of the increments of the martingale Mo(t) is given 
by (see, e.g., [1] or [2]) 

Var(dMo(t)/F~) = Var{dX(t) - [2, (t) dt - (#, (t) + q~(X(t))) dt]X(t)/F~ } 

= Var!dX(t)/F~), (2.8) 

since 21(0, #,(t), ~o(X(t)) are predictable, i.e. fixed for given Ft, and X(t) is 
F, -measurable. 

Because dX(t) is a variable taking on values _+ 1, 0 with conditional expecta- 
tion given by (2.3), we find 

Var(dMo(t)/F~) = [2, (t) + #1 (t) + ~o(X(t))]X(t) dt - [21 (t) + #1 (t) 

+ ~o(X(t))]2X(t)2 dt 2 ~ [2, (t) + #1 (t) + ~o(X(t))]X(t) dt (2.9) 

up to a first order approximation in dt. 

Remark 2.1. Although Mo(t ) is not a continuous process, we assume the 
possibility of "approximating" the martingale Mo(t) by a continuous Gaussian 
martingale W(t), i.e. a Wiener process whose increments have expectation zero 
and variance given by the conditional variance of the increment of the martin- 
gale Mo(t) (see (2.9)). Heuristically, this fact follows by an argument of the 
central limit theorem for martingales [7, 8]. 

Until this moment, we have supposed that predators were absent. If the 
predator population is present within the same habitat, we have to modify Eq. 
(2.7). Indeed, we must consider a new additional death rate 71(t) for the prey 
population, that is 7, (t)dt represents the conditional probability that a prey is 
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killed by an individual predator, during a time interval of length dt. So, the 2nd 
line of  (2.2) becomes 

P(dX(t) = - liFt) = {#l(t)dt + 71 (t)Y(t)dt + ~0(X(t)) dt}X(O , (2.10) 

where Y(t) is the number of predators that are present at time t in the common 
habitat. Then, the time evolution of the prey population is described by the 
equation 

# 

X(t) = O(t) + M(t)  - -  .I [/~1 (s) -- ~1 (s) -- 71 (s) Y ( s )  - ~ o ( ~ ( s ) ) ] X ( s )  Ms + M 1 (t), 

(2.11) 

where M 1 (t) is the martingale such that 

dM~ (t) = dX(t) - E(dX(O/F,),  E(dM,  (t)/F,) = 0, (2.12) 

with E(dX(t) /Ft)  given by (2.3) plus the term - T l ( t ) X ( t ) Y ( t ) d t ,  and whose 
increments have the approximate conditional variance given by (see (2.9)) 

Var(dM,( t ) /Ft)  ..~ [21( 0 + #1(t) + 7,(t)Y(t)  + (p(X(t))]X(t) dt. (2.13) 

Analogously, for the predator population, we have 

P(dY(t)  = + l/G,) = [22(0 + f171(t)X(t)] Y(t) dt 

P(dY(t)  = - 1/Gt) = #2(0 Y(t) dt (2.14) 

P(dY(t)  = O/G,) = 1 - {[22( 0 + 1371 (t)X(t)] Y(t) - #2(0 r(t)} dt, 

where dY(t)  represents the increment of the entire predator population over the 
time interval of  length dt, P(-/-) is the conditional probability that the r.v. Y(t) 
( # of  predators at time t) has an increment dY(t)  over (t, t + dt), with respect to 
the a-algebra of  the "past" G, (Gt is the a-algebra generated by {Y(s), s -<< t}). 

The term 22(0 is the (natural) growth rate of predators (i.e. in the absence 
of prey); #2(t) is the (natural) death rate; fl is the biomass conversion constant, 
that is fly, (t) - 72 is the growth rate of a single predator on having killed a prey. 

