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Summary. Our previous evolutionary model is 
generalized to permit approximate treatment of 
multiple-base insertions and deletions as well as re- 
gional heterogeneity of substitution rates. Parameter 
estimation and alignment procedures that incor- 
porate these generalizations are developed. Simu- 
lations are used to assess the accuracy of  the param- 
eter estimation procedure and an example of  an 
inferred alignment is included. 

Key words: Alignment -- Maximum likelihood 
procedure -- Dynamic programming -- Evolution- 
ary model -- Insertion-deletion model 

1 Introduction 

Accompanying the recent explosion in the amount 
of available DNA and protein sequence data has 
been a smaller burst of methods designed to analyze 
these data. Statistically rigorous methods exist to 
treat data sets consisting of aligned sequences, but 
it is often the case that the appropriate alignment 
between sequences is far from obvious. In these cases, 
the method of alignment becomes important. Many 
elegant dynamic programming algorithms for the 
alignment of sequences have been developed but 
these algorithms lack a rigorous statistical basis. One 
outcome of  this lack of  a statistical foundation is 
the incorporation of subjectivity into the most wide- 
ly used alignment methods. 
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A brief description of the most widely used align- 
ment algorithms will suffice to reveal their subjec- 
tive nature. These algorithms can be categorized as 
similarity-based or distance-based. Because these 
two categories are closely related (Smith et al. 1981) 
and because their subjective properties are shared, 
this description will focus on distance-based algo- 
rithms. Distance-based algorithms search for the 
least-penalized alignment. An alignment is penal- 
ized for each evolutionary event that it postulates. 
Assume, for example, that substitutions, insertions, 
and deletions are the only evolutionary events being 
considered; more exotic evolutionary events such 
as inversions will be ignored. The following align- 
ment exhibits two mismatches, a gap of length one, 
and a gap of length three: 

A T  G T C G -  - - T G C T T T  
C T  G -  C G T A A T G T T T T  

The penalty associated with this alignment would 
be 2m + GI + G3 where m is the penalty for a 
mismatch and G; is the penalty for a gap of length 
i. If  Gi = a + bi, then the penalty of the above 
alignment would be 2m + 2a + 4b. The appropriate 
values of m, a, and b are not obvious. As a conse- 
quence, subjective decisions are often made to choose 
these values. Noteworthy attempts to avoid this 
subjectivity include the Monte Carlo method of Fitch 
and Smith (1983) and the minimum message length 
method of  Allison and Yee (1990). 

A more subtle type of subjectivity of widely used 
alignment methods also should not be ignored. This 
type of  subjectivity involves the form of the function 
that relates the evolutionary events postulated by 
an alignment to the penalty associated with the 
alignment. For instance, it is not clear that the form 
of the gap penalty should be Gi = a + bi. Certain 



implicit assumptions about the evolutionary pro- 
cess and particularly about the insertion-deletion 
process must underly the assignment of  the function 
a + bi to the gap penalty. Without a statement of  
the assumptions that govern the evolutionary pro- 
cess, it is not even clear that an arbitrarily chosen 
function such as Gi = ~ + bi is less plausible than 
Gi = a + bi. The truth is that G; is commonly set 
to a + bi because Gotoh (1982) invented a clever 
computationally feasible alignment algorithm for this 
form of  Gi. Without a model of  sequence evolution 
and the accompanying theoretical justification, the 
criteria used to select good alignments are highly 
subjective. 

Our approach is to develop a likelihood model 
of  the evolutionary process. The advantages of  this 
approach include explicit assumptions, a model of  
sequence change based upon actual biological phe- 
nomena instead of  arbitrary criteria for sequence 
comparison, and the vast statistical theory con- 
cerned with l ikel ihood methods.  Bishop and 
Thompson (1986) were the pioneers of this ap- 
proach, and we (Thorne et al. 1991) modified and 
improved it. Our earlier evolutionary model al- 
lowed substitutions, single-base insertions, and sin- 
gle-base deletions. By solving the set of  differential 
equations that govern this evolutionary model, ex- 
plicit forms for the transition probabilities of  se- 
quence evolution were obtained. We showed that 
these transition probabilities can serve as the basis 
for recursive algorithms that estimate evolutionary 
parameters and infer sequence alignments. In this 
paper, we generalize our earlier likelihood model to 
allow approximate treatment of multiple-base in- 
sertions and deletions as well as regional heteroge- 
neity of  substitution rates, we develop recursive al- 
gorithms for parameter estimation and alignment 
inference that incorporate these generalizations, and 
we present simulations that assess the performance 
of  our algorithms. The focus of  this paper is DNA 
sequence analysis, but the ideas are easily extended 
to the analysis of  protein sequences. 

2 The Evolutionary Model 

2.1 The Insertion-Deletion Process: The 
Fragment  Model  

The two components of  our evolutionary model are 
the insertion--deletion process and the substitution 
process. The multiple-base insertion--deletion mod- 
el presented here treats each biological sequence as 
a sequence of  fragments. It should be noted im- 
mediately that the fragment is merely a convenient 
theoretical unit and not a biological entity. Each 
fragment ofa  DNA sequence consists of  one or more 
adjacent nucleotides. The insertion-deletion pro- 
cess inserts and deletes fragments. The insertion or 

deletion of a fragment is independent of  the inser- 
tion or deletion of  all other fragments within the 
sequence. This means that the probability of more 
than one fragment being inserted or deleted at a 
specific instant is negligible. Fragment boundaries 
do not change over evolutionary time. Therefore, if 
several adjacent nucleotides are inserted at a specific 
time then these belong to the same fragment and 
will continue to belong to the same fragment as 
evolution progresses. Because our evolutionary 
model operates at the level of  fragments, a nucle- 
otide in a fragment can only be deleted at a specific 
time if all other nucleotides in this fragment are 
deleted at the same time. 

In Thorne et al. (1991), we presented the inser- 
tion-deletion process as a birth-death process of  
imaginary links that separate the DNA bases of  a 
sequence. There are two types of  links: normal and 
immortal. Under the single-base insertion-deletion 
model, each normal link is associated with exactly 
one nucleotide. Specifically, there is a normal link 
to the right of  each base. In addition, there is an 
immortal link to the left of  the leftmost base in the 
sequence. Both types of  links can be associated with 
births. The birth rate per normal link (~) is equal to 
the birth rate per immortal link (~). A newborn link 
and its associated nucleotide are always inserted di- 
rectly to the right of  the parent link. Only normal 
links can die; the deletion rate per normal link is #. 
The death of  a normal link is accompanied by de- 
letion of its associated nucleotide. Therefore, a se- 
quence of  length n nucleotides experiences single 
base deletions at rate n/~ and single-base insertions 
at rate (n + 1)~. 

To adapt the earlier single-base birth-death mod- 
el to a fragment birth-death model, we now allow 
each normal link to be associated with one or more 
nucleotides. Each normal link and its associated nu- 
cleotide(s) can be viewed as a fragment. To the right 
of  each fragment is a normal link. To the left of  the 
leftmost fragment in the sequence is the immortal 
link. 

For example, under the fragment model it is pos- 
sible for the DNA sequence GCA to be in any of  
four possible states (Fig. 1). These states are defined 
by how the DNA sequence GCA can be depicted in 
terms of  fragments. State A of Fig. 1 portrays the G 
a being in one fragment and the CA as being in 
another. Alternatively, state B of  Fig. 1 portrays the 
GC as being in one fragment and the A as being in 
another. State C and state D, the other two possible 
depictions of  GCA, respectively correspond to the 
possibility that GCA contains exactly three normal 
links and the possibility that GCA contains exactly 
one normal link. 

