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Abstract 

Approval voting allows each voter to vote for as many candidates as he wishes in an 
election but  not  cast more than one vote for each candidate of  whom he approves. If 
there is a strict Condorcet  candidate - a candidate who defeats all others in paixwise 
contests - approval voting is shown to be the only nonranked voting system that is 
always able to elect the strict Condorcet candidate when voters use sincere admissible 
strategies. Moreover, ff a strict Condorcet  candidate must  be elected under ordinary 
plurality voting when voters use admissible strategies, then he must  also be elected 
under approval voting when voters use admissible strategies, but  the converse does not  
hold. 

The widely used plurality runoff  method can also elect a strict Condorcet  candidate 
when voters use admissible strategies on the first ballot, but  some of  these may have to 
be insincere to get the strict Condorcet  candidate onto  the runoff  ballot. Furthermore,  
there is no case in which the strict Condorcet  candidate is invariably elected under the 
plurality runoff  method when voters use admissible first-baUot strategies. Thus, 
approval voting is superior to the plurality runoff  method with respect to the Condor- 
cet principle in its ability to elect the strict Condorcet  candidate by sincere voting and 
in its ability to guarantee the election of  the strict Condorcet  candidate when voters 
use admissible strategies. In addition, approval voting is more efficient since it requires 
only one election and is probably less subject to strategic manipulation. 

Approval voting in a multicandidate election allows each voter to vote for as 
many candidates as he wishes. A candidate receives one full vote from each 
person who votes for him regardless of how many other candidates that 
person votes for; the candidate with the most votes wins the election. We 
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have noted elsewhere [1, 3] that approval voting is superior in several ways 
to all other single-ballot systems that do not ask voters to rank candidates. 
These other systems differ from approval voting by restricting the number 
of candidates that voters are allowed to vote for, the prime example being 
plurality (vote for one) voting. 

A major reason for preferring approval voting to plurality and other 
single-ballot nonranked systems is its lack of any restriction on the number 
of candidates for whom an individual can vote. Thus, voters can express 
their 'approval' for all candidates they find relatively acceptable, and they 
do not have to worry about abandoning their favorite candidates when such 
candidates have slim chances of winning. Approval voting also promotes 
sincere voting and discourages strategic or manipulative voting more than 
other single-ballot systems [1, 3] and thereby enhances the likelihood that 
a candidate who is acceptable to a large proportion of the electorate will be 
elected. Furthermore, approval voting is more likely to elect a Condorcet 
or majority candidate - one who is preferred by a majority to each other 
candidate - when one exists for certain types of situations [1]. 

Our purpose in the present paper is two-fold: (1) to present new results 
that reinforce the apparent superiority of  approval voting over other single- 
ballot nonranked systems; and (2) to introduce runoff election systems into 
our comparative analysis. The generic class of runoff systems consists of 
voting procedures whose first ballots are similar to the ballots of the single- 
ballot nonranked systems; the second or runoff ballot is a simple majority 
ballot between the two candidates who receive the most first-ballot votes. 

In the next two sections we describe the voting systems we shall analyze 
in more detail and specify our assumptions about voters' preferences, both 
between individual candidates and between what we shall refer to as out- 
comes of elections. In section 3 we define the notion of admissible voting 
strategies on the only (or first) ballot; for each combination of a voting 
system and preference order, we identify the set of strategies that are admis- 
sible (feasible and undominated) for that combination. We note that for 
most preference orders the set of admissible voting strategies for any ordi- 
nary (single-ballot) system is a proper subset of the set of admissible strat- 
egies for the corresponding runoff system. 

Next, in sections 4 and 5 we use the admissibility results to determine 
the abilities of various systems to elect a strict Condorcet candidate when 
one exists. In the first of these two sections, we investigate the existence of 
admissible, and sincere admissible, strategies that will elect the Condorcet 
candidate. In the latter section we consider cases in which the Condorcet 
candidate is invariably elected when all voters use admissible strategies. 

To reinforce our conclusion that ordinary approval voting is superior to 
other single-ballot nonranked systems, we argue that ordinary approval 
voting has several advantages over runoff systems. However, our comparison 
between ordinary approval voting and the popular runoff plurality system 
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leaves ample room for further analysis. A summary of findings concludes 
the main part of the paper. 

Proofs of the theorems are given in the Appendix. Theorems 1 and 3 are 
not proved here since their proofs appear in [1]. 

1. Voting systems 

We shall assume that there are m/>  3 candidates in the set X of contending 
candidates, exactly one of whom is to be elected by a prespecified voting 
system. Two main types of voting systems will be considered. We shall refer 
to these as ordinary and runoff systems. A specific system of either type is 
identified by a nonempty subset s of {1, 2, . . . ,  m-1  }. Since there are 
2 m - l  _ 1 such subsets [1], there are 2 m - I  _ 1 different systems of each 
type. 

Each ordinary system s is a single-ballot system. Each voter either 
abstains or votes for exactly k candidates for some k E s. Voters do not 
rank their chosen candidates, and a candidate receives a full vote from each 
person who votes for that candidate. The candidate with the most votes is 
elected. Thus s = (1)  is the usual plurality system, and s = {1,2 . . . . .  m-1  ) 
is the approval voting system. 

Each runoff system s is a two-ballot system. On the first ballot each voter 
either abstains or votes for exactly k candidates for some k ~ s. The two 
candidates with the most first-ballot votes go onto the second, or runoff, 
ballot. 1 The runoff ballot is a simple-majority ballot; the candidate who 
receives the greater number of votes on this ballot is elected. 

What about ties? For ordinary systems we assume that all candidates who 
tie with the largest vote total have some chance of winning and that all 
others have no chance of being elected, but we will not be specific about 
how ties are broken. Given the possibility of ties, we define an ordinary 
outcome as the set of candidates who have the greatest vote total in an 
ordinary election. 

Ties can occur for runoff systems at two points. First, a tie can affect 
who goes onto the runoff ballot. If more than two candidates have the 
largest first-baUer total, then we assume that each of these and no other 
candidate has a chance of being in the runoff, which always involves exactly 
two candidates. On the other hand, if exactly one candidate has the largest 
first-ballot total, and two or more candidates have the next-largest first- 
ballot total, then we assume that the former candidate is assured of being 
in the runoff whereas each of the latter tied candidates (but no other) has a 
chance of being in the runoff. 

The second point at which a tie can occur is on the runoff ballot. When 
this occurs, we assume that each candidate not on the runoff has no chance 
of being elected. As with ordinary systems, specific tie-breaking procedures 
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will not be prescribed for runoff systems. 
For later purposes we define a runoff outcome as a triple (A, B, 3>) 

where: 

A is the set of candidates who must be on the runoff ballot on the 
basis of the first-ballot vote; 

B is the set of candidates who have some chance of being in the run- 
off but are not assured of being in the runoff on the basis of the 
first-ballot vote; 

> specifies what would happen in the runoff for every pair of distinct 
candidates from A U B who might be on that ballot;x > y  means 
that x would beat y.  

Let I A I denote the number of candidates in A and 0 be the empty set so 
that I A I = 0 if and only if A = 0. Preceding assumptions require I A I E 
{0, 1,2}, withB = ~ if IA I = 2 and with IA I + IBI /> 3 if IA I < 2. With- 
in a runoff outcome, (A, B) may take the following forms: (A, B) = ({x, y ) ,  
gl) says that x and y have more first-ballot votes than all other candidates; 
(A, B) = ({x) ,  (y, z ) )  says that x has the most first-ballot votes, followed 
by y and z, who are tied; and (A, B) = (g}, {x, y, z ) )  says that x, y and z 
have the same largest Ftrst-ballot total. 