As for the prey population, we can write Y(t) in terms of a deterministic part 
(see (2.4)) and a random part, the martingale M2(t) whose increments have 
conditional expectation zero and conditional variance given by 

Var(dM2(t)/G,) ~ [22(0 + flT,(t)X(t) + #2(0] Y(t) dt (2.15) 

up to a first order approximation in dt. Therefore, we obtain the following 
system of stochastic differential equations for the variables X(t), Y(t): 

dX(t) = X(t){(2, - #, - 7, Y(t) - ~o(X(t)) at} + dM, (t) 
(2.16) 

dY(t)  = Y(t) {(22 +/37, X(t) - #2) dt } + dM2(t), 

where, for simplicity, we have omitted the dependence of the parameters on their 
arguments. 

Typically, the values of the parameters in the Eq. (2.16) for a predator-prey 
system are such that 

#, '~ 7l(mUch smaller than); 7~ < 21 

22 ~ 72, /~2 ~ 72; (p(X) ~ 7, for small X. 

Then, in a simplified model, #~ (death rate of  prey in absence of predators) and 
22 (birth rate of predator in the absence of  prey) may be neglected. 
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If  we replace the martingales M~, M, z in Eqs. (2.16), respectively, with the 
products of independent standard Brownian motions W~, W 2 times the square 
root of the conditional variances of dMJ (see Remark 2.1), and we introduce the 
above simplifications, Eqs. (2.16) become 

dX, = Xt(k  ~ - ])1Yt - qffX~)) dt + [X,()q + 7~ Y, + (#(Xt)] 1/2 dW~ 

dYt = Yt( - #2 + 72Xt) dt + [Y,(/~2 + ~2)klt] 1/2 d W  2. (2.17) 

Instead of '(2.17) one may study the more general system: 

dx = (xq(x) - yp(x)) at + Ix [q(x) [ + yp(x)] 1/2 dW~ 

dy = y (  - s  + cp(x)) dt + [y(s + cp(x)] l/x dWZ,. (2.18) 

Here, q(x) is the specific growth rate of the prey; p(x) is the predator functional 
response, s is the predator specific death rate; e is the biomass conversion 
constant. The functions p(x), q(x) are supposed to satisfy the following proper- 
ties: 

q(x(O))--c~ >O; q'(x) <~O and ~ K > 0 s . t . q ( K ) = 0  

p(0) = 0; p'(x) > 0, (2.19) 

K is the carrying capacity of the environment. 
The system (2.18) with conditions (2.19) is reduced to (2.17) with the choices: 

S=  #2 

p(x) = ~ x 
(2.20) 

72x = cp(x); 0 < c = 72/•1 ~ 1 

q(x) = 2, - ~o(x). 

There are many acceptable forms for the function q(x); the simplest is the density 
independent growth rate, that is q ( x ) =  2 = constant (this corresponds to un- 
bounded exponential growth, ~0(x) = 0). 

Among density-dependent growth rates we can consider 

q l ( X )  = 2(1 - x / k )  o r  q2(x) = 2b0" ln(k/x).  (2.21) 

If  bo~  [ln(k/x(O))] -~, we have qz(X)~ 2 for x close to x(0) and so we have 
exponential growth for small x; globally, the deterministic equation 2 = Xqz(X ) 
describes the so-called "Gompertz  law". That is, its solution with initial value 
x(0) is 

x(t) = x(O) exp[ln(k /x( O)) - (1 - exp( - 2b0 t)], 

whose graph is a sigmoid curve that approaches k as t gets large; k is the value 
saturation. 

The Gompertz law seems to describe well enough the deterministic growth of 
simple populations (as prey in the absence of predators). However, we observe 
that the Gompertz law can be "approximated" as closely as desired with the 
Logistic law by a proper choice of the parameters (see, e.g., [9]). 

Since the function xq2(x) has an infinite derivative at x = 0, we consider a 
more regular smoothing q/(x) of xq~(x) near x = 0, that is ~(x) is a C 2 function 
defined for x ~> 0 which has bounded derivatives and is a "little" different from 
xq2(x) only for small x >~ 0. In the sequel, we choose 

q(x) = x - l~(x) (2.22) 
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in Eqs. (2.18). This is only a technical condition to ensure that all the coefficients 
of the equations are Lipschitz continuous, near x = 0. 