In terms of  links, the birth-death process of  the 
fragment model is identical to the birth-death pro- 
cess of  the earlier single-base insertion-deletion 
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Fig. 1. The four possible states of the DNA sequence GCA 
under the fragment model. The symbol • represents the immortal 
link. The symbol "k represents a normal link. Nucleotides that 
belong to the same fragment are encased by a rectangle. 

model• Concerning the fate o f  an individual  link 
over  t ime,  three types o f  t ransi t ion probabil i t ies  are 
considered: p, ( t )  is the probabi l i ty  that  n links are 
descended f rom a no rma l  link and  one o f  them is 
the original after a t imespan  o f  length t, p'~(t) is the 
probabi l i ty  that  n links are descended f rom a no rma l  
link and  the original dies during a t imespan  o f  length 
t, and  p'/( t)  is the probabi l i ty  that  the i m m o r t a l  l ink 
has n descendants  including i tself  during a t imespan  
of  length t. By their  definitions, po(t) = p~o'(t) = O. 
The remainder  o f  the transit ion probabili t ies (Thorne 
et al. 1991) are 

p. ( t )  = e-"t[1 - X/3(t)] 

• Dtfl(t)] n-1 n > 0 
p ' ( t )  = [1 - e -u' - #fl(t)] 

• [ 1 - xf i ( t ) ]  [XC~(t)]n -1  

p'o(t) = m3(t) 
p" . ( t )  = [1 - Xl3(t)][X/3(t)] "-1 

where 

n > O  

n > O  (1) 

1 - e (a-~Ot 
13 (t) - (2) # -- ~e(X-u)t" 

Under  the f ragment  model ,  the distr ibution o f  
the n u m b e r  o f  nucleotides per  f ragment  is as im-  
por tan t  as these transi t ion probabili t ies.  Let  h(n)  be 
the probabi l i ty  that  a no rma l  l ink is associated with 
exactly n nucleotides where n = l, 2 . . . . .  I t  is not  
known which dis tr ibut ion o f  h(n)  mos t  accurately 
reflects the actual biological inser t ion-dele t ion pro-  
cess. We choose to put  h(n)  in the fo rm o f  a geo- 
metr ic  distr ibution,  

h(n)  = (1 - r)r n-1 0 --< r < 1, n = 1, 2 . . . .  (3) 

I t  can be seen that  our  earlier single-base inser t ion-  
delet ion mode l  was the special case o f  the geometr ic  
f ragment  mode l  where r = 0. I t  is possible to develop  
a sequence a l ignment  a lgor i thm and an evolu t ionary  

pa rame te r  es t imat ion  a lgor i thm for any arbi t rary  
fo rm o f  h(n).  I f  N is the n u m b e r  o f  nucleotides in 
the longer sequence and  M is the n u m b e r  o f  nucle- 
otides in the shorter  sequence, then the a m o u n t  o f  
computa t ion  required by  these a lgori thms should 
be, at most ,  p ropor t iona l  to N2M.  As will be shown 
later, the a m o u n t  of  compu ta t ion  required by  the 
sequence a l ignment  a lgor i thm and the pa rame te r  
es t imat ion  algori thm is propor t iona l  to N M  when 
h(n) is distributed geometrically. The  geometric  fo rm 
o f  h(n)  yields an a l ignment  a lgor i thm resembling 
that  o f  G o t o h  (1982). 

Let On be the equi l ibr ium probabi l i ty  o f  sequences 
with n no rma l  links. In Thorne  et al. (1991), it was 
shown that  

U / k # /  

Let  3`, be the equi l ibr ium probabi l i ty  under  the 
geometr ic  f ragment  mode l  o f  sequences n nucleo- 
tides in length. Because a sequence o f  length zero 
nucleotides mus t  contain exactly zero no rma l  links, 
3'0 = Po. Because a sequence o f  length one nucleotide 
mus t  contain exactly one normal  link that  is asso- 
ciated with a f ragment  o f  size one nucleotide, "Y1 = 
plh(1). Examina t ion  o f  the probabi l i ty-generat ing 
function (e.g., Feller 1968) for sequence length re- 

veals that  3"n = 3"n_l[A---(1 -- r) + r] when n >-- 2. 
# 

Therefore,  the equi l ibr ium sequence length distri- 
but ion  is nearly, but  not  quite, a geometr ic  distri- 
bution: 

X 
3`0 = 1 - -  

# 

n > _ l  

Al though more  realistic than  our  earlier single- 
base inser t ion-dele t ion model ,  the f ragment  mode l  
is obvious ly  not  an ideal ma themat i ca l  descript ion 
o f  the actual biological process o f  insert ion and  de- 
letion. An inherent  flaw in the f ragment  mode l  is 
more  easily unders tood  by  considering two m o d e r n  
sequences that  are descended f rom the same ances- 
tral sequence. Assume  that  a deletion occurs in the 
evolu t ionary  lineage to one descendant  sequence, 
and  another  over lapping but  nonident ical  deletion 
occurs in the evolu t ionary  lineage to the other  de- 
scendant  sequence. Unde r  the f ragment  model ,  it is 
not  possible to explain these two over lapping de- 
letions with a scenario o f  just  two events; the frag- 
m e n t  mode l  requires at least three events  (Fig. 2). 
The  severi ty o f  this flaw rises as the evolut ionary  
distance between sequences increases because the 
probabi l i ty  o f  independent  over lapping deletions in 
related lineages rises as evolu t ionary  distance in- 
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Fig. 2. A flaw of the fragment model. A An alignment between 
an ancestral sequence and two descendant sequences. The gaps 
shown in this alignment can be explained by two overlapping 
deletion events. B A depiction of the alignment in Fig. 2A which 
is consistent with the fragment model. Possible fragment bound- 
aries are shown. The fragment model cannot explain the gaps in 
the alignment of Fig. 2A by two deletion events; it requires at 
least three events to explain these overlapping deletions. 

creases. Although flawed, the fragment model is still 
superior to a single-base insertion-deletion model. 
The alignment in Fig. 2A can be explained by a 
minimum of two deletion events in reality, by a 
minimum of three deletion events under the frag- 
ment model, and by a minimum of five deletion 
events under a single-base insertion-deletion mod- 
el. 

2.2 The  Subs t i tu t ion  Process  

Many substitution models could be used in the pres- 
ent context. We have selected a substitution model 
that was developed by Felsenstein and is used in the 
PHYLIP computer package, versions 2.6 and later 
(Felsenstein 1989). It is almost identical to one in- 
dependently developed by Hasegawa et al. (1985); 
both of these models were first described by Hase- 
gawa et al. (1985). This substitution model com- 
bines attributes of Kimura's (1980) two-parameter 
model and Felsenstein's (1981) model. This is a 
reversible substitution model that allows transition 
rates to exceed transversion rates. The model re- 
quires the use of equilibrium probabilities of the 
four types of nucleotides. The equilibrium proba- 
bility of a type of nucleotide is equal to its expected 
frequency. The equilibrium probabilities of A, G, 
C, and T will be denoted by ~rA, ~rc, a'c, and 7ra-. The 
equilibrium probability of purines, ~-n, is ~r A + ~rG. 

The equilibrium probability of pyrimidines, 7rr, is 
7r x + ~r c. 

This substitution model permits two types of sub- 
stitution events. The first type can replace a purine 
only with a purine and can replace a pyrimidine 
only with a pyrimidine. We will refer to this type 
as a within-group substitution event. If  a within- 
group substitution event occurs at a position oc- 
cupied by a T, for example, the probability that the 
T is replaced by a C is ~rc/Tr r and the probability 
that the T is replaced by another T is 7rT/7r r. We will 
refer to the second type of substitution event as a 
general substitution event. For a general substitu- 
tion event, the type of nucleotide being replaced is 
not important; the base will be replaced by A, G, 
C, or T with respective probabilities ~rA, ~ro, ~rc, and 
7fT. Letf~(t) be the transition probability that a nu- 
cleotide which begins as type i is of type j at time 
t. To improve notation, let H(i)  indicate whether 
type i is purine or pyrimidine. In other words, H(A) 
= H(G) = R and H(C) = H(T) = Y. If w is the 
within-group substitution rate and g is the general 
substitution rate, then 

f e -(g+w)t + e-~'(1 - e-wg;. ~L t* H (  j ) 

+ (1 - e-g')~rj i = j  

fij(t) = e-g'(1 - e-w')-, r-A i v~ j ,  
" H ( j  ) 

+ (1 - e-gt)Trj H(i )  = H ( j )  

