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Abstract. A theory of protein spatial-structure evo- 
lution in terms of random walks in multidimensional 
conformational space is proposed. It is shown that the 
spatial divergence in pairs of homologous proteins de- 
pends only on their sequence similarity and is indepen- 
dent of the protein size. X-ray data are reasonably well 
described in terms of the theory developed. 
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Introduction 

During biological evolution the primary structure of a 
naturally occurring protein is subjected to various point 
mutations. Some of them do not lead to frustrating 
changes in protein folding. Thus in the process of evo- 
lution groups of functionally analogous proteins with es- 
sential sequence similarity are formed. 

We study analytically the effect of sequential point 
mutations on the protein 3D structure in terms of the root 
mean square (RMS) deviation from 3D structure of the 
original protein. We also reveal the relation between the 
RMS deviation and sequence similarity in pairs of func- 
tionally analogous proteins. The main idea of the ap- 
proach is that the process of protein spatial-structure di- 
vergence is considered as diffusion in conformational 
space, the number of mutations representing the time. 
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Recently, Chothia et al. (Chothia and Lesk 1986; 
Lesk and Chothia 1986) have measured the divergence 
of structures in pairs of proteins vs their sequence ho- 
mology in terms of RMS deviations. They took into ac- 
count only those residues that form a "common core" of 
each pair of proteins. In another article (Hubbard and 
Blundell 1987) the authors consider the same relation- 
ship but establish other rules for the "common core" de- 
termination. 

We compare these experimental data with the results 
of our analytical treatment. Our approach results in a rea- 
sonably good approximation of the experimental data. 

Theory 

Consider a protein of N residues. We represent its spa- 
tial structure by coordinates of its backbone atoms (x i, 
yi, zi), where 1 -< i -< 4N (where 4 is the number of 
backbone atoms in each peptide unit). After one ac- 
cepted point mutation, meaning an amino acid replace- 
ment at one position in the protein sequence that does 
not change dramatically the protein spatial structure, 
coordinates of protein atoms change. We express the dif- 
ference between 3D structures of the mutant protein 
and the original one in terms of the RMS deviation A: 

1 4N 
- -  i A2(1) = 4N ~ [(xt _ x~)2 + (y~ _ y;)2 + (z~ - z~) 2] 

i=1 
(1) 

where (x~, y~, z~) and (x I, y~, z~) are coordinates of the 
i-th atom of the backbone of the original protein and 
those of the mutant protein after one mutation, respec- 



tively. Assume now that mutations occur randomly and 
the perturbations caused by different mutations are not 
correlated. Then the process of natural evolution is 
equivalent to diffusion in the multidimensional confor- 
mational space, the number of mutations, t, being equiv- 
alent to the time. According to the random walk theo- 
ry, the fo l lowing  express ion  descr ibes  the RMS 
deviation between the original protein structure and 
that of protein after t mutations: 

<a2( , )>  = a} .  t (2) 

where the effective diffusion coefficient is determined 
by 

A~ --- <A2(1)> (3) 

and the < . . .  > in (2) and (3) means averaging over 
all possible mutations. 

We suppose that each point mutation effects only the 
positions of spatially nearest residues, their number be- 
ing independent of the protein size. Thus the effective 
diffusion coefficient 

A~ = D/N 

where D is independent of the protein size, and ex- 
pressions (2) and (3) are transformed into 

<A2(t )>  = (D/N)" t (2') 

and 

D - <A2(1)> • N (3') 

respectively. 
It should be mentioned that relative fluctuations of 

zX2(t) at large N and t are O(1/N) + O(1/t) < <  1.This 
means that in the case of protein evolution (i.e., diffu- 
sion in the multidimensional (N > > 1) conformational 
space) the effect of a large number of random mutations 
(t > > 1) is practically independent of the evolutionary 
path and depends only on t. Therefore we can omit av- 
eraging in (2'): 

A2(t) ~ <A2( t )>  (4) 

Since the number of mutations, t, is an unobservable 
quantity, we express it in terms of sequence similarity. 
Assuming that the subsequent mutations occur inde- 
pendently, we can obtain the fraction Pe of residues, mu- 
tated exactly k times, to obey Poisson's law: 

P k -  k! e x p ( - N )  (5) 
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Hence, the similarity H- - tha t  is, a fraction of residues, 
mutated exactly 0 t imes-- is  determined by 

H - P o =  exp ( -  N) (5) 

Substituting this expression in (2) and using (4), we fi- 
nally obtain 

A2(H) = - D  log H (7) 

Generally speaking, formula (7) was obtained for 
two proteins, one of which is a direct precursor of the 
other. But for each pair of homologous proteins we 
cannot surely say that one of the proteins is a direct pre- 
cursor of the other. Let us generalize this formula to in- 
clude all pairs of homologous proteins. 