Our system will be written: 

dx  = (xq(x)  - Vxy) dt + [xlq(x)[ + 7xy]'/2 dm' ,  

dy = y(  - s  + cvx ) dt + [y(s + cyx)] 1/2 d W  2, (2.23) 

where q(x) is given by (2.22). The It6 stochastic differential equations (2.23) 
represent a suitable manner of describing a stochastic model for the system of 
interacting populations submitted to internal randomness; here, the fluctuations 
which depend on the occurrences of  births and deaths are of  Poisson type. 

3. Stability for the system (2.23) 

In this section we deal with stability for the system of stochastic differential 
equations (2.23) describing our physical model of predator-prey interaction. For 
the moment, we do not consider any question of  existence and uniqueness of  the 
solution with given initial data; this problem will be treated in Sect. 4. Here, we 
examine the equilibrium points for the deterministic part of  Eq. (2.23) (drift- 
equilibrium points) that is 

2 = xq (x )  - ~xy 

3~ = y (  - s + cTx), (3.1) 

where q(x) is given by (2.22). 
The equilibrium points for (3.1) are given by the solutions of 

xq(x )  - 7xy  = 0 

y(  - s + cvx) = 0. (3.2) 

We find the trivial equilibrium point (x, y) = (0, 0) and the nontrivial one (3.3) 
(x* ,  y * )  = (S/CT, (1/7)" q(s/c7)). 

By means of  well-known techniques (see, e.g., [22]), it easily follows that the 
equilibrium point given by (3.2) is asymptotically stable for the deterministic 
part of (2.23). Therefore, we have stability of the expectation values of xt, Yt in 
Eqs. (2.23) that is the drift equilibrium point (x*, y*) is stable in mean for Eqs. 
(2.23). In fact, as we shall see in Sect. 5, numerical simulations show that 
(x*, y*) is also stochastically stable for the system (2.23). 

4. Existence of the solution with given initial data 

We rewrite Eqs. (2.18) with initial values Xo, Yo: 

dx, = (xtq(x~) - p(xt)y~) dt + (xt [q(x,)] + p(x t )y t )  ,/2 dW ]  

dYt =Yt( - s  + cp(x,))  dt + ( y t ( s  + cp(x,))  '/2 d W  2 (4.1) 

x(0) = x0, y(0) = Y0 

The function q(x) is given by (2.22). Here, if uj (i = 1, 2) represent the determin- 
istic terms (drift terms), the random perturbations (diffusion terms) are of  order 
u]/2, Wf  being standard Brownian processes which we can assume to be indepen- 
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dent; the diffusion terms 

cr 1 (x, y) = (xlq(x)I+p(x)t)1/2,  a2(x, y) = (y(s  + cp(x))),/2 (4.2) 

vanishes at zero population level. 
As reported in the Introduction, the situation is quite different in other 

instances discussed in the classical literature where external (environmental) 
randomness is considered, and the random perturbation is of the same order as 
the deterministic term [22, 24]. 

Intuitively, one expects that the solution of the stochastic system (4.1) exists 
for all time and this solution is far from zero for non zero initial values. 
Mathematically, these facts are not trivial to prove; indeed, Eqs. (4.1) do not 
satisfy the usual growth conditions for global existence and uniqueness of the 
solutions (see, e.g., [3] or [13]), unfortunately. 

In order to prove the existence of the solution with given initial data for all 
t >/0, we need to impose some technical conditions. Substantially, it would be 
enough to suppose that the diffusion terms behave like H(x, y)11, for x, y -~ o. We 
fix a small r > 0 once for all and suppose that: 

(C1) the function xq(x) in (4.1) is replaced with another function (~(x) such that 
O(x) is a "flattening" of xq(x) around x = 0, in the following sense: Q(x) is a C 2 
function defined for x >~ 0 which behaves like const(r)x 2 for 0 ~< x ~< r, it is joined 
by a smooth function for r < x < 2r and 0(x) = xq(x) for x >~ 2r; moreover O(x) 
has bounded derivatives. 