(1 - e-g,)z:j H( i )  v~ H( j )  
(5) 

2.3 R e g i o n a l  He terogene i t y  o f  Subs t i tu t ion  Ra te s  

It has been well established that different portions 
of a sequence can evolve at different rates. To allow 
heterogeneity of substitution rates from region to 
region within a DNA sequence, we simply postulate 
the existence of several varieties of fragments. Each 
fragment variety possesses a specific general substi- 
tution rate and a specific within-group substitution 
rate. When a fragment is inserted into a sequence, 
the probability that the fragment is of  a specific 
variety is independent of the fragment varieties in 
the neighborhood of the insertion site. This type of 
insertion process does not produce clustering (or 
overdispersion) of fragment varieties within a se- 
quence. The probability that a newly inserted frag- 
ment is of  a specific variety will be termed the equi- 
librium frequency of the fragment variety. It is 
possible to postulate as many varieties of fragments 
as desired. It is even possible to allow variation in 
fragment size distribution between fragment vari- 
eties, although allowing this variation is likely to 
decrease the speed of the algorithms used to analyze 
the sequences. It may not be practical to postulate 



the existence of many varieties of fragments because 
the limited length of DNA sequences can make the 
resolution of the characteristics (e.g., substitution 
rate, size distribution) of each type of fragment dif- 
ficult. 

Our practice has been to use a very simple model 
of substitution rate heterogeneity. This model as- 
sumes that there are only two varieties of fragments. 
One variety of  fragments experiences substitutions 
relatively rarely (slow fragments) and the other va- 
riety experiences substitutions relatively often (fast 
fragments). This simple model of substitution rate 
heterogeneity also assumes that the fragment size 
distribution of these two varieties is identical and 
that the ratio of the within-group substitution rate 
to the general substitution rate is identical between 
the slowly evolving fragments and the quickly 
evolving fragments. Under this scenario, slow frag- 
ments experience a within-group substitution rate 
of w and a general substitution rate of  g. Further- 
more, it is necessary to estimate two more param- 
eters (Psand ks) relevant to the substitution process. 
The parameter, Ps, represents the equilibrium fre- 
quency of  fast fragments. From the value of Ps, the 
equilibrium frequency of slow fragments (Ps) is im- 
mediate because Ps + Ps = 1. The parameter, ks, 
relates the substitution rates in slow fragments and 
fast fragments. The within-group substitution rate 
of fast fragments is kjw, and the general substitution 
rate of fast fragments is k/g where k s > 1. 

The fragment size distribution is intricately re- 
lated to both the insertion--deletion process and the 
pattern of regional heterogeneity of substitution rates. 
This is a flaw; the relationship may not be realistic 
and would not be necessary in a more advanced 
evolutionary model. A more advanced evolutionary 
model also might permit increased rates of insertion 
and deletion in regions that experience high rates of 
substitution. 

3 Procedures 

3.1 Estimation of  Evolutionary Parameters 

The procedure for estimating evolutionary param- 
eters under the model of regional homogeneity of 
substitution rates will be referred to as the homo- 
geneity procedure. The procedure for estimating 
evolutionary parameters under the aforementioned 
model of regional heterogeneity of substitution rates 
will be referred to as the heterogeneity procedure. 
Both procedures utilize a function that returns the 
likelihood value for an input set of evolutionary 
parameter values and both procedures require a nu- 
merical maximization routine that calls this func- 
tion. Because the two procedures are conceptually 

similar and because explanation of the homogeneity 
procedure requires less notation, only the details of 
the homogeneity procedure are introduced in this 
section. The heterogeneity procedure is briefly de- 
scribed in the Appendix. 

The homogeneity procedure is a generalization 
of the parameter estimation procedure given in 
Thorne et al. (1991). Assume that two DNA se- 
quences, A and B, are to be analyzed. The unknown 
evolutionary parameters to be estimated are rep- 
resented by a vector 0 = (~rA, ~rc, 7rc, ~rT, r, Xt, ~t, gt, 
wt). Without supplementary information, the evo- 
lutionary rates and the divergence time cannot be 
separately estimated; measures of evolutionary dis- 
tance (the product of evolutionary rates and diver- 
gence time) can be estimated. Consider the calcu- 
lation of  the likelihood of A and B, 

L/A,  B) = P(A, B I 0) (6) 

The likelihood of two sequences is the sum of the 
likelihood of all possible alignments between the 
two sequences. As we demonstrated in the earlier 
paper, the precision of parameter estimation is vast- 
ly enhanced and the amount of bias in parameter 
estimates is greatly reduced by considering all align- 
ments instead of a single alignment. 

A recursive algorithm for the calculation of L0(A, 
B) can be formulated, but several definitions are 
necessary. Assume that the length of sequence A is 
sA and the length of sequence B is s~. Denote the 
subsequence consisting of the first m bases of se- 
quence A by Am and denote the first n bases of se- 
quence B by Bn. Let am be the ruth base of  sequence 
A and bn be the nth base of sequence B. Because the 
evolutionary model is reversible, sequence A can be 
considered an ancestor of sequence B without loss 
of generality. This implies that all links in sequence 
B are descendants of links in sequence A. Define 
S(Am, B,) to be the set of  all possible alignments 
between Am and B,. S(Am, B,) can be partitioned 
into six subsets by considering the rightmost link of 
A m. Each possible alignment of a(Am, B,) between 
A m and Bn is a member of exactly one of  these six 
subsets of S(Am, B,): 

Sl(Arn,  Bn)  = 

S2(Am, Bn) = 

S3(Am,  Bn)  = 

S4(Am,  Bn)  = 

[a(Am, Bn) where the rightmost link 
of Am survives to become the right- 
most link of Bn] 
[a(Am, Bn) where the rightmost link 
of Am has no descendant links in B~] 
[a(Am, Bn) where the rightmost link 
of Am has at least two descendant links 
in Bn] 
[~(Am, B,) where the rightmost link 
of Am does not survive but has the 
rightmost link of B, as its sole de- 
scendant. In addition, the fragment 



S5(Am, Bn) = 

S6(Am, On) = 

associated with the r ightmost  link o f  
Am is exactly the same length as the 
fragment associated with the right- A 

B 
most  link o f  B.] 
[a(Am, Bn) where the r ightmost  link 
o f  A m does not  survive but  has the 
r ightmost  link of  B.  as its sole de- A 
scendant. In addition, the fragment B 
associated with the r ightmost  link o f  
A m is longer than the fragment as- 
sociated with the r ightmost  link of  
Bn] A 

[a(Am, Bn) where the r ightmost  link B 
o f  Am does not  survive but  has the 
r ightmost  link o f  Bn as its sole de- 
scendant. In addition, the fragment 
associated with the r ightmost  link o f  A 

B 
Am is shorter than the fragment as- 
sociated with the r ightmost  link o f  
B,] 

Each o f  the six alignments depicted in Fig. 3 be- 
longs to a different one o f  these six subsets. To keep 
track o f  the l ikelihood o f  each o f  these six subsets 
o f  S(Am, Bn) define 

Lg(m, n) = P[a(Am, an) e Si(Am, Bn) 10l 
i = 1 , 2 , . . . , 6  (7) 

With these six likelihood terms, a recursive algo- 
r i thm to calculate Lo(A, B) can be developed. 

