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Abstract. The Alu family of interspersed repeats is 

comprised of over 500,000 members which may be di- 

vided into discrete subfamilies based upon mutations 
held in common between members. Distinct subfamilies 

of Alu sequences have amplified within the human ge- 

home in recent evolutionary history. Several individual 
Alu family members have amplified so recently in hu- 

man evolution that they are variable as to presence and 
absence at specific loci within different human popula- 

tions. Here, we report on the distribution of six polymor- 
phic Alu insertions in a survey of 563 individuals from 
14 human population groups across several continents. 
Our results indicate that these polymorphic Alu inser- 

tions probably have an African origin and that there is a 
much smaller amount of genetic variation between Eu- 
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ropean populations than that found between other popu- 

lation groups. 
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Introduction 

Short interspersed elements (SINEs) may be found in the 

genomes of a wide variety of mammals (Deininger and 
Batzer 1993). The Alu family of SINEs is one of the 
most successful mobile genetic elements, having arisen 
to a copy number in excess of 500,000 within the human 
genome in approximately 65 million years of primate 

evolution. (For reviews see Deininger  1989; Okada 
1991; Schmid and Maraia 1992; Deininger and Batzer 

1993.) Alu sequences are thought to be ancestrally de- 
rived from the 7SL RNA gene (UUu et al. 1982) and 
mobilize through an RNA polymerase III-derived tran- 
script in a process termed "retroposition" (Rogers 1983). 

Alu sequences within the human genome can be di- 
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Fig. 1. Geographical map of sampled human population groups. A 
map of the world with the locations of all the populations sampled in 
this study denoted by circles with numbers. The populations were (1) 
Alaska Natives; (2) Greenland Natives; (3) European-Americans; (4) 

vided into groups of related elements based upon com- 
monly shared diagnostic mutations. Several groups have 
independently identified a series of overlapping subfam- 
ilies of Alu repeats which appear to be different genetic 
ages (Slagel et al. 1987; Willard et al. 1987; Britten et al. 
1988; Jurka and Smith 1988; Quentin 1988; Deininger 
and Slagel 1988; Shen et al. 1991; Jurka and Miloslave- 
jevic 1991). These observations have led to the sugges- 
tion that the vast majority of Alu amplifications were 
derived from a small subset of active Alu "master"  
genes (Deininger et al. 1992). However, it is clear that a 
limited number of Alu subfamilies are currently under- 
going amplification from multiple "m as t e r "  genes 
within the human genome (Matera et al. 1990b; Leeflang 
et al. 1992; Jurka 1993; Hutchinson et al. 1993; Hammer 
1994; Batzer et al. 1995). Here, we will use the nomen- 
clature of Shen et al, (1991) and Jurka (1993) to refer to 
various Alu subfamilies. 

One of the most recently formed groups of Alu ele- 
ments within the human genome has been termed hu- 
man-specific (HS) (Batzer et al. 1990; Batzer and Dein- 
inger 1991) or predicted variant (PV) (Matera et al. 
1990a,b) and was derived from the CS subfamily (Shen 
et al. 1991) of Alu repeats. There are an estimated 500- 
2,000 HS Alu elements which are mostly (Batzer and 
Deininger 1991), but not exclusively (Leeflang et al. 
1992, 1993), restricted to the human genome. In parallel, 
a second subfamily which is an independent derivative of 
the CS lineage of Alu sequences, termed Sb2 (Jurka 
1993; Hutchinson et al. 1993), has also expanded in the 
human genome (Batzer et al. 1995; Zietkiewicz et al. 
1994). 

Some HS and Sb2 Alu elements have retroposed so 
recently that they have not fixed within the human ge- 
nome (Batzer and Deininger 1991; Batzer et al. 1991; 
Hammer 1994; Kass et al. 1994; Batzer et al. 1995). The 
distribution of these elements varies in geographically 

Hispanics; (5) African-Americans; (6) French Acadians; (7) British 
Afro-Caribbeans; (8) French Bretons; (9) Swiss; (10) French; (11) 
Greek-Cypriots; (12) Turkish-Cypriots; (13) Nigerians; (14) Central 
African Republic and Zaire Pygmies. 