(C2) the function p(x) in (4.1) is a C 2 function defined for x >/0 having bounded 
derivatives such that p(x)  behaves like const(r)x 2 for 0 ~< x ~< r and p(x)  --- 7x for 
x ~>2r. 

(C3) the quantities sy and cy in (4.1) are replaced, respectively with positive C 2 
functions c(y) and s(y)  defined for y >~ 0, having bounded derivatives, such that 
they behave like const(r)y 2 for 0 ~<y ~< r and c(y) = cy, s(y)  = sy for y ~> 2r. 

If  we take r and choose appropriately the joining functions between r and 2r, the 
above functions are a sort of "regularized approximation" of the original 
functions in (4.1), in the sense, that for values of the arguments smaller than 2r, 
there are some "little" differences (of  course, this does not mean those differ- 
ences became arbitrarily uniformly "small" for r ~ 0 !). In practice, if r is chosen 
small enough, any function f depending on a physical variable u > 0 can be 
"approximated" near u = 0 as in the construction above, without changing the 
behaviour o f f  for significant values of u (i.e. u large enough). 

Thanks to conditions (C1), (C2), (C3) we can avoid some technical 
difficulties in the mathematical proof  of the existence of the solution of the 
stochastic differential equations with given initial data. Thus, in the following, 
we assume a small r > 0 has been fixed once for all and we will consider the 
system: 

dx = [Q(x) - p ( x l y ]  at + [[Q(x) [ + p(x)y] 1/2 dW~ 

dy = [ - s (y)  + c(y)p(x)] dt + [s(y) + c(y)p(x)] I/2 d W  2 (4.3) 

x(O) = Xo, y(O) = Yo. 

We remark that, if r > 0 is small enough, the solution of (4.3) starting from 
positive, large enough values, evolves in accordance with system (2.23), if the 
solution remains far enough from zero. Moreover, the non trivial drift-equi- 
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librium point of (4.3) which is significant from a biological point of view (that 
is for x, y > 1), coincides with (x*, y*) given by (3.2), if r is small enough. 

Now, we introduce the infinitesimal generator for Eq. (4.3), which is defined, 
for a C 2 function f (x ,  y), by 

Lf(x,  y) = [0 - p(x)y] ~ + [ - s ( y )  + c(y)p(x)] ~y 

1{ 32f 02J} 
+ ~  []{~(x)[ + p(x)y] ~x2 + [s(y) + c(y)p(x)] ~y 2 (4.4) 

= L °f(x, y) + L 'f(x, y). 

Here L ° is the differential operator defined by the { } and it corresponds to the 
deterministic part of Eq. (4.3), while the other part, L l refers to the random part. 

We consider the nonnegative function defined for (x, y) ~ R + x R +: 

V(x, y) = (x - x*) - x* ln(x/x*) + (y  - y*) - y* in(y/y*). (4.5) 

As it is easy to see, we have 

LV(x, Y) = [O(x) -p(x)Y] ( % x * ~ )  + [ ( - s ( y )  + c(y)p(x)) ( ~ - ~ ) ]  

l [ x *  y* ] (4.6) 
+ ~ ~ -  ([ 0(x)[ + yp(x)) + -f~ (s(y) + c(y)p(x)) . 

Now we recall the following result due to the Khas'minskij [16]: 

Theorem 4.1. Let {K n } ~ x  be an increasing sequence of compact set such that 
U,,Ex Kn = f2, where ~2 is an open set of  R d. Let us consider the system: 

dx = a(t, x) dt + ~(t, x) dW, (4.7) 

where W is a d-dimensional Wiener process with independent components and the 
coefficients a(t, x), a(t, x) are Lipschitz continuous and bounded in each set 
R + x Kn; let V : R  + × f2--.R be a function that is C 1 in t ~ R  + and C 2 in x ~ 2  
such that 
(i) 3~ >Os.t. L V < ~ V ;  
(ii) inf V(t, x) ~ oo for n ~ oe. 

t>O,xEg2\Kn 

Assume for (4.7) the initial condition x(O) which is independent of  the process 
W(t) - W(O) and such that P{x(0) E f2} = 1. 