The fact that we consider only voting systems that do not ask voters to 
rank candidates is motivated by practical concerns. Apart from the unusual 
s sets, such systems are relatively easy for voters to understand and respond 
to. This is especially true of the ordinary plurality and approval voting 
systems and the familiar plurality (s = { 1 ) )  runoff system. In addition, 
these systems can be implemented on present voting machines, which is 
obviously important in primary and general elections at the local, state, and 
national [5, 6, 7] levels. 

Several important differences between ordinary and runoff systems will 
be noted here since later sections focus on other things. First, runoff sys- 
tems are more costly than ordinary systems since they required two elec- 
tions. 2 Second, runoff systems provide voters more opportunities for 
strategic manipulation. In particular, runoff systems encourage people to 
vote for candidates on the first ballot only because they could be beaten 
by the voters' favorite(s) in a runoff. Since the degree of  manipulability in 
this sense is most likely to be positively correlated with the number of 
candidates a person can vote for on the first ballot, the plurality runoff 
system would appear to be the least manipulable, while the approval voting 
runoff system is the most manipulable. Although we will not analyze the 
comparative manipulability of runoff systems - as we did for ordinary 
systems in [ 1 ] - we think that coupling approval voting to a runoff system 
produces a flawed combination [2]. This aversion, however, does not diminish 
our ardor for ordinary approval voting. 
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Runoff systems may also encourage the entry of more potential candi- 
dates into X, either because these candidates feel they have a better chance 
of winning or because they are induced by supporters of other candidates 
to enter as stalking horses to prevent certain contenders from reaching the 
runoff. The latter aspect is a form of agenda manipulation that deserves 
closer scrutiny. 

2. Voter preferences 

We shall let P denote a voter's strict preference relation on X, so that xPy 
if and only if the voter prefers x to y. The indifference relation I for P is 
defined by xly if and only if neither xPy nor yPx, and xRy means that 
either xPy or xly. We assume that P on X is an asymmetric weak order so 
that P partitions X into one or more indifference classes X1 . . . . .  X K such 
that xly if and only if x and y are in the same Xk, with xPy whenever 
x EX i, y E X k and j < k. The most-preferred (X1) and least-preferred 
(XK) indifference classes for P will be denoted respectively as M(P) and 
L (P). A voter is unconcerned (and P is unconcerned) if and only if K = 1. 
or M(P) = L (P) = X; otherwise the voter (or P) is concerned. If K = 2 
with X = M(P) U L (P), then P is dichotomous. In general, A c_C_ X is high for 
P when x E A impliesy EA for all yPx, andA C___X is low for P when x EA 
implies that y E A for all y for which xPy. If P is unconcerned, then all 
subsets of X are both high and low for P. In general, A is high for P if and 
only if its complement X \ A is low for P. Both 0 and X are high and low 
for every P. 

For convenience in discussing preferences between outcomes we shall 
use P, 1 and R for preference, indifference, and preference-or-indifference 
between outcomes as well as for the corresponding relations between 
individual candidates. We assume without further mention that R is always 
reflexive and that both 01R02 and 02ROt cannot hold simultaneously 
for outcomes Oi of the same type. Furthermore, tbr ordinary outcomes 
(x )  and ( y ) ,  we assume that (x )P{y}  if and only ifxPy, and that (x)R 
{y ) if and only if xRy. 

The following assumptions (cf. Assumptions P and R in [1]) will be 
presumed to hold for ordinary elections for all x, y E X and all ordinary 
outcomes A, B and C: 

Axiom P1. I fxPy then (x}P{x,y)  and {x, y )P{y} ;  

Axiom R 1. If A U B and B U C are nonempty, and if aRb, bRc and aRc for 
all a E A, b E B and c E C, then (A U B) R (B O C). 

For runoff outcome 3' = (A, B, >), we shall let F denote the set of all 
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pairs of candidates that might constitute the runoff ballot, and let P (>) be 
the set of all candidates who have some chance of winning the election 
when 3' obtains. For example, if 3, = ( ( x ) ,  {y, z ) ,  {x > y ,  z > x ) ) ,  then 
1'= { {x,y),  (x, z}} and 1`('>) = (x ,z) .  

For preferences between runoff outcomes, let 1 t̀ correspond to 3,i, and 
let Fief i denote the set of all pairs in 1`i that are not in 1"i" The following will 
be presi~med to hold for runoff elections for all runoff outcomes 3'1 = (A 1, 
BI, >)and  3'2 = (A2, B2, >): 

AxiomP2. If I'1(>) = {x)  and r2(>)  = {x, y ) ,  then 3,1P3,2 if xPy, and 
3,2P3'1 if yPx ; 

Axiom R 2.3,1R 3'2 if either tO { {x, y }: {x, y } E 1"1 } CM(P) or tO { {x, y }: 
{x, y}  E I'2} C__L(P)or [to{ {x,y}:  {x,y}E1"I\P~} C M(P) 
and to{ {x,y}: {x,y}E1`2\1`I}CL(P)].  

Axiom P2 is straightforward and is similar to Axiom P1. Although > does 
not appear explicitly in Axiom R2, the same > is presumed to apply to both 
?i  and 3'2 so that ff {x, y ) E L 10 L2 and x > y,  then x will win in either 
case if x and y are on the runoff ballot. The first alternative in Axiom R2 
implies that VI (>)C__ M(P) regardless of > ;  the second alternative implies 
that I'2 (>) C__. L (P) regardless of > ;  and the third alternative guarantees the 
election of a most-preferred candidate if the runoff pair is in 1'1 but not 1'2, 
or the election of a least-preferred candidate if the runoff pair is in 1'2 but 
not PI.  Hence R2 seems quite reasonable from the viewpoint of  an indivi- 
dual's preferences. 

3. Voting strategies 

In this section we characterize admissible voting strategies for runoff sys- 
tems. We shall also note from [1] which strategies are admissible for 
ordinary systems. Ensuing sections assume that voters either abstain or use 
admissible strategies on the only (or first) ballot. We assume also that every- 
one who votes on a runoff ballot votes for his more preferred candidate on 
that ballot. Hence, apart from abstaining on the runoff, a voter's only 
choice in a runoff system is what to do on the first ballot. 

Voting strategies for both ordinary and runoff elections are proper sub- 
sets of  X. A voter uses strategy S C X on the only (or first) ballot when he 
votes for all candidates in S and no others. The abstention strategy is 
denoted by 0.  Strategy S is feasible for system s if and only if either S = 
or I S I = k for some k E s. Strategy S is admissible for system s and prefer- 
ence order P if and only if S is feasible for s and no strategy T that is also 
feasible for s dominates S for P. 
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To explicate our notions of dominance for ordinary and runoff systems, 
we consider a focal voter with preference order P, allow any finite number 
of  other voters, and consider all ways that the others might vote. In the run- 
off case, it is presumed that the focal voter votes on the runoff if he votes 
on the ftrst ballot and is not indifferent between the runoff candidates. 
When considering strategies S and T for the focal voter, we presume that 
both strategies are allowed by the system at hand. The inclusion of feasi- 
bility in the foregoing definition of admissibility takes account of  cases for 
specific s sets in which one or both of S and T are not feasible. 

Others' votes on the only (or fftrst) ballot, as well as what might happen 
on a runoff ballot, are accounted for by contingencies. An ordinary contin- 
gency lists the number of  votes for each candidate by all voters other than 
the focal voter in an ordinary election. A runoff contingency specifies t he  
vote totals for all other voters on the f'trst ballot and specifies by > on X 
what would happen on every runoff ballot that might arise from the first 
ballot. Ordinary outcomes and runoff outcomes as defined in section 1 are 
unambiguously specified by a corresponding contingency and the strategy 
used by the focal voter on the only (or first) ballot. For example, a runoff 
contingency plus a strategy S for the focal voter uniquely determines a run- 
off outcome (A, B, >).  