The first base in each sequence has to be specially 
treated. I f  a sequence only consists o f  a single base 
then it must  be the case that the sequence consists 
o f  exactly one single-base fragment; the single base 
o f  this sequence cannot  be part  of  a larger fragment. 
For  this reason, the indicator  Ki is introduced: 

Ki = i ~ 1 (8) 

The boundary  condit ions of  the recursive algorithm 
are 

L01 (0, 0) = 'YoP"I (t) 

L~(0, 0) = 0 i = 2, 3, 4, 5, 6, 

L2(1, 0) = .ylPrtl (t) ra,p'o(t) 

L 2 (m, 0) = ~/lP"~ (t) ~r~,P'o (t) 

• f i  7raj[r+P'o(t)(1 - r )  -x] m > 2  
j = 2  ]2 

L~(m, 0 ) = 0  m >  1, i = 1 , 3 , 4 , 5 , 6  

Lo3 (0, 1 ) =  7op"2(t)(1 - r)%, 

L 3 (0, n) = 7oP"2 (t) (1 - r) ~'b, 

A 

B 

° 

C 

D 

E 

B • 

B • [-U6-6-U~ 

Fig. 3. The rightmost fragment of an alignment can be used to 
place a specific alignment between two sequences into a particular 
subset of all possible alignments between the sequences. Exam- 
ples of pairwise alignments along with specification of the subset 
to which they belong are shown. A An alignment that belongs to 
Sl(As, B4). 1] An alignment that belongs to $2(A6, B3). C An 
alignment that belongs to S3(Az, B3). D An alignment that belongs 
to $4(A5, Bs). E An alignment that belongs to $5(A5, B2). F An 
alignment that belongs to $6(A5, B7). 

" l l % j [ r +  X/3(t)(1 - r)]  n--- 2 
j=2 

L~(0, n ) = 0  n>-  1, i - - 1 , 2 , 4 , 5 , 6  

For  1 <_ m <_ SA and 1 -< n -< sB, the recursive 
algori thm follows these rules: 

L~ (m, n) = ~ra,,,f~b°(t) [rKmrnL 1 (m -- 1, n -- 1) 

X 
-~ Pl (t)(1 -- r ) -  

g 

6 

• ~_~ D o ( m -  1, n -  1)1 
i=1 

L 2 (m, n) = 7r~,° [rrmL z (m - 1, n) 

+ p'o(t)(1 - r) ~ ~ L~o(rn - 1, n)] 
i=1 

L3o (m, n) = Irb° [rrnL 3 (m, n - 1) 



+ X 3 ( t ) ( 1 - r )  ~ L~o(m, n -1 ) ]  
i=  1 ,3 ,4 ,5 ,6  

L4(m, n) = 7ra.~rb.[r2r,,K,L4(m- 1, n -  1) 

+ p'l(t)(1 --r) 2~ ~ L~o(m - 1, n -  1)] 
]d i =1  

5 

LSo (m, n) = 7(amgmKnr ~ Lio ( m -  1, n) 
i = 4  

L6(m, n) = 7rbrmKnr ~ Lio(m, n -  1) 
i = 4 , 6  

Then, the likelihood of the two sequences is ob- 
tained by 

6 

Lo (A, B) = ~ L~o (SA, S,) (9) 
i=1  

A maximum likelihood estimate of the evolu- 
tionary parameters can be obtained by finding the 
value of 0 that satisfies max0L0(A, B). To find this 
value of 0, a numerical maximization routine can 
be used in conjunction with the above method for 
calculating Lo(A, B). The computer code of the nu- 
merical maximization routine, which produced the 
results presented in this paper, was written by Press 
et al. (1988) and is an implementation of the simplex 
maximization routine of Nelder and Mead (1965). 

3.2 Alignment Inference 

Two useful types of alignments will be considered 
with respect to the framework of the fragment mod- 
el. The maximum likelihood algorithms for infer- 
ring both types of alignment are dynamic program- 
ming algorithms. In both cases, entries of an (sA + 
1) x (sB + 1) matrix are iteratively calculated. Like 
the matrix used by the evolutionary parameter es- 
timation procedure, the set of  all alignments be- 
tween A and B [i.e., S(A, B)] is partitioned into 
subsets. A site (m, n) of the matrix contains entries 
representing the likelihood of the most likely align- 
ment in each specific subset of S(A,,, Bn). A trace- 
back procedure is used to find the best path through 
this matrix. This path specifies the inferred align- 
ment. The first type of alignment is conventional; 
it exhibits only the relationships between the nu- 
cleotides of the two different DNA sequences and 
does not specify boundaries between fragments. This 
type of alignment would usually be preferred in sit- 
uations where the possibility of regional heteroge- 
neity of  substitution rates will be ignored. The sec- 
ond type of alignment is useful when regional 
heterogeneity of  substitution rates is suspected. This 
type of alignment is obtained by inferring the re- 
lationships between the nucleotides of the two se- 

quences, the boundaries between fragments, and 
whether each fragment is fast or slow. Just as the 
evolutionary parameter estimation algorithm of sec- 
tion 3.1 is a generalization of the conceptually sim- 
ilar algorithm ofThorne et al. (1991), the algorithms 
for the inference of the two types of  alignment dis- 
cussed here are generalizations of the conceptually 
similar alignment algorithm of Thorne et al. There- 
fore, the specific description of the two new align- 
ment algorithms is omitted. 

4 Simulation Studies 

4.1 Design 

Parameter estimation properties were investigated 
by simulation study. Pairs of sequences were gen- 
erated by evolving from an ancestral sequence A to 
a descendant sequence B. The evolutionary process 
in the simulation was consistent with the fragment 
model except that the number of fragments in the 
ancestral sequence was fixed so that the expected 
length of an ancestral sequence with this number of 
fragments would be 500 bases. Because the average 
fragment length is 1/(1 - r) bases, the number of 
fragments in the ancestral sequence was equal to 
500/(1 - r). The purpose of this intentional viola- 
tion was to reduce the effects of variable initial se- 
quence length on the estimation of evolutionary pa- 
rameters. For the simulated evolutionary process, 

SA(1 -- r) - 2r + k/S2A(1 - r )  2 q-  4r 
X = # (10) 

2(S A + 1)(1 -- r) 

This is the maximum likelihood estimate of X for 
given values of ~z, SA, and r under our evolutionary 
model. The divergence time was set to t = 1.0. The 
base composition was 71" A = 71" G = 71" c ~-" "/I T = 0.25. 
For this base composition, the substitution model 
described in section 2.2 reduces to IOmura's two- 
parameter model (Kimura 1980). 

Ideally, all evolutionary parameters--including 
Xt and the equilibrium base frequencies--would be 
simultaneously estimated under the maximum like- 
lihood framework. The finite amount of computer 
time available makes this ideal impractical. To make 
sequence analysis practical, each equilibrium base 
frequency 0rA, ~-6, 7rc, "7/'.1-) w a s  estimated by the fre- 
quency of appearances of that type of base in the 
evolved sequences. The observed base frequencies 
may not be the maximum likelihood estimates of  
the equilibrium base frequencies. To further reduce 
the number of parameters to be estimated, Xt was 
fixed at 

Xt = ~bt (11) 

where 
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(O=U(SA +S~)(1 -- r ) - -  4r  
+ V/(SA + S~)2(1 -- r) 2 + 16r 

/(2(sa + s8 + 2)(1 -- r)) (12) 

For  two unrelated sequences evolving according to 
given values of  #, r, SA, and s~, the m a x i m u m  like- 
l ihood value o fk  is equal to ~. For  related sequences, 
Ct may  not  be the m a x i m u m  likelihood estimate of  
kt. The  possible effects o f  not  obtaining m a x i m u m  
likelihood estimates for all parameters  are un- 
known. 

In the future, it may  be determined that certain 
parameters  (e.g., X, ~t, r, t, and the equil ibrium base 
frequencies) can be predicted accurately prior  to se- 
quence analysis. I f  this proves to be the case, it may  
be unnecessary to estimate these parameters  for each 
specific pair of  sequences. Unfortunately,  we believe 
that current  knowledge o f  molecular evolut ion is 
generally insufficient for accurate a priori parameter  
estimation. 

It is interesting to study the behavior  o f  the het- 
erogeneity procedure when there is no regional het- 
erogeneity o f  substitution rates. Likewise, it is in- 
teresting to study the behavior  o f  the homogenei ty  
procedure when there actually is regional hetero- 
geneity o f  substitution rates. To fulfill these objec- 
tives, each pair of  simulated sequences was analyzed 
by both  the homogenei ty  procedure and the hetero- 
geneity procedure regardless o f  whether  the pair of  
sequences was evolved with or without  regional het- 
erogeneity o f  substitution rates. 