Then there is a unique (up to equivalence) solution x(t), 0 <~ t <~ T, VT > O, to 
the above mentioned initial value problem such that 
(a) x(t) is a diffusion process, homogeneous in time if a and a are independent of  
t in (4.7); 
(b) P{x( t )  ~ n }  = 1, v t  > o. [] 

Indeed, in order to prove the above result with £2 = (0, + oe) 2 it is enough to 
show the following facts (for more details, see [16]): 

(i) A local solution (x(t), y(t)) exists because the coefficients of the equation are 
Lipschitz continuous and bounded in any bounded set. Moreover, the local 
solution with given initial data can be extended for all time t >~ 0; this is 
equivalent to saying that "explosions" are impossible, that is, if ~ is the first exit 
time of the solution from every bounded domain, or briefly the escape time 
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to infinity, the following equality holds: 

P(% = ~ )  = 1. (4.8) 

(ii) Any solution starting from positive initial values does not leave the set 
(0, + oe) x (0, + ~) ,  that is, if %=inf{t /> 0:x(t) = 0 or y(t) = 0} (the first time 
in which the solution reaches the x or y axis), one has 

P(% = oe) = 1. (4.9) 

Indeed, since the biological model is discrete, the extinction of a population 
cannot be seen as the passage to zero, but it should be defined, for instance, as 
the reaching of a level at which the population no longer reproduces. However, 
in the continuous approximation, for extinction we simply mean population 
zero. 

If  W(x, y) is such that W(x, y) ~ + o% as x, y --, + oe, W(x, y) ~ + oe as 
x, y ~ 0 ,  and L W  <~ eW, the proof of (4.8) is achieved by considering that for 
any t: 

P(z, <<. t) <~ exp(c~t) . E(W(xo,Yo)) . ( inf W(x, y))-I  (4.10) 
II(x.y)ll >n 

and letting n ~ oc (see the next 1emma and theorem, for the definition of the 
constant c0; here z = inf{t >~ 0: I[(x, y)II ~> n}. The equality (4.9) follows from the 
following: 

P(¢a ~< t) ~< exp(et). E(W(xo, Yo))" ( inf W(x, y)) -~ (4.11) 
( x , y )  e A 

and letting 6--,0; here A = { ( x , y ) : O < x < 6 ; O < y < 6 }  and 
~ - - i n f { t  >~ 0:x(t) = 6 or y ( t )=  ~}. (For more details, see [16].) 

Actually, our aim is to prove an existence result for Eqs. (4.3) by using 
Theorem 4.1. First, we observe that for the function V defined in (4.5) we have 

lira V(x ,y ) - -+oe;  V(x, y) <(x - x*) + (y  - y*) for large x , y  (at the 
x,y~+~ most, linear growth). 

(4.12) 

Now, if we split the right member of Eq. (4.6) into different pieces and take into 
account the definition of q(x) (2.22), and the conditions (C1), (C2), (C3), we 
easily find that positive constants k, k' and ~ > 2r exist such that 

L V(x, y) ~ k f o r 0 < ~ x , y < ~  
(4.13) 

LV(x ,y )  < ~ k ' [ ( x - x * ) + ( y - y * ) ]  for x , y  >~. 

From this follows that, for x , y  > ~  a constant k " > 0  exists such that 
L V(x, y) < k" V(x, y). 

We observe that the constants k, k', k" depend on r (which is fixed). Thus, we 
can conclude: 

Lemma 4.2. With regard to the function defined in (4.5), and to the infinitesimal 
generator (4.4) associated to Eq. (4.3), positive constants, k, k" exist such that 

LV(x ,y )  <<.k +k"V(x , y ) ,  V(x,y) e R  + x R + (4.14) 
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Now, we state the existence theorem: 

Theorem 4.3. We suppose that conditions (C1), (C2), C3) hold; then the equations 
(4.3) define a regular diffusion process in the open set 

= {(x, y) e R 2 : x > 0, y > 0} in connection with any initial condition (Xo, Yo) 
such that P{xo > O, Yo > O) = 1. They also define a regular diffusion on both open 
half axes {x > 0, y = 0} and {x = 0, y > 0} for any initial condition such that 
P{Yo = 0} = 1, P{xo > 0} = 1, and respectively, P{xo = 0} = 1, P{Yo > 0} = 1. 
They also admit the solution x = y -O.  