We shall say that strategy S dominates strategy T in an ordinary election 
with respect to the focal voter with preference order P, or S dOml TforP, 
ff and only if the focal voter likes the ordinary outcome when he uses S as 
much as (R) the ordinary outcome when he uses T, for every possible 
ordinary contingency, and strictly prefers (P) the ordinary S-outcome to 
the ordinary T-outcome for at least one ordinary contingency. 

Similarly, for a runoff election we write S dom2 T for P if and only if the 
focal voter with preference order P likes the runoff outcome when he uses 
S as much as (R) the runoff outcome when he uses T, for every possible 
runoff contingency, and strictly prefers (P) the runoff S-outcome to the 
runoff T-outcome for at least one runoff contingency. 

In general, let A \ B be the set of  all elements in A but not B. Because 
dominance is based on all contingencies and the focal voter votes for all 
candidates in S N T on the only or first ballot when he uses either S or T, 
it follows for either type of system that S dominates T for P if, and only if, 
S \ T dominates T \ S for P. This fact is reflected in the following theorems, 
which show that ordinary dominance (dOml) and runoff dominance (dom2) 
are substantially different. 

Theorem 1 (Ordinary dominance). Suppose P is concerned and Axioms P1 
and R1 hold. Then, for all strategies S and T, Sdoma TforPifand only if 
S 4: T, S \ T is high for P and T \ S is low for P. 

Theorem 2 (Runoff dominance). Suppose P is concerned and Axioms P2 
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and R2 hold. Then, for all strategies S and T, S dom2 T for P if and only if 
P is dichotomous, S :/: T, S \ T is either g) or M(P), and T \ S is either q) or 
L(e).  

Clearly runoff dominance demands much more of S, T and P than does 
ordinary dominance, with S domx T for P whenever S dom2 T for P. In 
general, then, more strategies will be admissible for runoff system s and 
preference order P than for ordinary system s and preference order P. 

Theorem 3 (ordinary admissibility). Under the hypothesis of Theorem 1, 
strategy S is admissible for ordinary system s and preference order P if and 
only i fS  is feasible for s and either C1 or C2 holds: 

C1 : M(P) C__ S, and S cannot be partitioned into nonempty S~ and 
$2 such that $1 is feasible for s and $2 is low for P; 

C2: L (P) O S = ~, and no nonempty A C__ X is such that A n S = 
~, A w S is feasible for s, and A is high for P. 

Theorem 4 (Runoff admissibility). Under the hypotheses of Theorem 2, 
strategy S is admissible for runoff system s and preference order P if and 
only i fS  is feasible for s and either C3 or C4 holds: 

C3" 
C4: 

P is not dichotomous; 
P is dichotomous, it is false that L(P) C_.S, and S\L(P)  is 
feasible for s}, and it is false that (S C L(P), and M(P) U S is 
feasible for s}. 

Theorem 3 with concerned P implies that the abstention strategy 0 is 
never admissible for an ordinary system. As noted in [1 ] ,  {x ) is admissible 
for ordinary plurality voting and concerned P if and only if x ~ L (P), and 
S is admissible for ordinary approval voting and concerned P if and only if 
M(P) C___ S and L (P) O S = q). Thus, if P is dichotomous, there is a unique 
admissible strategy for ordinary approval voting, namely M(P). 

Theorem 4 shows that i fP  is concerned and not dichotomous, then every 
feasible strategy, including 0,  is admissible for runoff system s and P. But 
what if P is dichotomous? Then all strategies feasible for the runoff plurality 
system are admissible, except as follows: if IM(P)I = 1 then 0 is not admis- 
sible - it is better to vote for the unique most-preferred candidate than to 
abstain; if I L(P)I = 1, then L(P) is not admissible - it is better to abstain 
than to vote for the unique least-preferred candidate. In addition, strategy 
S is admissible for runoff approval voting if and only if something in M(P) 
is in S and something in L (P) is not in S. Hence ~/I is never admissible for 
runoff approval voting when P is dichotomous. 

As in [ 1 ] ,  we say that strategy S is sincere for P if and only if S is high 
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for P, and that system s is sincere for P if and only if all admissible strategies 
for s and P are sincere. A sincere strategy does not require a voter to 'lie' 
about his preferences, as would be true o f  an insincere strategy wherein he 
votes for a candidate whom he prefers less than some candidate for whom 
he does not vote. Thus, sincere strategies better reflect voters' preferences. 

Sincerity for ordinary systems is discussed in [ 1 ] ,  wherein we note that 
the ordinary approval voting system is the only ordinary system that is sin- 
cere for every trichotomous (K = 3) P. Theorems 2 and 4 show that a runoff  
system can be sincere for concerned P only i f P  is dichotomous. Given that 
P is dichotomous, runoff  plurality voting is sincere for P if and only if 
I L (P) I = 1, and runoff  approval voting is sincere for P if and only if either 
IM(P) I = 1 or 1L (P)I = 1. Thus, when there are exactly three candidates, 
the runoff  approval voting system is sincere for every dichtomous P. 

However, as noted earlier, runoff approval voting is subject to severe 
manipulation effects. For example, if a plurality o f  voters prefer x to y to 
z and are fairly sure that x would beat z but lose to y in a runoff, they may 
well vote for x and z on the first ballot in an attempt to engineer a runoff  
between x and z. As a concrete example of  this type of  thinking, we would 
point to the 1976 election for House Majority Leader [2].  

4. Condorcet possibility theorems 

In this section and the next we shall consider whether a given candidate x E 
X either can be elected or must be elected when various voting systems are 
used. In both sections we assume that all voters use admissible strategies on 
the only (or first) ballot. In the present section we shall be mainly concerned 
with the existence o f  admissible, or sincere admissible, strategies which can 
elect a Condorcet candidate. Cases in which x must be elected are examined 
in the next section. 

Two simple examples with candidate set X = {x, a, b ) and Condorcet 
candidate x illustrate the results given below. Suppose first that there are 
seven voters such that: 

2 voters prefer x to a to b 
2 voters prefer x to b to a 
3 voters are indifferent between a and b and prefer a and b to x.  

Then both the ordinary and runoff approval voting and plurality voting 
systems can elect the Condorcet candidate x when all voters use sincere 
admissible strategies. However, consider what happens when s = ( 2 ) ,  in 
which case each voter must vote for exactly two candidates on the only (or 
first) ballot if he does not  abstain. For either the ordinary or runoff  system 
{2) ,  the only admissible strategy for the last three voters is (a, b}. This is 
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easily verified from Theorems 3 and 4. It follows that ordinary system {2 ) 
must elect either a or b when all voters use admissible strategies since x will 
get exactly four votes while a and b together get 10 votes. In addition, if 
sincere admissible strategies are used in runoff system {2}, then x will not go 
onto the runoff ballot for, regardless of which of the first four voters 
abstain rather than vote for their first two choices on the first ballot,both 
a and b will get more votes than x. On the other hand, insincere admissible 
voting on the first ballot can get x elected with runoff system {2 ). For 
example, if the first four voters vote for x and b on the first ballot - with the 
first two voting insincerely in this case - then x and b will be in the runoff 
where x will beat b by a simple majority. Thus, system {2) can elect the 
Condorcet candidate x only if some voters vote insincerely - and then only 
when there is a runoff - whereas sincere admissible strategies suffice under 
approval and plurality voting systems, with or without a runoff. 

Our second example has five voters such that: 

1 voter prefers x to a to b 
2 voters prefer a to x to b 
2 voters prefer b to x to a. 

In this case, ordinary approval voting but not ordinary plurality voting can 
elect x when all voters use sincere admissible strategies, although x can be 
elected by ordinary plurality when some voters use insincere admissible 
strategies. Furthermore, if no voter abstains on the first ballot under the 
plurality runoff system, then some voter must vote insincerely to ensure 
that x gets on the runoff ballot. Now even plurality voting fails to elect the 
Condorcet candidate x if voters vote sincerely, whereas ordinary approval 
voting succeeds. 