In addit ion to calculating the sample standard 
error  of  parameter  estimates by analyzing many  rep- 
licate pairs o f  sequences that were evolved under  
the same value of  0, a more  approximate measure 
of  s tandard error and the covariance structure in 
general was investigated. This approximat ion of  the 
asymptot ic  error has the advantage that it can be 
calculated f rom analyzing a single pair o f  sequences. 
The approximat ion can be obtained in the standard 
way by evaluating the inverse o f  the Fisher infor- 
mat ion  matr ix  (i.e., the Hessian matr ix  o f  the neg- 
ative log likelihood: Kendall  and Stuart 1973) for a 
pair o f  sequences. 

4.2 Simulation Results and Discussion 

Analysis of  simulated pairs o f  sequences showed 
that evolut ionary parameters  can be reasonably ac- 
curately est imated by the homogenei ty  procedure 
when there is no regional heterogeneity o f  substi- 
tut ion rates (Table 1). The substitution process pa- 
rameters,  gt and wt, were especially well estimated. 
The parameter  that determines the fragment size 
distribution (r) tends to be underest imated.  Because 
m a x i m u m  likelihood estimators can be biased, this 
is not  surprising. Because long sequences contain 

more  informat ion about  the evolut ionary process 
than do short sequences, they yield relatively ac- 
curate estimates o f  r and the other  evolut ionary pa- 
rameters  (Table 2). 

When #t is small and r is large, it is c o m m o n  for 
no deletion events to occur during the evolut ion 
from an ancestral sequence o f  moderate  length (e.g., 
500 bases) to a descendant  sequence. When the sit- 
uation does occur, the m a x i m u m  likelihood esti- 
mate o f  ~tt should be near zero. Appropriately,  this 
situation did produce estimates o f# t  near zero when 
either the homogenei ty  procedure or the heteroge- 
neity procedure was employed.  Zero is at the bound-  
ary of  the parameter  space of#t .  Unfortunately,  the 
estimates o f  the covariance structure that were de- 
r ived f rom the Fisher informat ion matr ix were not  
satisfactory when parameter  estimates were near the 
boundary  o f  the parameter  space. For  example, vari- 
ance estimates f rom the Fisher informat ion matr ix 
were often negative. For  pairs o f  sequences that were 
evolved without  regional heterogeneity of  substi- 
tut ion rates and then analyzed by the homogenei ty  
procedure,  the estimate o f  the variance o f  ~tt f rom 
the Fisher informat ion matr ix  was negative in 1 out  
of  100 cases when ~tt = 0.01 and r -- 0.5, 40 out of  
100 cases when #t = 0.01 and r = 0.9, and 0 out o f  
100 cases when t~t = 0.1 and r = 0.5. As would be 
expected, the estimate o f  the variance o f  r f rom the 
Fisher informat ion matr ix was also occasionally 
negative. Problems with the Fisher informat ion ma- 
trix became even more  severe when pairs o f  se- 
quences that were evolved without  regional hetero- 
genei ty  were  an a ly zed  by  the h e t e ro g ene i t y  
procedure.  Values o f  Ps = 1, pf = 0, and k s --- 1 all 
indicate a lack o f  regional heterogeneity in substi- 
tut ion rates. All of  these boundary  values were ca- 
pable o f  yielding Fisher informat ion matrices that 
contained negative variance estimates. 

This lack o f  success is evidently due to failure o f  
the numerical  maximizat ion  routine to converge at 
the maximal  point  o f  the likelihood surface. In this 
case, the Fisher informat ion matr ix would not  be 
expected to yield the desired variance covariance 
structure. The parameter  space searched by the ho- 
mogeneity procedure is a specific port ion o f  the pa- 
rameter  space searched by the heterogeneity pro- 
cedure. Therefore,  the m a x i m u m  likelihood value 
[i.e., Lo(A, B)] re turned by the heterogeneity pro- 
cedure should always be greater than or equal to the 
m a x i m u m  likelihood value returned by the homo-  
geneity procedure.  As further evidence o f  the failure 
o f  the numerical  maximizat ion  routine near the 
boundaries  of  the parameter  space, the m a x i m u m  
likelihood value returned by the homogenei ty  pro- 
cedure was not  always greater than the m a x i m u m  
likelihood value returned by the heterogeneity pro- 
cedure in practice; when the heterogeneity proce- 
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Table 1. Performance of  the homogeneity procedure for pairs o f  sequences with no regional heterogeneity of  substitution rates 

gt r gt  wt 

A) Cases with low deletion probability per fragment ( t t t=  0.01) and small fragments (r = 0.5) 

0.01 0.5 0.1 0.1 

0.0082 ___ 0.0045 0.42 + 0.18 0.098 --- 0.022 0.094 + 0.032 
± 0.0047 + 0.21 + 0.021 + 0.029 

0.01 0.5 0.1 0.5 

0.0107 ± 0.0056 0.38 --+ 0.18 0.098 + 0.017 0.493 _+ 0.041 
± 0.0052 ± 0.19 ± 0.021 __+ 0.066 

0.01 0.5 0.1 1.0 

0.0097 _+ 0.0040 0.46 ± 0.20 0.097 + 0.021 1.028 ± 0.164 
___ 0.0057 ± 0.18 ± 0.021 -4- 0.131 

0.01 0.5 0.5 0.5 

0.0112 ± 0.0042 0.47 + 0.14 0.484 __+_ 0.037 0.519 ± 0.105 
± 0.0061 ± 0.17 ± 0.059 ± 0.108 

0.01 0.5 0.5 1.0 

0.0106 ± 0.0082 0.36 + 0.27 0.527 + 0.065 1.045 + 0.228 
± 0.0049 ± 0.19 + 0.063 ± 0.198 

B) Cases with low deletion probability per fragment (~tt = 0.01) and large fragments (r = 0.9) 

0.01 0.9 0.1 0.1 

0.0088 ± 0.0183 0.81 ___ 0.22 0.090 ± 0.022 0.107 ± 0.030 
___ 0.0151 + 0.35 + 0.020 + 0.029 

0.01 0.9 0.1 0.5 

0.0099 _+ 0.0160 0.86 + 0.15 0.100 + 0.020 0.506 + 0.070 
± 0.0156 + 0.10 + 0.021 + 0.068 

0.01 0.9 0.1 1.0 

0.0121 _+ 0.0147 0.89 -4- 0.08 0.097 ± 0.018 1.023 + 0.153 
___ 0.0222 + 0.15 + 0.021 + 0.128 

0.01 0.9 0.5 0.5 

0.0090 ± 0.0133 0.74 ___ 0.33 0.512 + 0.058 0.520 ___ 0.104 
___ 0.0140 --_ 0.17 + 0.062 -4- 0.111 

0.01 0.9 0.5 1.0 

0.0097 __- 0.0199 0.80 + 0.27 0.496 + 0.059 1.054 + 0.195 
± 0.0272 + 0.09 + 0.058 + 0.189 

C) Cases with high deletion probability per fragment (gt = O. 1) 

0.1 0.5 0.1 0.1 

0.0881 ± 0.0196 0.45 + 0.05 0.100 -_+ 0.027 0.099 + 0.031 
_+ 0.0190 + 0.07 + 0.027 + 0.035 

0.1 0.5 0.1 0.5 

0.0969 ± 0.0285 0.48 + 0.05 0.095 + 0.035 0.518 + 0.085 
± 0.0219 + 0.08 + 0.028 + 0.080 

0.1 0.5 0.1 1.0 

0.1047 ± 0.0315 0.47 + 0.10 0.088 + 0.031 0.975 + 0.165 
+ 0.0238 + 0.07 -4- 0.029 + 0.143 

0.1 0.5 0.5 0.5 

0.1115 ± 0.0431 0.48 + 0.09 0.504 + 0.114 0.506 + 0.173 
± 0.0350 + 0.10 ___ 0.100 ± 0.157 

0.1 0.5 0.5 1.0 

0.1027 + 0.0334 0.44 + 0.14 0.502 + 0.080 1.058 ± 0.407 
_+ 0.0361 + 0.13 + 0.108 + 0.304 

0.1 0.9 0.1 1.0 

0.0936 _+ 0.0420 0.88 + 0.04 0.097 + 0.020 0.986 + 0.147 
+_ 0.0437 + 0.04 + 0.023 +_ 0.132 