Proof. We set {K,} a sequence of compact growing sets such that 
Un E N Kn = Q = {(x,  y )  ~ R 2 : x > 0, y > 0}. It is easy to see that the function V 
defined in (4.5) satisfies (ii) of Theorem 4.1. Although LV(x, y) is not bounded 
on ~2, thanks to Lemma 4.2, if we say W(x, y ) =  k + k"V(x,  y), we have 
L W  = k " L V  <<. k"(k + k"V)  = k"W, that is L W  <~ k"W, V(x, y) e f2; thus, condi- 
tion (i) of Theorem 4.1, with V = W, holds. So, this proves the first part of the 
theorem which refers to the diffusion in f2. 

The same arguments apply if we consider the restriction of (4.3) to the half 
axis {x > 0, y = 0} and {x = 0, y > 0}. For  this purpose, it is enough to consider, 
respectively, the functions: 

Vl (x) = (x - x*) - x* In(x/x*), V2(y ) = (y - y * )  - y* In(y/y*). 

Remark 4.5. The half axis {x > x0, y = 0} is invariant under the evolution with 
the initial condition x ( 0 ) = x  o >0 ,  Yo =0 ,  and the process x(t) follows the 
Gompertz law, in mean. Analogously, the y half axis is invariant under the 
evolution with initial value Xo = 0, and the predator becomes extinguished (in 
mean) with exponential rate. 

Remark 4.6. Theorem 4.3 implies that probabilities of extinction for each or for 
both species whose evolutions are given by Eqs. (4.3) are zero (see also the 
discussion at the beginning of Sect. 4). 

Remark 4.7. If we consider Eqs. (2.23), instead of (4.3), Lemma 4.2 also holds 
for x, y > 6, for any 6 > 0 fixed. 

Then, by using (4.10), every solution starting from x( 0), y( 0) > 6 and such 
that x(t), y(t) > ~ Vt >>. O, exists for all time (i.e., there is no explosion) and, for 
the arbitrariness of 6, any solution starting from positive values remains in the 
se t  

Q+ -= {x ,y  ~ R2:X ~>0, y />  0}. 

The result concerning the impossibility of the solution reaching the axes in a 
finite time cannot be achieved by using (4.11). Indeed, the first time when the 
solution reaches one of the bounds {x = 6, y > 6}, {x > 6, y = 6} cannot be 
estimated by using (4.11), since the constant k is really a function of 3 and, for 
6 ---, O, k(6) grows to infinity. Hence, if we use Eq. (2.23) we obtain the existence 
result, but we cannot exclude that the solution (x(t), y(t)) crosses the axes in a 
finite time and therefore, in this case, we are not able to conclude that the 
extinction probabilities are zero. This is the reason why conditions (C1), (C2), 
(C3) have been supposed to hold. 
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Remark 4.8. One can consider simpler equations similar to Eqs. (2.23), that is 

dx, = (x,q(x,) - ?x,y,) dt + bl(x, ,  y,) dW~ 

dy, = y,(  - s  + 7xt) dt + b2(x,, Yt) dW~ (4.15) 

x(O) = Xo, y(O) = Yo, 

which describe the randomization of a deterministic predator-prey model in the 
special case c --- 1 (eaten prey fully converted into biomass for predators), having 
as fluctuations (diffusion) terms some functions b~(x,  Yt). 

In the case when 

sup [bi(x)/x~] < + ~ ,  i = 1, 2 (4.16) 
x 

one can obtain, as well as the existence and uniqueness of the solution, also the 
existence of a unique ergodic probability measure invariant with respect to 
(x,, y,), by means of another theorem by Khas'minskij (see, e.g., [5], [12]). 