Consider two homologous proteins with a common 
precursor. Designate the number of mutations experi- 
enced by each of these proteins from their nearest pre- 
cursor by t~ and t 2. Then the RMS distance in the se- 
lected pair is 

A 2 = D(q + t2) = - D  • log(HIH2) (7') 

where H 1 and H 2 are similarities between these proteins 
and their precursor. Since the similarity between pro- 
teins H = H1H 2, formula (7) is valid for these proteins, 
too. 

Note that relation (7) does not contain the protein size 
parameter N. This allows us to compare our analytical 
conclusions with X-ray data on proteins of different 
sizes. 

Comparison with X-ray Data 

To compare the theoretical conclusions with X-ray da- 
ta, it is necessary to take into account differences in X- 
ray structures of the same protein, refined from differ- 
ent crystals or from a crystallographic cell, containing 
several molecules of the protein. Therefore expression 
(7) is transformed into the following form: 

z~12(/-/) = - D  log H + A 2. (7") 

where A 0 is of the order of the RMS deviation between 
known different X-ray structures of the same protein. 

The values of RMS deviations calculated for known 
X-ray structures are taken from Chothia and Lesk (1986) 
and Hubbard and Blundell (1987). We do not combine 
the data of these references, because they use different 
methods of structure-deviation calculations. 

Chothia et al. (Chothia and Lesk 1986) calculated the 
RMS deviation for backbone nonhydrogen atoms of 
residues constituting a "common core" in each pair of 
proteins. This "core" of the structures comprises major 
elements of secondary structure and residues flanking 
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Fig. 1. The relation of primary structure similarity and the RMS de- 
viation of backbone atoms of common cores (filled circles, data from 
Chothia and Lesk 1986; Lesk and Chothia 1986). Best-fitting curve 
(eq. 7") shown. 

them, including active-site peptides. For detailed in- 
formation on the proteins under consideration see Cho- 
thia and Lesk (1986); 37 pairs of homologous X-ray 
structures with a resolution higher than 2.0 A were in- 
vestigated by Chothia et al. We unite their data with our 
best-fit theoretical curve in Fig. 1. Best-fitting parame- 
ters are: D 1/2 = 1.40 A, A 0 = 0.11 A. 

Hubbard et al. (Hubbard and Blundell 1987) use all 
topologically equivalent residues as a core. They explore 
eight families of proteins with known X-ray structures, 
variously resolved. We exclude the data with a resolu- 
tion lower than 2.0 A following accepted standards for 
X-ray data analysis (see, e.g., Chothia and Lesk, 1986). 
The high-resolution data selected comprise 48 protein 
structures in 105 pairs. The data are shown in Fig. 2 with 
the best-fit theoretical curve. 

We also calculate the best-fit values o f D  ~/2 and A 0 for 
each of the following protein families used by Hubbard 
et al. (Hubbard and Blundell 1987)--hemoglobins, cy- 
tochromes, immunoglobulins and serine proteinases, 
and miscellaneous [~-proteins. The values are shown in 
Table 1. 

As seen from Figs. 1 and 2, the RMS distances cor- 
relate reasonably well with the respective sequence sim- 
ilarities. This fact lends strong evidence for two theo- 
retical conclusions: The RMS distances between two 
homologous proteins (1) do not depend on their size and 
(2) depend only on the similarity between the proteins. 
Point 1 is also confirmed in Table 1, where values of D 1~ 
for different families are compared with mean protein 
sizes. 

The differences in values of D 1/2 may reflect partic- 
ular features of structures in each family of proteins and 
differences in RMS distances determination in different 
sources. The same may be said for the values of A 0. 
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Fig. 2. The same as in Fig. 1 for the data from Hubbard and Blun- 
dell (1987). 