Each row of  the table contains average parameter  estimates for a specific set of  true values of~tt, r, gt, and wt. True parameter  values 
are underlined. The average parameter  estimate is below the true parameter  value. To the right of  the average parameter estimate is 
the sample standard error. Directly below each sample standard error is the average estimate of  the standard error obtained from the 
information matrix. As noted in the text, failure o f  the numerical maximization routine occasionally resulted in the information 
matrix producing negative estimates o f  variance. The reported average is an average among cases where the information matrix yielded 
positive estimates of  variance 
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Table 2. Effect of  sequence length on parameter estimation by the homogeneity procedure 

~tt r gt wt  

Truth 0.01 0.5 0.1 1.0 
Expected length, 500 0.010 _ 0,004 0.46 + 0.20 0,097 + 0.021 1.028 + 0.164 
Expected length, 1500 0.010 _+ 0.002 0.48 ± 0.09 0.102 + 0.013 0.959 + 0.075 

Twenty simulated pairs of sequences with expected length of 500 nucleotides were produced by an evolutionary process with no 
regional heterogeneity of substitution rates. These pairs of sequences were analyzed by the homogeneity procedure. The same values 
of tzt, r, gt, and wt were used to generate 20 pairs of sequences of expected length 1500 nucleotides and these pairs of sequences were 
also analyzed by the homogeneity procedure. This table shows the true evolutionary parameter values, the average parameter estimates 
from the sequences of expected length 500 nucleotides, and the average parameter estimates from the sequences of expected length 
1500 nucleotides. Sample standard errors are to the right of the average parameter estimates 

Table 3. Performance of the heterogeneity procedure for pairs of sequences with regional heterogeneity of substitution rates 

t~t r gt  wt  Pl  ks 

0.01 0.9 0.05 0.05 0.5 4.0 

0.011 _ 0.012 0.87 + 0.07 0.074 + 0.049 0.066 + 0.027 0.44 + 0.25 4.7 + 2.9 
+ 0.015 + 0.06 + 0.037 + 0.041 ___ 0.27 + 5.4 

0.01 0.9 0.05 0.05 0.5 8.0 

0.012 + 0.015 0.88 + 0.09 0.065 + 0.044 0.062 + 0.032 0.49 _+ 0.14 8.1 _+ 4.7 
+ 0.016 + 0.07 + 0.035 +- 0.036 + 0.18 + 5.4 

0.01 0.9 0.05 0.05 0.8 4.0 

0.012 _ 0.017 0.79 + 0.24 0.101 ___ 0.060 0.097 + 0.069 0.63 + 0.28 5.7 + 9.3 
___ 0.015 + 0.18 + 0.059 + 0.054 __+ 0.44 +-- 22.5 

0.01 0.9 0.05 0,05 0.8 8.0 

0.015 +__ 0.025 0.84 + 0.15 0.092 + 0.060 0.099 + 0.067 0.71 + 0.21 8.6 + 10.3 
+ 0.021 + 0.08 + 0.079 + 0.088 + 0.19 + 19.7 

0.01 0.9 0.05 0.2 0.5 4.0 

0.011 + 0.012 0.87 + 0.07 0.057 + 0.029 0.206 ___ 0.073 0.46 + 0.22 4.5 + 1.4 
+ 0.016 + 0.06 + 0.026 + 0.083 + 0.23 + 2.2 

0.01 0.9 0.05 0.2 0.5 8.0 

0.009 + 0.010 0.87 + 0.06 0.043 + 0.023 0.173 + 0.092 0.52 + 0.12 42.9 _ 127.4 
+ 0.012 + 0.06 + 0.019 + 0.066 + 0.13 -+ 62.9 

0.01 0.9 0.05 0.2 0.8 4.0 

0.012 + 0.011 0.83 - 0.21 0.041 + 0.019 0.173 + 0.093 0.77 + 0.16 9.1 + 13.9 
___ 0.013 + 0.07 + 0.030 ± 0.121 + 0.22 --- 13.3 

0,01 0.9 0.05 0.2 0.8 8.0 

0.009 + 0.010 0.86 + 0.09 0.048 + 0.030 0.217 ± 0.131 0.76 ___ 0.13 20.5 + 34.5 
+ 0.011 + 0.08 + 0.033 + 0.123 + 0.11 ± 24.9 

Each row of the table contains average parameter estimates for a specific set of true values of tzt, r, gt, wt, Pl, and k~ The average 
parameter estimates were obtained from the simulated evolution and analysis of 20 pairs of sequences by the heterogeneity procedure. 
To produce a pair of sequences from particular values of the evolutionary parameters, a descendant sequence was evolved as described 
in the text from an ancestral sequence of expected length 500 nucleotides. True parameter values are underlined. The average parameter 
estimate is below the true parameter value. To the right of the average parameter estimate is the sample standard error. Directly 
below each sample standard error is the average estimate of the standard error obtained from the information matrix. As noted in 
the text, failure of the numerical maximization routine occasionally resulted in the information matrix producing negative estimates 
of  variance. The reported average is an average among cases where the information matrix yielded positive estimates of variance 

d u r e  r e t u r n e d  a p a r a m e t e r  e s t i m a t e  t h a t  w a s  n e a r  

t h e  b o u n d a r y  o f  t h e  p a r a m e t e r  s p a c e ,  t h e  m a x i m u m  

l i k e l i h o o d  v a l u e  w a s  s o m e t i m e s  l ess  t h a n  t h e  v a l u e  

r e t u r n e d  b y  t h e  h o m o g e n e i t y  p r o c e d u r e .  

I n  c o n t r a s t ,  w h e n  e s t i m a t e s  o f  p a r a m e t e r s  w e r e  

i n  t h e  i n t e r i o r  o f  t h e  p a r a m e t e r  s p a c e ,  f a i l u r e  o f  t h e  

m a x i m i z a t i o n  r o u t i n e  w a s  u n c o m m o n  a n d  t h e  c o -  

v a r i a n c e  s t r u c t u r e  e s t i m a t e d  b y  t h e  F i s h e r  i n f o r -  

m a t i o n  m a t r i x  t e n d e d  t o  b e  m o r e  r e a s o n a b l e .  I n s i g h t  

c a n  b e  a s s i s t e d  b y  e x a m i n a t i o n  o f  t h e  s a m p l e  c o r -  

r e l a t i o n s  a n d  c o r r e l a t i o n s  f r o m  t h e  F i s h e r  i n f o r -  

m a t i o n  m a t r i x .  F o r  e x a m p l e ,  t h e  c o r r e l a t i o n  b e -  

t w e e n / z t  a n d  r is  p o s i t i v e .  B e c a u s e  t h e  v a l u e  o f  r 

d e t e r m i n e s  t h e  e x p e c t e d  n u m b e r  o f  f r a g m e n t s  w i t h -  

i n  a s e q u e n c e ,  a h i g h  v a l u e  o f  r i n d i c a t e s  t h a t  a 

s e q u e n c e  wi l l  h a v e  a f e w  l a rge  f r a g m e n t s .  I f a  c e r t a i n  

n u m b e r  o f  d e l e t i o n s  h a s  o c c u r r e d  s i n c e  t h e  d i v e r -  

g e n c e  o f  t w o  s e q u e n c e s ,  t h e n  t h e  e s t i m a t e  o f  t h e  

p r o b a b i l i t y  o f  d e l e t i o n  p e r  f r a g m e n t  wi l l  b e  h i g h e r  

i f  t h e  s e q u e n c e  is  t h o u g h t  t o  c o n t a i n  a f e w  l a rge  



20  

0 10 

0 

A 

K 

Log Like l ihood Difference 

4 '  

3 '  