distinct human population groups (Batzer et al. 1991; 
Batzer and Deininger 1991; Perna et al. 1992; Hammer 
1994; Kass et al. 1994; Batzer et al. 1994). The recent 
Alu insertions provide a novel set of highly informative 
nuclear DNA markers for the study of human population 
genetics since they represent relatively stable polymor- 
phisms that are identical by descent, and the ancestral 
state of the polymorphism is known (Batzer et al. 1994). 
Here, we report on the distribution of six polymorphic 
Alu insertions in a survey of 563 individuals from 14 
population groups across several continents. Our results 
indicate that these polymorphic Alu insertions probably 
have an African origin and that there is a much smaller 
amount of genetic variation between European popula- 
tions than that found between other population groups. 

Methods 

DNA Samples. DNA samples from individuals were isolated from pe- 
ripheral blood lymphocytes as described (Ausabel et al. 1987). The 
geographic origin of each population group from this study is shown in 
Fig. 1. The European-American group consisted of United States in- 
dividuals with predominantly northern European ancestry. The Afri- 
can-American, Hispanic (largely of Mexican descent), and European- 
Americans were all collected in Michigan. The Cypriots and Alaska 
Natives were previously described (Batzer et al. 1994). Swiss samples 
were obtained in Switzerland. French Acadian samples were collected 
from individuals located in the Acadian triangle region near Lafayette, 
Louisiana. The French and Breton samples were previously described 
(Monson et al., in press). Greenland Natives were collected from 
Greenland. DNA samples from two groups of African Pygmies (Zaire 
and the Central African Republic [CARD were kindly provided by L. 
Cavalli-Sforza, while Nigerian DNA samples were kindly provided by 
J. Walnscoat. Afro-Caribbean samples were collected from the British 
Isles and were comprised of individuals with African heritage. 

PCR Amplification. Amplification of DNA samples was carried out 
in 50-gl reactions using 50 ng of target DNA, 375 ng of each oligo- 
nucleotide, 200 gM dNTPs in 50 mM KC1, 1.5 mM MgC12, 10 mM 
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Table 1. Oligonucleotide primers, annealing temperatures, and location of polymorphic Alu repeats a 

Primer sequences Annealing 
Sub- temperature 

Repeat family 5' primer 3' primer (°C) 

Chromo- 
somal 
location 

TPA 25 HS-2 5'-GTAAGAGTTCCGTAACAGGACAGCT-Y 5'-CCCCACCCTAGGAGAACTTCTCTTT-3' 58 8 
PV 92 HS-1 5'-AACTGGGAAAATTTGAAGAGAAAGT-3' 5'-TGAGTTCTCAACTCCTGTGTGTTAG-3' 54 16 
FXIIIB HS- 1 5'-TCAACTCCATGAGATTTTCAGAAGT-3' 5'-CTGGAAAAAATGTATTCAGGTGAGT-3' 56 1 
D1 Sb2 5'-TGCTGATGCCCAGGGTTAGTAAA-3' 5'-TTTCTGCTATGCTCTTCCCTCTC-3' 70 3 
APO HS-1 5'-AAGTGCTGTAGGCCATTTAGATTAG-3" 5"-AGTCTTCGATGACAGCGTATACAGA-Y 50 11 
ACE HS-1 5'-CTGGAGACCACTCCCATCCTTTCT-3" 5'-GATGTGGCCATCACATTCGTCAGAT-3' 58 17 

aSubfamily nomenclature as described in Batzer et al. (1990) and Shen et al. (1991) for HS-1 and HS-2 and in Jurka (1993) and Hutchinson et al. 
(1993) for Sb2. Oligonucleotide primers as reported in references below except as noted TPA 25 (Batzer and Deininger 1991), FXIIIB (Kass et al. 
1994), APO (Batzer et al. 1994). Chromosomal locations were previously reported for TPA 25 (Yang-Feng et al. 1986), PV 92 (Batzer et al. 1994), 
FXIIIB (Webb et al. 1989), D1 (Batzer et al. 1995), APO (Karathanasis 1985) and ACE (Tiret et al. 1992). 