We next generalize these observations. Although the following theorems 
do not cover all conceivable cases, they bring out the main points. We shall 
let V denote a voter preference profile so that V assigns a preference order P 
to every voter. In addition, V[x] denotes the set of all V in which candidate 
x is a strict Condorcet candidate in the sense that more voters have xPy than 
yPx for ca thy  E X \ ( x ) .  

Theorem 5 (Ordinary systems}. The following hold for ordinary systems s: 

1. For each m/>  3, there is a V E V[x] and an s such that no combination 
of admissible strategies for the voters in V will elect x; 

2. If 1 E s, then, for every V E V[x], there are admissible strategies for V 
that will elect x; 

3. If s is the approval voting system, then for every VE V[x] there are sin- 
cere admissible strategies for V that will elect x; 

4. If s is any system other than the approval voting system, then there is a 
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V E V[x] such that no combination of sincere admissible strategies will 
elect x. 

Parts 2 through 4 of the theorem apply to each m/> 3. Together, parts 3 
and 4 say that approval voting is the only ordinary system that is invariably 
able to elect a strict Condorcet candidate x when voters use sincere admis- 
sible strategies. This does not say that approval voting must elect x when 
V E V[x] and voters use sincere admissible strategies - only that it is 
possible to assign sincere admissible strategies to the voters under which x 
will be elected. (However, as shown in [1 ] ,  if every P is dichotomous, then 
x must indeed be elected when all voters use admissible strategies under 
approval voting.) 

Part 2 of  Theorem 5 notes that some systems beside approval voting have 
the capability of electing x whenever VE V[x] and voters use (not necessar- 
ily sincere) admissible strategies, whereas part 1 notes that there are other 
ordinary systems that cannot make this claim. The f'trst example of this 
section shows a case in which s = {2) can never elect x when m = 3, Vis as 
specified in the example, and voters use admissible strategies. 

Theorem 6 (Runoff systems). The following hold for runoff systems s when 
each voter in V votes on the runoff ballot if and only if he is not indifferent 
between the candidates on that ballot: 

1. For every s and every VE V[x], there are admissible strategies for Vthat 
give x as many first-ballot votes as every other candidate; 

2. If  s n {1,2} ¢ ~, then for every V E  V[x] there are admissible strate- 
gies for V that will elect x; 

3. If  {1,2 . . . . .  m - 2 }  C__s, then for every VE V[x] there are sincere admis- 
sible strategies for V that will elect x; 

4. If  s = {k} for some k E {1 . . . . .  m--1 }, then there is a VE V[x] such 
that no combination of sincere admissible strategies will elect x, except 
when k = 1 and m = 3. In the latter case there is a VE V[x] such that no 
combination of nonempty sincere admissible strategies will elect x. 

Parts 2, 3 and 4 of Theorem 6 in conjunction with Theorem 5.3 imply 
the following for runoff systems {1 ) ,  {2) and ( 1 , 2 )  when X contains 
exactly three candidates: 

{1 ,2)  (approval voting) can always elect Condorcet candidate x 
through nonempty sincere admissible strategies for VE V[x] ; 

( 1 ) (plurality voting) can always elect x through sincere admissible 
strategies for V E V[x], but it may be unable to elect x using 
nonempty sincere admissible strategies; 

(2 } (vote for exactly two) can always elect x through admissible 
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strategies for V E V[x], but some of these strategies may have 
to be insincere. 

Although part 1 of Theorem 6 says that Condorcet candidate x can 
always get as many f'trst-ballot votes as every other candidate when V E 
V[x] and runoff system s is used, it does not say that admissible strategies 
can always ensure the election o fx .  For example, if Vhas exactly one voter 
with linear order xyzw on four candidates, and if there is no other voter aad 
s = ( 3 ) ,  then either the voter abstains or he votes for three of  the four 
candidates. In either case, more than two candidates are tied after the first 
ballot and, by previous assumption, each of these has a chance of being in 
the runoff. Hence x might not be on the runoff ballot. 

All four parts of Theorem 6 in comparison with their counterparts in 
Theorem 5 reflect the greater diversity of  admissible strategies for runoff 
system s than for ordinary system s. For example, the '1 E s' hypothesis 
of Theorem 5.2 is replaced in Theorem 6.2 by '1 E s or 2 E s'. And Theorem 
6.3 notes that runoff system (1 ,2  . . . . .  m - 2  ) as well as the runoff approval 
voting system can always elect the strict Condorcet candidate x with the use 
of sincere admissible strategies. 

Because the plurality runoff system is so widely used, it is appropriate 
to note from Theorem 6.4 that, when m/> 4, there may fail to exist sincere 
admissible plurality voting strategies for V E V[x] that will elect x. On the 
other hand, Theorem 5.3 notes that ordinary approval voting always has 
sincere (and nonempty) admissible strategies for VE V[x] that will elect x. 

We should also point out that if the general hypothesis of Theorem 6, 
which says that a voter votes on the runoff ballot if and only if he is not 
indifferent between the candidates on that ballot, is not assumed to hold, 
then the conclusions of  the theorem remain true when 'elect x '  is replaced 
by 'ensure that x is in the runoff '  in parts 2 and 3, and 'elect x '  is replaced 
by 'give x any chance of being in the runoff '  in part 4. Indeed, our later 
proofs of Theorem 6 only consider whether x can, must or cannot be in the 
runoff. Effects of  abstentions on the chances of  the majority candidate on a 
runoff ballot being elected are examined in [4]. 

Along with Theorems 5 and 6 one might also consider abilities of  voting 
systems to elect 'inferior' candidates. Because runoff systems allow a great 
diversity of  admissible strategies, runoff ballots may contain candidates 
who almost surely would not be elected by an ordinary system such as 
approval voting. On the other hand, runoff systems guard against the elec- 
tion of a 'worst' candidate since such a candidate would be beaten in the 
runoff if he got on the runoff ballot. 
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5. Election guarantees 

We shall conclude our technical analysis by considering the possibility that 
candidate x must win an election when all voters use admissible stategies. 
To simplify matters, only four systems will be analyzed, namely ordinary 
and runoff plurality voting and ordinary and runoff approval voting. 

We begin by illustrating our analysis in this section with X = (x, y, z)  
and the following four-voter profile V: 

2 voters are indifferent between x and y and prefer x and y to z 
1 voter prefers x to z to y 
1 voter prefers z to x to y. 

Under ordinary approval voting, the only admissible strategy for the first 
two voters is (x, y }. The other two voters have two admissible strategies 
apiece: vote for their most-preferred, or two most-preferred, candidates. 
Whichever strategies the latter voters use, x wins the election. Hence, ordin- 
ary approval voting must elect x. On the other hand, none of the other three 
systems noted above can guarantee the election o f x  when voters use admis- 
sible strategies. 

Candidate x is a strict Condorcet candidate in the preceding example. 
This is not a coincidence since, as shown by the following theorem, x must 
be a Condorcet candidate when some system guarantees its election under 
the use of admissible strategies. 

Theorem 7. Suppose that, regardless of which system is used, all voters use 
admissible strategies on the only or first ballot and, in the case of  a runoff 
system, each voter votes on the runoff ballot if and only if he is not indiffer- 
ent between the candidates on that ballot. Then: 

1. There is no V for which x must be elected under runoff plurality voting; 
2. There are V for which x must be elected under runoff approval voting if 

and only if m = 3; for any such V, x must also be elected under ordinary 
plurality voting; 

3. For every m t> 3, there are V for which x must be elected under ordinary 
plurality voting and, for any such V, x must also be elected under ordin- 
ary approval voting; 

4. If x must be elected under ordinary approval voting, then x is a strict 
Condorcet candidate, i.e., VE V[x]. 

Theorem 7 yields the following chain of implications for any m/> 3: 

[x must be elected under runoff plurality voting] 
=* [x must be elected under runoff approval voting] 
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:~ [x must be elected under ordinary plurality voting] 
:~ [x must be elected under ordinary approval voting] 
=~ [x must be a strict Condorcet candidate] . 