2'  L 

7 

0-4 i 
o 

v -  v -  ~ -  v -  v -  v -  

Log Likel ihood Difference 

13 

Fig. 4. The distribution of the log 
likelihood difference between the 
value of 0 suggested by the heteroge- 
neity procedure and the value of 0 
suggested by the homogeneity pro- 
cedure is affected by whether region- 
al heterogeneity of substitution rates 
actually occurs during the evolution- 
ary process. The data shown repre- 
sent the logarithm of the maximum 
likelihood value returned by the 
heterogeneity procedure minus the 
logarithm of the maximum likeli- 
hood value returned by analysis of 
the same pair of sequences by the 
homogeneity procedure. All nega- 
tive values occurred when the het- 
erogeneity procedure obtained pa- 
rameter estimates near the boundary 
of the parameter space. Results were 
obtained from the simulated evolu- 
tion and analysis of 20 pairs of se- 
quences. To produce a pair of se- 
quences from particular values of 
the evolutionary parameters, a de- 
scendant sequence was evolved 
from an ancestral sequence of ex- 
pected length 500 nucleotides. A A 
histogram of the distribution of the 
log likelihood difference when there 
is no regional heterogeneity of sub- 
stitution rates during the evolution- 
ary process. Each pair of sequences 
was simulated with these evolution- 
ary parameter values r = 0.5, ~tt = 
0.01, gt = 0.1, and wt = 1.0. Each 
column of the histogram represents 
all log likelihood differences within 
a 0.1 log likelihood unit interval. B 
A histogram of the distribution of 
the log likelihood difference when 
there is regional heterogeneity of 
substitution rates during the evolu- 
tionary process. Each pair of se- 
quences was simulated with these 
evolutionary parameter values r = 
0.9, ut = 0.01, gt = 0.05, wt = 0.2, 
ps = 0.8, and ks= 4.0. Each column 
of the histogram represents all log 
likelihood differences within a 0.5 
log likelihood unit interval. 

f r a g m e n t s  (i.e., a h igh  v a l u e  o f  r) t h a n  i t  w o u l d  be  
i f  the  s equence  is t h o u g h t  to  c o n t a i n  m a n y  s m a l l  
f r a g m e n t s  (i.e., a l o w  v a l u e  o f  r). 

Reas su r ing ly ,  t he  e v i d e n c e  for  r eg iona l  h e t e r o -  
gene i t y  o f  s u b s t i t u t i o n  ra t e s  was  s t ronge r  w h e n  re-  
g iona l  h e t e r o g e n e i t y  o f  s u b s t i t u t i o n  ra tes  ac tua l l y  
o c c u r r e d  t h a n  w h e n  i t  d i d  n o t  occu r  (Fig.  4). T h e  
a b i l i t y  to  a c c u r a t e l y  e s t i m a t e  the  s u b s t i t u t i o n  p r o -  
cess  p a r a m e t e r s  w h e n  r eg iona l  h e t e r o g e n e i t y  in  sub-  
s t i t u t i o n  ra tes  occurs  (Ps, ks, g, w) is h igh ly  d e p e n d e n t  
on  the  v a l u e  o f  r. T h i s  v a l u e  d e t e r m i n e s  the  scale  
on  w h i c h  r eg iona l  h e t e r o g e n e i t y  o f  s u b s t i t u t i o n  ra t e s  
occurs•  I f  the  v a l u e  o f  r is c lose  to  zero,  f r a g m e n t s  

wil l  t e n d  to  be  v e r y  shor t .  I f  f r a g m e n t s  t e n d  to  be  
shor t ,  a d j a c e n t  n u c l e o t i d e s  a re  l ike ly  to  be long  to 
d i f fe ren t  f r agmen t s ,  and ,  u n d e r  the  f r a g m e n t  m o d e l ,  
the  s u b s t i t u t i o n  ra tes  o f  a d j a c e n t  f r a g m e n t s  a re  in-  
d e p e n d e n t .  T h e  p o w e r  to  d i s t i n g u i s h  b e t w e e n  he t -  
e roge ne i t y  o f  s u b s t i t u t i o n  ra tes  a n d  no  h e t e r o g e n e i t y  
o f  s u b s t i t u t i o n  ra tes  is  t i ed  to  the  a m o u n t  o f  n o n -  
i n d e p e n d e n c e  in  the  s u b s t i t u t i o n  p roces s  b e t w e e n  
a d j a c e n t  nuc l e o t i de s .  The re fo re ,  s m a l l  va lue s  o f  r 
y i e l d  l i t t le  p o w e r  to  de t ec t  r eg iona l  s u b s t i t u t i o n  ra te  
he t e rogene i t y .  I n  fact ,  the  v a l u e  o f  r has  to  be  qu i t e  
h igh  to  de t ec t  h e t e r o g e n e i t y  a c c o r d i n g  to  o u r  s im-  
u la t ions .  I n  sets o f  s i m u l a t e d  sequence  pa i r s  w h e r e  
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A 

TTTTCTGAGAATTTGATCTTGGTTCAGATTGAACGCTGGCGGCGTGGATGAGGCATGCAAGTCGAACGGA 

-ATACGAAGAGTTTGATCCTGGCTCAGGATTAACGCTGGCGGCGTGCCTAATACATGCAAGTCGAACGGA 

A ................ TAATGACTTCGGTTGTTATTTAGTGGCGGAAGGGTTAGTAATACATAGATAAT 

AGTTTAAGCAATTAAAC .................. TTTAGTGGCGAACGC4~TGAGTAACGCGTAAGCAAT 

CTGTCCTCAACTTGGGAATAACGGTTGGAAACGACCGCTAATACCGAATGTG .................. 

CTGCCCCTAAGACGAGGATAACAGTTGGA~CGACTGCTAAGACTGGATAGGAGACAAGAAGGCATCTTC 

......................... GTATGTTTAGGCATCTAAAACATATTAAAGAAGGGGATCTTCGGA 

TTGTTTTTAAAAGACCTAGCAATAGGTATGCTTAGG .................................. 

CCTTTCGGTTGAGGGAGAGTCTATGGGATATCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCTTTGAC 

............. GAGGAGCTTGCGTCACATTAGTTAGTTGGTGGGGTAAAGGCCTACCAAGACTATGAT 

GTCTAGGCGGATTGAGAGATTGACCGCCAACACTGGGACTGAGACACTGCCCAGACTTCTACGGAAGGCT 
GTGTAGCCGGGCTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCA 

TTTTCTGAGAATTTGATCTTGGTTCAGATTGAACGCTGGCGGCGTGGATGAGGCATGCAAGTCGAACGGA 

-ATACGAAGAGTTTGATCCTGGCTCAGGATTAACGCTGGCGGCGTGCCTAATACATGCAAGTCGAACGGA 

ffffffsssssssssssssssssssssssssssssssssssssssfffffffsssssssssssssssss 

ATAATGACTTCGGTTGTTATTTAGTGGCGGAAGGGTTAGTAATACATAGATAATCTGTCCTCAACTTGGG 

A--GTTTAAGCAATTAAACTTTAGTGGCGAACGGGTGAGTAACGCGTAAGCAATCTGCCCCTAAGACGAG 

s ffffffffffffffffsssssssssssssssssssssssssssssssssssssssssffffffffff 

AATAACGGTTGGAAACGACCGCTAATACCGAATGTGGTATGTTTAGGCATCTAAAACATATTAAAGAAGG 

GATAACAGTTGGAAACGACTGCTAAGACTGGATAGGAGACAAGAAGGCATCTTCTTGTTTTTAAA .... A 

fssssssssssssssssssssssssssssssssfffffffffffssssssssffffffffsssss f 

GGATCTTCGGACCTTTCGGTTGAGGGAGAGTCTATGGGATATCAGCTTGTTGGTGGGGTAATGGCCTACC 
GACCTAGCAATAGGTATGCTTAGGGAGGAGCTTGCGTCACATTAGTTAGTTGGTGGGGTAAAGGCCTACC 

ffffffffffffffffffffffffffffffffffffffffssssssssssssssssssssssssssssss 

AAGGCTTTGACGTCTAGGCGGATTGAGAGATTGACCGCCAACACTGGGACTGAGACACTGCCCAGACTTC 
AAGACTATGATGTGTAGCCGGGCTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAAACTCC 