Tris-HC1 pH 8.4, and AmpliTaq DNA polymerase (2.5 U) according to 
the supplier's (Roche Molecular Diagnostics) instructions. Each sample 
was subjected to the following amplification conditions: 1 rain at 94°C 
(denaturation), 2 rain at the appropriate annealing temperature, and 2 
min at 72°C (extension) for 32 cycles. The annealing temperature and 
oligonucleotlde primer sequences for each Alu insertion are shown in 
Table 1. Twenty microliters of each PCR reaction was analyzed by 
electrophoresis through a 2% agarose gel containing 0.5 gg/ml ethid- 
ium bromide, and the reaction products were directly visualized using 
UV fluorescence. 

Data Analysis. Unbiased estimates of average heterozygosity, the 
associated standard error due to sampling, and G~t values (a measure of 
the relative magnitude of genetic differentiation among populations) 
were calculated according to equations in Nei (1987). The CONTML 
program in PHYLIP 3.4 was used to estimate a maximum-likelihood 
tree (Felsenstein 1981) directly from the allele frequencies. The max- 
imum-likelihood tree was rooted by setting the frequency of each in- 
sertion to zero as previously described (Batzer et al. 1994). In addition, 
a series of genetic distance matrices were constructed using the 
GENDIST program in PHYLIP 3.4 according to the methods of Reyn- 
olds et al. (1983), Nei (1972), and Cavalli-Sforza and Edwards (1967), 
and each distance matrix was used to construct a neighbor-joining tree 
(rooted as outlined above) using the program NEIGHBOR. 

To assess the relative amount of gene flow experienced by each 
population, the heterozygosity of each population was plotted against 
the distance of the population from the centroid, as described by 
Harpending and Ward (1982), where heterozygosity is the usual ex- 
pected heterozygosity under Hardy-Weinberg, and the distance from 
the centroid r i for a population i is: 

r i = (t7 i -- p)2/(p)(1 - P) 

where Pi and P are the frequency of the Alu insertion in population i 
and in the total population, respectively. According to Harpending and 
Ward (1982), under an island model of population structure, the theo- 
retical expectation is that there should exist a linear relationship be- 
tween heterozygosity and distance from the centroid: 

h i = H(1 - ri) 

where h i and H are the heterozygosities of population i and the total 
population, respectively. Of particular interest in this analysis are the 
outliers: populations that have experienced more gene flow than aver- 
age will fall above the theoretical prediction, while populations that 
have experienced less gene flow than average will fall below the theo- 
retical prediction. 

Results 

G e n e t i c  V a r i a t i o n  W i t h i n  P o p u l a t i o n s  

The distr ibution o f  six individual  po lymorph ic  Alu  in- 

sertions was determined in a total of  563 unrelated indi- 

viduals  that compr ised  14 populat ion groups and is sum- 

mar ized  in Table  2. Each  Alu  insert ion was po lymorphic  

in all of  the populat ions except  for the D1 repeat, which  

was not  found within a small  sample  of  Niger ians  (n = 

11). A total of  84 tests for Hardy-Weinberg  equi l ibr ium 

were  per formed,  and only two  s ignif icant  departures 

f rom Hardy-Weinberg  equi l ibr ium were  found (French 

Acadians  for D1 and French for factor 13B [FXIIIB])  in 

cases where  sufficient  numbers  of  each genotype  were  

present. This number  o f  departures is not  surprising since 

approximate ly  4 of  the 84 tests should be signif icant  at 

the 5% level  based upon chance alone. However ,  the 

French Acadians  also exhibi ted a nearly signif icant  de- 

parture f rom Hardy-Weinberg  equi l ibr ium at the T P A  25 

locus as wel l  ()~2 = 3.72, d f =  1, 0.05 < p < 0.1). For  both 

D 1 and T P A  25 there were  fewer  heterozygotes  observed  

than expected,  which  might  indicate inbreeding within  

this group. 

The  he t e rozygos i ty  for  each popula t ion ,  ave raged  

across the six Alu  insertions,  was fairly substantial, rang- 

ing f rom a h igh  of  0.436 in Af r ican-Amer icans  to a low 

of  0.296 in Nigerians.  The  he terozygosi ty  values of  each 

marker,  averaged across all o f  the populat ions,  were  also 

quite high, with all of  the Alu  insertions except  for A P O  

having heterozygosi ty  values in excess  of  0.4. This is 

impress ive  g iven  that each Alu  insert ion is a bi-al lel ic  

po lymorph i sm with  a m a x i m u m  heterozygos i ty  of  0.5. 