Since examples can be constructed to show that the converse implications 
are false for some m, the ability of a system to guarantee the election of a 
strict Condorcet candidate under the hypotheses of Theorem 7 is highest 
for ordinary approval voting, next highest for ordinary plurality voting, 
third highest for runoff approval voting, and lowest - in fact nonexistent - 
for runoff plurality voting. 

6. Summary and conclusions 

This paper extends our prior analyses [1, 3] of ordinary approval voting 
vis-a-vis other single-ballot nonranked voting systems - including ordinary 
plurality voting - and also brings runoff voting into the picture. We began 
by giving a complete characterization of  admissible voting strategies for all 
ordinary and runoff systems. We then considered when various systems 
either can or must elect a strict Condorcet candidate. 

In our earlier work on ordinary systems, we showed that approval voting 
is both more sincere and more strategyproof than other ordinary systems 
and argued that it is more likely to reflect voters' true preferences. We noted 
also that, when all voters have dichotomous preferences, ordinary approval 
voting is the only ordinary system that invariably elects a Condorcet candi- 
date when all voters use admissible strategies. 

In the present paper we have extended these results to cover cases in 
which there exists a strict Condorcet candidate x for a configuration of (not 
necessarily dichotomous) voter preference orders. In particular, we have 
proved that some ordinary systems may be unable to elect x regardless of 
which admissible strategies are used by the voters, that ordinary plurality 
can always elect x when voters use admissible strategies, and that approval 
voting is the only ordinary system that is always able to elect x when voters 
use sincere admissible strategies. Moreover, if candidate x must be elected 
under ordinary plurality with admissible strategies, then x must also be 
elected under ordinary approval voting with admissible strategies (but not 
conversely), and in this case x is a strict Condorcet candidate. 

Although many questions about approval voting remain to be answered, 
the results obtained thus far strongly support its superiority over other 
single-ballot nonranked voting systems, including ordinary plurality. How- 
ever, since runoff procedures are often used in multicandidate elections, 
ordinary approval voting must be compared also to runoff systems and, 
most especially, to the very popular plurality runoff system. Although our 
analysis has not yet produced unequivocal evidence on the merits of ordin- 
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ary approval voting versus runoff plurality voting, we have obtained some 
interesting findings. 

A main feature o f  runoff  systems in comparison to ordinary systems is 
their wider array of  admissible strategies. This is caused in part by the strate- 
gic objective of  getting not only a favorite candidate into the runoff  but of  
pairing this candidate with another that can be beaten by the favorite in a 
runoff. Because opportunities to strategically manipulate the runoff ballot 
appear to increase as voters are allowed more options on the first ballot, 
runoff  plurality voting is probably better able than other runoff  systems to 
minimize such opportunities. On the other hand, runoff  approval voting is 
better able than runoff  plurality voting to elect a strict Condorcet candidate 
x with sincere admissible strategies, and there are three-candidate cases in 
which x must be elected under admissible runoff approval voting but not 
under admissible runoff  plurality voting. 

In comparing runoff  plurality voting (RPV) to ordinary approval voting 
(OAV) we have seen that, when there is a strict Condorcet candidate x, 
OAV can always elect x with sincere admissible strategies while RPV may be 
unable to elect x with sincere (and nonempty for m = 3) admissible strate- 
gies. Furthermore, OAV is better than RPV in being able to guarantee the 
election of  a strict Condorcet candidate x when all voters use admissible 
strategies. In addition, RPV is more likely to encourage voters to vote 
insincerely, especially if their favorites have little chance of  being in the 
runoff, and is usually more expensive to implement than is OAV. 

Thus we feel that OAV has distinct advantages over the familiar RPV 
system. One potential redeeming feature of  RPV is that its runoff  ballot 
provision prevents the election of  an obviously 'inferior' candidate. Al- 
though it seems highly unlikely that OAV would elect such a candidate, 
further analysis is needed before this issue can be resolved. 

NOTES 

1. A plurality runoff system often has a provision that does not require a second 
ballot when some candidate is supported by a sufficiently large proportion of the 
voters on the first ballot, in which case the candidate with the most first-ballot 
votes is elected. Such a system is a hybrid of an ordinary system and a runoff 
system as defined in this paper. 

2. A modified runoff system as described in the preceding note may of course require 
only one ballot. 
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APPENDIX 

We shall assume throughout this Appendix that Axioms P1, R 1, P2 and R 2 
hold. 

Theorem 2." If  P is concerned then S dom2 TforP if and only i f P  is dichot- 
omous, S ¢ T, S \  T E  { ~ , M ( P ) )  and T \ S E  ( 0 ,  L(P)}. 

Proof: We shall assume that S :/: T since otherwise the reflexivity o f  R pre- 
vents S from dominating T. In addition, since S dom2TforP if and only if 
S \ T dom2 T \ S forP, we shall suppose that S fq T = 0-  (Then i fS  dom2T 
for P and A c_C__X is disjoint from S U T, S U A dom~ T U A for P provided 
that neither S U A nor T U A is X.) 

Thus, with S :/: T and S n T = 0 ,  we are to prove that Sdom2TforPi f  
and only i f P  is dichotomous, S E {~, M(P)) and T E  {0, L(P)}.  In doing 
this we shall write S(ot) to denote the runoff  outcome that obtains when a 
is the runoff  contingency and the focal voter uses strategy S on the first 
ballot. Then S(a) P T(a) if and only if he prefers runoff  outcome S(o 0 to 
runoff  outcome T(a), and S(a)  R T(a) when he likes runoff  outcome S(a)  
as much as runoff  outcome T(a). When runoff  outcome S(a)  gives a chance 
o f  winning to every candidate in A and no other, we shall write S ( a ) ~ A .  
Thus S(a)  -~A is similar in meaning to 1-'('>) = A.  

We begin with the following two hypotheses for T: 
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H1 : there exist distinct x, y, z such that xPy, y ~ T, z E T; 
H2: there exist distinct x, y, z such that xPy, x E T, z ~ T. 

Candidates not mentioned in runoff contingencies a here and later are pre- 
sumed to have no chance of being in the runoff. For HI let ot have x and y 
tied and one vote ahead of z, with y > x, y > z and x > z. Then S(ot) 
{y} and T(a) ~ (x, y}  so that T(a) P S(a) by Axiom P2. For H2 let a 
have x and z tied and one vote behind y, withx > y ,  x > z andy > z. Then 
S(a) ~ {x, y )  and T(a) --> (x} so that T(a)PS(c 0 by Axiom P2. 

Hence S cannot dominate T if either H1 or H2 holds. If both H1 and H2 
are false then it is straightforward to show that either T = g} or P is dichoto- 
mous with T = L (P). 

We consider next two hypotheses for S: 

H3: there exist distinct x, y, z such that xPy, y E S, z ~ S; 
H4: there exist distinct x, y, z such that xPy, x ~ S, z E S. 

Let a forH3 have x and z tied and one vote ahead ofy ,  w i t h x > z , y > x  
and y > z. Then S(a) -~ (x, y )  and T(a) -+ {x} so that T(o 0 P S(a) by 
Axiom P2. Let a for H4 have x and y tied and one vote ahead of z, with 
x > y , x > z  a n d y > z .  T h e n S ( a ) ~  ( x , y )  and T(o 0 ~  (x) so that 
T(a) e S(a) by Axiom P2. 

Hence S cannot dominate T if either H3 or H4 holds. If both/ /3  and H4 
are false then either S = 0 or P is dichotomous with S = M(P). Therefore, 
since S --/: T, S dom2 T for P can only be true i fP  is dichotomous and (S, T) 
is (0, L(P) ), (M(P), O) or (M(P), L(P) ). We now show that S dom2T for P 
for each of these three cases. Since it is easily seen that S(a) P T(a) for 
some a for each case, we need to prove that S(a) R T(ot) for all runoff 
contingencies a. 