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 

TACGGAAGGCTGCAGTCGAGAATCTTTCGCAATGGACGAAAGTCTGACGAAGCGACGCCGCGTGTGTGAT 

TACGGGAGGCAGCAGTAGGGAATTTTCGGCAATGGAGGAAACTCTGACCGAGCAACGCCGCGTGAACGAT 

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 

Fig. 5. Comparison of an alignment produced under the as- 
sumption of regional homogeneity of substitution rates with an 
alignment produced under the assumption of regional hetero- 
geneity of  substitution rates. To produce these alignments, frag- 
ment boundaries were inferred but not shown. The specific se- 
quences that were aligned were the 1552-bp sequence of the 16S 
rRNA sequence of Chlamydia  psittaci (Weisburg et al. 1986) and 
the 1535-bp sequence of the 16S rRNA sequence of a myco- 
plasma-like organism (Lira and Sears 1989). In the case of each 
alignment, the top sequence is from C. psittaci and the bottom 
sequence is from the mycoplasma-like organism. Only the first 
420 positions of each alignment are shown. A The two sequences 
were analyzed by the homogeneity procedure. The number of 
iterations required by the numerical maximization procedure was 
155. The specific parameter values suggested by the homogeneity 
procedure and used to produce the alignment are #t = 0.169 + 

0.064, r = 0.947 +- 0.016, gt = 0.205 _+ 0.022, and wt = 0.212 
_+ 0.030. The negative log likelihood of  the two sequences for 
these parameter values is 3522.48. B The two sequences were 
analyzed by the heterogeneity procedure. The number of itera- 
tions required by the numerical maximization procedure was 
340. The specific parameter values suggested by the heterogeneity 
procedure and used to produce the alignment are/~t = 0.022 _+ 
0.009, r = 0.812 + 0.053, gt = 0.142 _+ 0.024, wt = 0.171 _+ 
0.033, Ps = 0.212 + 0.053, and k s = 10.9 + 4.1. The negative 
log likelihood of the two sequences for these parameter values is 
3499.31. To distinguish paired regions that were inferred to evolve 
quickly from regions that were inferred to evolve slowly, an 'T" 
is placed under those nucleotide sites that were inferred to belong 
to a fast fragment, and an "s" is placed under those nucleotide 
sites that were inferred to belong to a slow fragment. 
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r = 0.75, results were disappointing (data not shown). 
A value o f r  = 0.9 led to better evolut ionary param- 
eter estimates (Table 3). I f  more than two sequences 
could be simultaneously analyzed under  the frag- 
ment  model,  it would become easier to detect het- 
erogeneity o f  substitution rates for small values o f  
r. Given enough sequences, it is possible that in- 
dividual quickly evolving nucleotide sites could be 
distinguished from individual slowly evolving nu- 
cleotide sites. 

As demonst ra ted  by comparing the 1552-bp se- 
quence of  the 16S r R N A  sequence o f  Chlamydia 
psittaci (Weisburg et al. 1986) with the 1535-bp se- 
quence o f  the 16S r R N A  sequence o f a  mycoplasma-  
like organism (Lim and Sears 1989), the appearance 
o f  an alignment suggested by the parameter  esti- 
mates o f  the homogenei ty  procedure can be quite 
different f rom the appearance o f  an alignment sug- 
gested by the parameter  estimates o f  the heteroge- 
neity procedure (Fig. 5). This striking difference aris- 
es because the two sequences are closely related 
throughout  much  of  their length but they contain 
interior regions that are highly diverged. The ho- 
mogenei ty procedure yields evolut ionary parameter  
estimates that make it more  probable that the high 
degree o f  divergence o f  these interior regions is due 
to the insert ion-delet ion process than the substi- 
tution process; the heterogeneity procedure can more 
easily account  for highly diverged interior regions. 

5 Future Direct ions  

An explicit model  o f  biological sequence evolution 
can potentially provide a theoretical basis for the 
study o f  molecular evolution. We believe that the 
m a x i m u m  likelihood methodology presented in this 
paper will prove to be a step toward such a theo- 
retical basis even though the current model  has se- 
vere limitations. A model  incorporating other com- 
m o n  e v o l u t i o n a r y  even ts  (e.g., r e c o m b i n a t i o n ,  
inversion) in addit ion to insertions, deletions, and 
substitutions would be an improvement .  It would 
also be useful to allow local D N A  context to affect 
the probabili ty o f  evolut ionary events. In addition, 
it must  be recognized that sequence data are pro- 
duced by human  researchers and the decisions o f  
these researchers affect which data are included in 
the data set. For  this reason, terminal indels are 
often not a result o f  the evolut ionary process but 
are, instead, an artifact o f  the data collection pro- 
cess. An objective t reatment  o f  terminal insertions 
and deletions based upon the data collection process 
would be desirable. 

Another  impor tant  problem is alignment o f  more  
than two sequences. Reliable information concern- 

ing the topology and the branch lengths o f  the phy- 
logenetic tree can substantially improve  the validity 
o f  an alignment. Hein (1990) considered concurrent  
inference o f  phylogenies and multiple-sequence 
alignments by the approach of  m a x i m u m  parsi- 
mony.  The long-term goal o f  developing a compu-  
rationally feasible method  that uses a m a x i m u m  
likelihood framework to simultaneously infer phy- 
logenies and multiple-sequence alignments is still 
distant, but it is not  unrealistic. 
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Appendix 

The Heterogeneity Procedure. Because the heterogeneity proce- 
dure closely resembles the homogeneity procedure, only the de- 
tails unique to the heterogeneity procedure are described in this 
Appendix. The notation is consistent with the notation of section 
3.1 unless otherwise noted. 

The heterogeneity procedure classifies each alignment be- 
tween Am and B, as a member of exactly one of seven subsets of 
S(Am, Bn). Five of these subsets (e.g., S~(Am, Bn) for i = 2, 3 , . . . ,  
6) were defined in section 3.1. The remaining two subsets, Sls(A .... 
B,) and SlY(Am, Bn) , are obtained by partitioningS~(Am, B,). The 
definitions of these two subsets are: 

Sls(A~,  B,) = [a(Am, B,) where the rightmost link of A m is 
associated with a slow fragment and survives 
to become the rightmost link of B~] 

SlY(Am, Bn) = [or(Am, Bn) where the rightmost link of A m is 
associated with a fast fragment and survives 
to become the rightmost link of B,] 

Let a(A~, B,) be an alignment between Am and B~ and define 
L~s(m, n) and L~Z(m, n) as follows: 

L~(m. n) = P[a(Am, B.) e S,S(Am, Bn) ] O ] i = 1, 2 . . . . .  6 
L~Y(m. n) = P[a(Am, B~) ~ SI/(Am, B.)] 0] i = 1, 2 . . . . .  6 

In this appendix, the use of L~(m, n) for i = 2, 3 . . . . .  6 is 
consistent with the definitions of section 3.1 but the definition 
of L~(m, n) will become 

L~(m, n) = L~s(m, n) + L~/(rn, n) 

The heterogeneity procedure allows the substitution rates of 
fast and slow fragments to differ. Let~(t)  be the transition prob- 

ability that a nucleotide associated with a slow fragment, which 
begins as type i, is of type j at time t. Let f~(t) be the transition 
probability that a nucleotide associated with a fast fragment, 
which begins as type i, is of type j at time t. 

From the above definitions, a reeursive algorithm that cal- 
culates Lo(A, B) can be developed. The algorithm is identical to 
that of section 3.1 except that the recursive equation for L~o(rn, 
n) is not used. Instead, recursive equations for L~s(m, n) and 
Ly(m, n) must be specified. These equations are 

L~s(m, n) = 7ra~fs b . ( t ) [rr .~rnL~S(rn-  1, n -  1) 
L 
+ PsPl ( t ) ( 1  - r )  h-- 

# 

"~aL~(m-i=l 1, n - 1 ) ]  

f [ If L ~ Y ( m ,  n) = ~ra,,,f~,.b.(t) rKmK.Lo (m -- 1, n - -  1) 

+ pfp~ (t) (1 --  r ) -  
# 

•  -1'1 
All other details, including the necessity of a numerical max- 

imization routine, are shared by the homogeneity procedure and 
the heterogeneity procedure. 