Our diffusion terms (4.2) do not satisfy (14.16); indeed, for instance, ( l /x)  
(xlq(x)[ + ?xy) t/2 is not bounded on the curve y = x 2. In our case, we are not 
able to obtain the existence of the above mentioned ergodic probability measure. 

5. Numerical simulation 

5. I. Numerical treatment o f  the equations 

In this section we deal with the numerical solution of the SDEs (2.23) with initial 
conditions x(0) = Xo, y(0) = Y0. Referring to general d-dimensional It6's SDEs 

dx, = a(t, x,) dt + or(t, x,) dW,,  (5.1) 

the simplest integration method to find an approximate solution 2,, is the 
stochastic Euler method: 

~ti+~ = ~,i + a(ti, ~r,)h + o(ti, ~i)  A IV,, (5.2) 

where h = t i + l -  t~ is the step of integration, A Wti = Wt, t , - W ~ ,  is the corre- 
sponding increment of the Wiener process, and :~t represents the approximation 
to the solution x,. By using the results in [26], one can show that the best 
integration method for Eq. (2.23) is realized by the Euler scheme with a step 
error of order h 2, that is E(Yc, -  xt) 2= O(h2). 

Therefore, to solve Eq. (2.23) numerically, we used the following scheme: 

2i+, = 2,. + [~,q(ff; ) - )7i?:~ , ]h + (~g [q(~i)l + Y,2~i) 1/2 A ml 

y,+, =37, + [y,( - s  + cT~i)]h + (37,(s + c ~ , ) )  1/~ A rV 2, (5.3) 

Xo = Xo, 35o = Y0- 

The increments A W~ have been calculated by means of the N O RMCO  routine of 
the CERN Program Library, which generates Gaussian distributed pseudo- 
random numbers with given mean and standard deviation. 

5.2. Numerical results 

Relatively to the choice q(x) = qz (X)  (see (2.21)), we have computed by means of 
the scheme (5.3) the approximating solution of Eq. (2.23) with given initial data. 
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For some initial conditions, a great number of simulation runs has been 
performed to estimate expectation values E(x(t)), E(y(t)),  and corresponding 
variances Var(x(t)), Var(y(t)), as functions of t. These estimates have been 
achieved by means of the estimators: 

F,(z(t))= l /M y" z~(t) 
v=l,...,M Z = x o r y  

A 
Var (z(t)) = 1/M ~ [zV(t) - E(z(t))] 2, 

v-l , . . . ,M 

where M is the number of simulation runs, and z V(t) represents, for every t, the 
approximated value of z(t) obtained by means of vth simulation run. 

In some of the enclosed graphs (see Figs. 1, 2, 3) the shapes of E(x(t)), E(y(t))  
are plotted as functions of t together with error bars for every 0 ~< t ~ 100. Indeed, 
in these graphs, the middle curve represents the estimated expectation value as a 
function of t; the upper and lower curves represent, respectively. 

A 
E ( z ) ( t ) )  +_ (1 /2) (Var  z ( t ) )  1/2, z = x or y. 

F o r  each o f  the cons idered  init ial  condi t ions ,  we have pe r fo rmed  40 000 simula-  
t ion runs spending  a b o u t  7 h C.P.U.  t ime of  a M I C R O  V A X  II  compute r .  

Numer i ca l  solut ions  o f  Eqs. (2.23) agree with the s tochast ic  s tabi l i ty  o f  the 
equi l ib r ium po in t  (x*,  y*)  of  the determinis t ic  pa r t  o f  those  equat ions ,  a l though  
small  pe r tu rba t ions  o f  ini t ial  da t a  are reflected by  fair ly large abso lu te  devia t ions  
on solut ions  (especial ly  prey),  fot t small.  ( Indeed ,  one can make  those devia-  
t ions small  if  one takes  init ial  condi t ions  sufficiently close to the equi l ibr ium 
point . )  However  we can see that ,  also for  fair ly large pe r tu rba t ions  o f  initial  
data ,  as t gets large,  the so lu t ion  ( x ( t ) ,  ( y ) )  approaches  the equi l ibr ium po in t  
(x*,y*). 
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