Suppose first that P is dichotomous and (S, T) = (g}, L (P)). Then there 
are exactly ten distinct general ways that (A, B) in S(a) = (A, B, >)  can 
differ from (A', B') in T(a) = (A', B', >). (If (A, B) = (A', B ')  then S(a)R 
T(ot) by reflexivity.) These ten ways are shown in the first two columns of 
Table 1. 

The reader can verify without undue difficulty that there are no other 
ways that T(a) and S(o 0 can differ. The next two columns of the table show 
what must be in M(P) and what must be in L (P) when the (A, B) and (A', B ')  
patterns hold for each row. The final column then notes which alterna- 
tive(s) in Axiom R2 apply to each row. For example, the first alternative 
in Axiom R2 applies to the second row since all candidates (namely x and 
y)  for S(a) who could be on the runoff ballot are in M(P). It then follows 
from Axiom R2 that S(a) R T(a) for every row in the table. Since Table I 
exhausts all nonidentical possibilities for S(o 0 versus T(a) in the case at 
hand, it follows that 0 dom2L (P) for P when P is dichotomous. 
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Table 1. The ten ways that S(a) can differ from T(a) when S = 0 and 
T = L (P) with P dichotomous 

(A, B) for S(ct) (A', B') for T(a) Implications: Alternative 
f o r S = 0  forT=L(P) M(P) L(P) in Axiom R2 

({x,y), 0) ({xI,{y} UB) 0'} {x}UB 
({x,y},0) (0, {x,y}tOB) {x,y} B 
({x} {y}UB) ({x,y},O) {x}UB {y} 
({x}, a) ({x},  a u 0 B c 

({x}, B u C) ({x}, B) C B 

({x},B U C) (0, {x}UB)  {x}UC B 
(0, {x,y}UB) ({x,y},O) B {x,y) 
(0, {x) u B) ({x), B to O B {x} to c 
(0,B) (0, B u C) B c 
( ¢ , a u c )  (¢,B) C B 

third 
first 
third 
1st (x EM)/ 
3rd (x E L) 
2nd (x E L )/ 
3rd (x EM) 
third 
second 
third 
first 
second 

Table 2. The ten ways that S(t 0 can differ from T(a) when S =M(P) and 
T = 0 with P dichotomous 

(A', B') for T(a) (.4, B) for S(r,) Implications: Alternative in 
for T = 0 for S = M(P) M(P) L (P) Axiom R2 

({x,y},0) ({x}, (y}OB) (x}OB Cv) 
({x,y},0) (0, {x,y)UB) B {x,y} 
({x), Cv}UB) ({x, y}, 0) {y} {x}UB 
({x}, s) ({x}, B u 63 c a 

({x), B to C) ({x), B) B C 

((x),B u C) (0, {x} UB) B 
(0, {x,y}UB) ({x,y),0) {x,y} 
(0, {x} UB) ({x}, B tO 0 {x}UC 
(¢ ,B)  ( ¢ , B U O  C 
( 0 , B u O  (0,a) B 

{x }u C 
B 
B 
B 
C 

third 
second 
third 
End (x EL)/  
3rd (x E 34) 
1st (x EM)/ 
3rd (x EL)  
third 
first 
third 
second 
first 
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Suppose next that P is dichotomous and (S, T) = (M(P), 0). The analysis 
in this case is similar to that just given: the details appear in Table 2 where 
the first two columns show (A', B') for T(a) and (A, B) for S(a) in that 
order to take advantage of a natural symmetry with Table 1. As before, 
Axiom R2 implies that S(t~) R T(a) for every row, so that M(P) dora20 
for P when P is dichotomous. 

Finally, suppose P is dichotomous with (S, T) = (M(P), L (P)). For any 
generic runoff contingency ct, let F z denote the set of potential runoff pairs 
when the focal voter uses strategy Z on the first ballot. We consider Z E 
{M(P), 0, L (P)). The analysis with Table 2 shows that either 

o r  

o r  

(1) U F M C_M(P) 
(2)u rq, c ~. (e) 
(3) U (FM~F q )C__M(P) and U (F~\ FM) C L(P) , 

where U F = U{ {x, y ) :  {x, y )  E F) .  Similarly, the Table 1 analysis shows 
that either 

o r  

o r  

(4) u F¢ c___M(P) 
(5) U rL 9_ L (e) 
(6) u (FC\ FL)C__.M(P) and U (ILk F¢) C_.L(P) 

It then follows that either 

o r  

o r  

(7) u F M CM(P) 
(8) u rL c__L (e) 
(9) u (FM\ FL) C M(P) and U (F L \ PM) C L  (P) . 

Since (1) implies (7) and (5) implies (8), suppose neither (1) nor (5) is true. 
Then, if (2) holds, (6) must hold, and in this case (2) and (6) imply that 
U F L C__L (P), which is (5); likewise, if (4) holds then (3) holds and therefore 
U PM C__M(P), which is (1). Hence if (1) and (5) fail then (3) and (6) must 
hold. Since it is true in general that A \ B C__ (A \ C) t3 (C \ B), it follows 
from (3), (6), FM \ PL C___ (FM \ F~) O (FO\ PL) and FL \ FM C--_.(I'L \ F O) 
U (F¢ \ FM) that U (FM \ FL) C_.M(P) and O (F z \ FM) C__L (P), which is (9). 

Therefore, since (7), (8) or (9) holds when P is dichotomous and (S, T) 
= (M(P), L(P)), Axiom R2 implies that S(a) R T(a) for all runoff contin- 
gencies a. Q.E.D. 

Theorem 4: S is admissible for runoff system s and P if and only if S is feas- 
ible for s and either: 

C3: Pis not dichotomous; or 
C4: P is dichotomous,not {L(P) CS  and IS \L(P)I E s U {0)} and 
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not (SCL(P)and  I M ( P ) U S I  E s ) .  

Proof." The first part of  Theorem 4 is obvious from Theorem 2. Suppose 
then that S is feasible for s and P i s  dichotomous. Then, by Theorem 2, S is 
not admissible for s and P if and only if there is a T :/: S that is feasible for s 
such that (T \ S, S \ T) is either (0, L (P)), (M(P), 0), or (M(P), L (P)). 
The latter three possibilities for (T \ S, S \ T) amount respectively to: 

T n L ( P )  = 0 and S = L ( P ) U T ;  
S n M ( P )  = 0 and T = M(P) U S ;  
T = M(P) and S = L (P). 

We can ignore the last of  these since if S = L (P) then T = 0 in the first 
expression shows that a feasible strategy, namely 0 ,  dominates S. The two 
bracketed expressions in C4 then follow from the first and second expres- 
sions just written. Q.E.D. 

Theorem 5.1 : For each m I> 3 there is an ordinary s and a V E V[x] such 
that admissible strategies for V will never elect x. 

Proof." For m = 3 see the first example in Section 4. For m i> 4 let s = { m - 1  } 
with V a three-voter profile in which two voters prefer x to al to a2 t o . . .  
to am- i  and the other is indifferent among al through am- i  and prefers 
these to x. When all voters use admissible strategies, Theorem 3 implies 
that x gets two votes and at least one o f  al through am -1 gets three votes. 

Q.E.D. 

Theorem 5.2: If  1 E s and VE V[x] then there are admissible strategies for 
V that will elect x when ordinary s is used. 