It is extremely important to compare the calculated 
values of D 1/a with those obtained from independent 
studies. We utilize X-ray data on various point mutants 
of bacteriophage T4 lysozyme (Matsumura et al. 1988, 
1989; Gray and Matthews 1987; Faber and Matthews 
1990; Nicholson et al. 1988; Alber et al. 1987) and the 
RMS deviation in coordinates for main-chain atoms 
between the wild-type and mutant proteins. Thus, the 
value of D 1/2 for mutant I3V (Matsumura et al. 1989, 
designation from the original article) is 1.3 ,~; for I3Y 
(Matsumura et al. 1989) this quantity is 2.8 A; for the 
Asp199 --+ Ash mutant of chloramphenicol acetyltrans- 
ferase (Gibbs et al. 1990) this quantity is 5.9 ~.  Note 
that in many cases (Gray and Matthews 1987; Faber and 
Matthews 1990; Nicholson et al. 1988; Alber et al. 
1987; Matsumura et al. 1988) the RMS deviations are 
not published for the entire structure. In these cases, as 
a basis of evaluation, we assumed shifts of single atoms 
(Nicholson et al. 1988), residues (Alber et al. 1987), or 
elements of secondary structure (Matsumura et al. 1988) 
in the vicinity of a modified site and evaluated the over- 
all RMS deviation, neglecting all other atoms shifts. 
Such a comparison shows that the D 1/2 values from ho- 
mologous proteins and point mutants are equal in the or- 
der of magnitude, though the former values are a little 
smaller than the latter ones. 

Discussion 

In this paper we have developed an analytical theory ex- 
plaining the natural evolution of protein 3D structures 
in terms of diffusion in multidimensional conforma- 
tional space. According to the conclusions of our ana- 
lytical treatment, the RMS distances in pairs of simi- 
larity proteins depend only on the degree of homology 
in pairs and do not depend on the size of the proteins 



Table 1. Calculated parameters of diffusion (see (7")) for different 
families of homologous proteins (RMS calculations from Hubbard and 
Blundell 1987) 

X/D,A A0,~ N 

Hemoglobins 1.01 0.58 - 140 
Immunoglobulins 0.87 0.72 - 1 l0 
Serine proteinases 0.99 0.38 --210 
Miscellaneous 

[~-proteins I. 17 0.42 - -  

Total 0.99 0.52 - -  

involved. The available X-ray data lend strong evidence 
that naturally occurring homologous proteins obey this 
law reasonably well, in spite of great heterogeneity of 
protein families and the sizes of the proteins involved 
(Table 1). The calculated values of "diffusion" con- 
stants in the order of magnitude coincide with available 
RMS distances between proteins differing by one mu- 
tation. 

Note that the following essential features of proteins 
are not included in the present consideration. First, all 
backbone atoms of a protein are linked into a chain, and 
therefore cannot diffuse independently. However, the ef- 
fect of joined diffusion becomes significant at distances 
much greater than the length of backbone bonds not in- 
cluded in the data set studied. Second, another e f fec t - -  
namely, the existence of spatial boundaries of diffu- 
s ion -a r i s e s  from the finite size of a protein molecule. 
This means that there is an upper limit for an RMS dis- 
tance between proteins. This upper limit reveals itself 
at low sequence similarities and can also contribute to 
the independence of the protein size in this region. As 
was mentioned, the data at low similarities are outside 
the scope of this article. Thus, our theoretical conclu- 
sion concerning the dependence on the protein size re- 
mains valid in the similarity region under consideration. 

Third, we neglect reverse mutations. In other words, 
there is a nonzero minimal sequence similarity between 
any proteins. The conservation of some residues (and 
their mutual conformation) through the evolution (for 
example, in active sites of enzymes) enlarges the rain- 

209 

imal sequence similarity. The minimal similarity value 
caused by reverse mutations cannot differ significantly 
from 1/L, where L = 20 is the number of naturally oc- 
curring amino acids, and the one caused by conserva- 
tion of functionally significant residues cannot be much 
greater. So, this effect may be revealed at low similar- 
ities which are not included in the experimental set of 
pairs. Therefore the effect of minimal similarity cannot 
be seen from the available experimental data. 
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