Proof." Given 1 E s and V E V[x] let P be a generic order in V. If  P = 0 ,  
assign admissible strategy 0 or admissible strategy {x) to P. Assume hence- 
forth in this paragraph that P :/: O. If x E M(P) let kl = max {k: k E s and 
k ~< I M(P) I ) ,  and assign S to P for which I S I = kl ,  x ~ S and S C__M(P). 
This S is admissible by Theorem 3. Next, if x ~ M(P) U L (P) let k2 = 
max{k:  k E s and k ~< I M(P)I + 1 ), and assign S to P for which ISI = k2, 
x E S and S \ {x } C__. M(P). Again, by Theorem 3, S is admissible. Finally, 
if x ~ L (P), assign an admissible S C M(P) - which exists by 1 E s and 
Theorem 3 - to P. 

Consider any y :/: x.  By the preceding assignment, all voters with xPy 
vote for x and not y ,  and all voters with xly vote for x if they vote f o r y .  
Since more voters have xPy than yPx, x gets more votes than y.  Since this is 
true for every y :/: x, x wins the election. Q.E.D. 
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Theorem 5.3: If  s is the ordinary approval voting system and V E V[x] 
then there are sincere admissible strategies for V that will elect x. 

Proof." Given V E V[x] assign to each P =/= 0 in V the following sincere 
admissible ordinary approval voting strategy: if x E M(P) W L(P) let S = 
M(P); if x q~ M(P) U L (P) let S contain x and all candidates strictly pre- 
ferred to x. If P = 0 let S = O- Then, as in the second paragraph of  the 
preceding proof, x wins the election. Q.E.D. 

Theorem 5.4: If  s is an ordinary system different from the approval voting 
system then there exists VE V[x] such that no sincere admissible strategies 
for V will elect x. 

Proof.' Given that ordinary s is not the approval voting system let k be the 
smallest integer in ( 1 , . . . ,  m - 1  ) that is not in s. We consider two cases. 

Case 1: k = m - 1, so s = ( 1, 2 . . . . .  m - 2  ). Fix x and y :/: x,  and let V be 
formed with 4 m - 7  voters all of  whom have linear orders (K = m) as 
follows: 

2 voters h a v e . . ,  xy (x in next-to-last place;y in last place); 
2 voters have y . . .  xz for each z E X \ {x, y ); 
2 m - 5  voters have x in first place. 

Then, when all voters use sincere admissible strategies, the first two voters 
vote for neither x n o r y ,  the next 2 m - 4  (re z) vote f o r y  but not x,  and the 
last 2 m - 5  vote for x and maybe for y.  Hence x gets 2 m - 5  votes and y 
gets at least 2 m - 4 ,  so y beats x.  Now for each w E X \ ( x ) ,  2m - 5 + 2 = 
2m - 3 voters prefer x to w, and 2m - 4 prefer w to x.  Hence V E V[x] 
and x cannot win the election when all voters use sincere admissible strate- 
gies. 

Case 2: k < m - 1 .  Let V consist of  4 m - 9  voters with the following linear 
orders: 

1 voter h a s y . . ,  x (y first, x last); 
2 voters h a v e . . ,  x y z . . ,  for each z E X \ (x, y )  where x is in the k th  
place in each of  these orders; 
2 m - 6  voters have y x . . .  

Then V E  V[x] s incex  b e a t s y  by 2m - 4 t o 2 m - 5 ,  a n d x b e a t s z E  
X \  (x, y )  by at least 2m - 4 to 2m - 5. However, y has more votes than 
x under system s when all voters use sincere admissible strategies since then 
the voter with y . . .  x votes for y and not x,  each voter w i t h . . ,  x y z . . .  
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must vote for y if he votes for x (since k ~ s), and all voters with y x . . .  vote 
for y if they vote for x.  Q.E.D. 

Theorem 6.1: I f s  is a runoff system and VE V[x] then there are admissible 
strategies for V that give x as many first-ballot votes as every other candi- 
date. 

Proof." Given runoff  system s and V E V[x] ,  we shall assume that s is not 
the approval voting system since otherwise the conclusion of  Theorem 6.1 
follows from Theorem 6.3, which will be proved shortly. We prove here that 
every voter in V either has an admissible strategy that contains x or else 
has 0 as an admissible strategy. The use of  such strategies then gives x as 
many first-ballot votes as every other candidate. 

Suppose x is in no admissible strategy for s and P. Then, by Theorem 4, 
P must be dichotomous. If  x ~ L (P) then there will be a feasible S that 
contains x and has L (P) C___S and S C L (P), in which case S is admissible by 
C4. Hence we require x E L (P). I f  (x } C L (P) let S be such that I SI = 
max s with x E S and with something from M(P) in S along with L (P) C__S 
if I S I > 1. Since such an S is admissible by C4, we require L (P) = (x }. 
Given dichotomous P with L (P) = {x }, C4 implies that no admissible S 
contains x if and only if s = {1, 2 . . . . .  k} for some k. Suppose this is so. 
Then k < m - 1  since s is not the approval voting system and, since IM(P)I = 
m - 1, it follows from C4 that 0 is admissible. Q.E.D. 

Theorem 6.2: If  runoff  system s contains either 1 or 2 and VE V[x] then 
there exist admissible strategies for V that will elect x. 

Proof" Given s O { 1, 2 } :/: 0 and V E. V[x] we are to prove that some 
admissible strategies for V ensure that x is in the runoff. This follows 
immediately from Theorem 5.2 if 1 E s since any strategy that is admissible 
for ordinary s must also be admissible for runoff  s. Suppose henceforth that 
1 ~ s and 2 E s. The preceding proof, modified slightly, then shows that 
some S with x E S and I S I = 2 is admissible for s and P regardless o f  the 
nature of  P. Consequently, when all voters use such strategies, x gets a 
vote from every voter and, since I SI = 2 for all voters, at most one other 
candidate can get a vote from every voter. This ensures that x will be in the 
runoff. Q.E.D. 

Theorem 6.3: If  s is the approval voting runoff  system and VE V[x] then 
there exist sincere admissible strategies for V that will elect x.  In addition, 
system s = { 1 ,2  . . . . .  m - 2  ) also has this capability. 

Proof.- The first part o f  Theorem 6.3 follows immediately from Theorem 
5.3. For the second part let s = {1,2 . . . . .  m - 2 } .  I f P  = 0 set S = {x) or S = 
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0-  Suppose then that P :/: g}, and let X = {x, at . . . . .  am -1 ). I f x  EM(P)  
let S = ( x ) ,  and if x ~ M(P) U L (P) let S consist of  x plus all candidates 
strictly preferred to x unless such an S has LSI = m - 1, in which case P 
must be nondichotomous and end in xaj for some a / E  X. In this latter case 
let S = 0 ,  which is sincere and admissible by Theorem 4. Then for each a/, 
a voter votes for x and not a / w h e n  xPaj unless P is of  the f o r m . . ,  xaj 
with nothing else indifferent to either x or a/. Let n / b e  the number of  
voters who have a P order o f  the form . . .  xaj, f o r / =  1 . . . . .  m - l ,  and let 
J denote the set of  all such voters, with IJI  = na + • •. + n m _ l .  Within J, 
~k~ ink  voters prefer a i to x and n/ prefer x to aj. Since all voters in J 
abstain on the first ballot, no candidate in {al . . . .  a m - l  )except perhaps 
one such candidate can gain relative to x within J since at most one j can 
have n. > Y, .n Consequently, since a voter not in J who has sPa/votes 
for x alnd k*j k" not a/, there can be at most one a / w h o  has as many votes as x 
on the first ballot provided that it is never true that a voter votes for a~ and 
not x whenever a/lx. The strategies defined above along with S = {a/) for 
some a~ E M(P) when x E L (P) and P ~ 0 ensure the latter provision. There- 
fore, when s = {1, 2 , . . . ,  m - 2 )  and V E  V[x], there are sincere admissible 
strategies for all voters which ensure that at most one other candidate has 
as many votes as x on the first ballot, so that x will be in the runoff. Q.E.D. 

Theorem 6.4: If  I sl = 1 for runoff  system s then there exists a V E  V[x] 
such that no combination of  sincere admissible strategies will elect x, except 
when s = (1 )  and m = 3, in which case there is a V E  V[x] such that no 
combination of  nonempty sincere admissible strategies will elect x. 

Proof." The exception for s --- { 1 ) and m = 3 is required by Theorem 6.3 for 
m = 3, and the final statement in Theorem 6.4 is proved by the second 
example in section 4. For the first part o f  the theorem, suppose first that 
s = ( 1 ) with m i> 4 and with a, b and c three distinct candidates in X \ 
{x).  Let Vbe a nine-voter profile as follows: 

1 voter is dichotomous and prefers a to all in X \ (a )  
1 voter is dichotomous and prefers b to all in X \ {b ) 
2 voters have a x b c . . .  
2 voters have b x a c . . .  
3 voters have c x a b . . .  

where the final seven votes have linear preference orders. Clearly V E  V[x]. 
By Theorem 4, the first voter's only sincere admissible strategy is {a) since 

is ruled out by the latter part o f  C4, and the second voter's only sincere 
admissible strategy is {b}. Moreover, ( x )  is not a sincere strategy for any 
voter. Therefore, if all voters use sincere admissible strategies, x gets no 
votes and a and b each get at least one vote so that x will not be in the 
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runoff. 
Suppose next that s = {k)  with 2 ~< k < m for any m I> 3. Let X = 

(x ,  al . . . . .  a m -  l ) and form Vwith seven voters as follows: 

3 voters are dichotomous wi thM(P)  = ( a l , . . . ,  ak } 
2 voters have linear orders with xa l  a2 • • • am _ l 
2 voters have linear orders with x a 2 a l . . ,  am _ 1. 

Then V E  Fix]  and, by Theorem 4, (al  . . . .  a k )  is the only sincere admis- 
sible strategy for the first three voters. Hence, regardless of  which of  the 
final four voters abstain instead of  voting for their k most-preferred candi- 
dates, a~ and a2 will get more first-ballot votes than x. Q.E.D. 

Theorem 7.1: There is no V for which x must be elected under runoff  
plurality voting when all voters use admissible strategies. 

Proof." The discussion of  Theorem 4 in section 3 shows that {x) is never 
the unique admissible runoff  plurality voting strategy. Hence, regardless of  
V, x can get no votes on the first ballot and hence is never guaranteed of  
being in the runoff. Q.E.D. 

Theorem 7.2: There are V for which x must be elected under runoff  
approval voting when voters use admissible strategies if and only if m = 3; 
and, for any such V, x must also be elected under ordinary plurality voting 
when voters use admissible strategies. 

Proof." By Theorem 4, the only time a voter who uses an admissible strategy 
under runoff  approval voting must vot.e for x occurs when P is dichotomous 
and M ( P )  = ( x  }. Le t  X = (x ,  al . . . . .  am -1  }. Then, i f m / >  4, we can assign 
admissible strategy S = (x ,  al . . . . .  am - 2  ~ to all dichotomous voters who 
have M ( P )  = ( x ) ,  and all other voters can be assigned admissible strategies 
that do not contain x. Then, under this assignment, x is not assured of  being 
in the runoff. 

Suppose henceforth in this proof  that m = 3 with X = (x, y, z }. Then all 
dichotomous voters with M ( P )  = ~x )  must vote for x and may vote for 
either y or z. Since we want to make it as difficult as possible for x to be 
assured o f  being in the runoff, assume that all such voters do in fact vote for 
either y or z as well as for x and let 

n l ( y )  

n t ( z )  

= number of  dichotomous voters with M ( P )  = ( x )  who vote 
f o r x  andy ,  

= number o f  dichotomous voters with M ( P )  = {x)  who vote 
for x and z. 
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We shall assume also that nobody else votes for x,  and that they vote for 
both y and z if (y, z} is admissible under runoff  approval voting. Then, 
with 

n2 = number of  dichotomous voters with M(P) = {x, y }; 
n3 = number of  dichotomous voters wi thM(P)  = {x, z) ;  

the n2 voters vote only for y (since {y, z } is not admissible for them), the n3 
voters vote only for z, and all remaining voters vote for b o t h y  and z since, 
by Theorem 4, {y, z} is admissible except for the P noted above. Finally, 
let n 1 = n i (v) -~ n i (z), let n4 be the number o f  voters who vote for both y 
and z, and let n = n~ + n2 + n3 + n4, the total number of  voters. 

Then, under this worst-case-for-x construction, 

x gets nx votes 
y gets nl (y) + n2 + n4 votes 
z ge t sn l (z )  +na +n4 votes 

on the first ballot. Hence, x is assured of  being in the runof f i f f  and only if 
nl > n l ( Y ) +  n2 +n4 o r n l  > n l ( z ) + n ~  +n4 for everyn l (y )=nl  - n l ( z )  
from zero to n l .  Suppose x is not assured of  being in the runoff. Then addi- 
tion of  the two converse inequalities gives n2 + n3 + 2n4 /> nl ,  or 2n >/ 
3nl + n2 + n3. Moreover, if 2n i> 3nl + n2 + na, then nx can be divided 
into n l 0 ' )  and n l ( z )  [e.g., nl (y)  = 2nt + n3 - n  andn l ( z )=n  - nl - n a ]  
such that nx (y) + n2 + n4 > /n l  and n l (z )  + n3 + n4 ~ n l .  Therefore x is 
assured of  being in the runoff  if and only if 

3 n 1 + n 2  + n 3  > 2n . 

Since this inequality can be satisfied for feasible n], we have proved the 
first part of  Theorem 7.2. In addition, y can beat or tie x when the ordinary 
plurality system is used only i f n / >  2nl + n3 since in this casey can have no 
more than n2 + n4 = n - n~ - n3 votes while x must have at least nl  votes. 
Since 3n1 + n2 + n3 >/2n  implies not (n /> 2nl + n3), and since a similar 
implication holds for x versus z, ordinary plurality must elect x when runoff 
approval voting must elect x. Q.E.D. 

Theorem 7.3: For every m i> 3 there exist V for which x must be elected 
under ordinary plurality voting when voters use admissible strategies, and, 
for all such V, x must be elected under ordinary approval voting when 
voters use admissible strategies. 

Proof." Theorem 3 implies that a voter must vote for x under ordinary 
plurality when he uses an admissible strategy if, and only if, P is dichoto- 
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rnous and M(P) = (x}. Let nt be the number of the total o fn  voters who 
have this dichotomous order, and for each y E X \ {x } let n 0')  be the 
number of the remaining n - nt voters who either have P = ¢) or h a v e P ~  
(~ and do not have y in their L (P). Since Theorem 3 for approval voting 
implies that y will not get more than n (y) votes, i.e., that {y }is admissible 
for a concerned voter if and only if y ~ L (P), x must win under approval 
voting if and only if n i > n 0')  for all y ~ X \ (x }. But in this case x must 
also win under ordinary approval voting since then (x } is the only admis- 
sible strategy for the n 1 voters, and concerned voters with y E L (P)do not 
have an admissible approval voting strategy that contains y .  Clearly, nl > 
n (v) for all y E X \ {x } can hold for any m i> 3, and the theorem is proved. 

Q.E.D. 

Theorem Z4: If x must be elected under ordinary approval voting when all 
voters use admissible strategies, then x is a strict Condorcet candidate. 

Proof: For any V, the worst-case situation for x arises under admissible 
ordinary approval voting when voters vote as follows: 

i fx  EM(P) O L(P), vote for all candidates not in L(P); 
i fx  ~ M(P) U L (P), vote for all candidates not in {x } U L (P). 

Consequently, if x must win under admissible ordinary approval voting, 
then more voters must prefer x to y than prefer y to x for each y E X \ {x }. 
This is because the foregoing assignment of strategies implies that voters 
with yPx always vote fo ry  and not x, and voters withylx always vote fo ry  
if they vote for x. Q.E.D. 