G e n e t i c  D i f f e r e n t i a t i o n  A m o n g  P o p u l a t i o n s  

To examine  the amount  of  genetic  differentiat ion among 

populat ions,  Gst values  (a measure  of  the interpopulat ion 

variabil i ty) for each Alu  insert ion were  determined.  The  

Gst values ranged f rom a high of  0.236 for the factor 13B 

Alu  insert ion to a low of  0.039 for the A C E  Alu  repeat;  



Table 2. Distribution of polymorphic Alu insertions 

25 

TPA 25 PV 92 APO 

Frequency 
Population n of Alu Het SE 

Frequency Frequency 
of Alu Het SE of Alu Het SE 

European-Americans 45 0.556 0.499 0.014 
African-Americans 43 0.302 0.427 0.040 
Hispanics 44 0.625 0.474 0.027 
Afro-Caribbeans 42 0.286 0.413 0.043 
Swiss 43 0.453 0.502 0.013 
Bretons 45 0.556 0.499 0.014 
French Acadians 45 0.433 0.497 0.016 
Greek Cypriots 50 0.530 0.503 0.009 
Turkish Cypriots 33 0.576 0.496 0.021 
Nigerians 11 0.409 0.506 0.050 
Pygmies 34 0.221 0.349 0.057 
French 44 0.557 0.499 0.014 
Alaska Natives 42 0.298 0.423 0.041 
Greenland Natives 42 0.333 0.450 0.035 
Average heterozygosity (Het) 0.494 
Standard error (SE) 0.003 
Gst 0.055 

0.178 0.296 0 . 0 5 2  0.944 0.106 0.043 
0.209 0.335 0 .051  0.570 0.496 0.017 
0.523 0.505 0 . 0 0 9  0.920 0.148 0.049 
0.143 0.248 0 . 0 5 5  0.500 0.506 0.008 
0.198 0.321 0 . 0 5 2  0.942 0.111 0.045 
0.267 0.396 0 . 0 4 4  0.900 0.182 0.05 
0.178 0.296 0 . 0 5 2  0.922 0.145 0.048 
0.250 0.379 0 . 0 4 4  0.950 0.096 0.039 
0.333 0.451 0.040 0.985 0.030 0.029 
0.091 0.173 0.101 0.500 0.524 0.033 
0.309 0.433 0 . 0 4 4  0.794 0.332 0.058 
0.227 0.355 0 . 0 4 9  0.989 0.023 0.022 
0.619 0.477 0 . 0 2 6  0.917 0.155 0.050 
0.607 0.483 0 . 0 2 4  0.940 0.113 0.046 

0.423 0.239 
0.011 0.015 
0.132 0.113 

all of the Gst values differed significantly from zero, as 
judged by contingency chi-square analysis of  the allele 
frequencies. Hence, there are significant differences 
among human populations with respect to the frequen- 
cies of all of  these Alu insertion polymorphisms. 

Contingency chi-square analysis for heterogeneity in 
allele frequencies was also performed separately for the 
European, Amerindian (Alaska and Greenland Natives), 
and African (Nigerian and Pygmy) populations; the pop- 
ulations known to be admixed (Hispanic, African- 
American, and British Afro-Caribbean) were excluded 
from this analysis. The two African populations differed 
significantly in allele frequencies at three loci and the 
two Amerindian populations differed significantly at one 
locus, while the seven European populations did not dif- 
fer significantly at any of the six Alu insertion loci. This 
analysis indicates that there is little genetic differentia- 
tion among European populations, including recently de- 
r ived  E u r o p e a n  p o p u l a t i o n s  such  as E u r o p e a n -  
Americans and French Acadians. 

To investigate the evolutionary relationships of these 
populations, a maximum-likelihood tree was constructed 
directly from the allele frequency data in Table 2 and is 
depicted in Fig. 2. The topology of  the maximum- 
likelihood tree consisted of five major branches: Nigeri- 
arts (upper  left); Pygmies  ( lower  left);  Af r ican-  
Amer icans  and British Afro-Car ibbeans  (middle);  
European populations (upper right); and Hispanics and 
Amerinds (lower right). In addition, three types of ge- 
netic distance measures were calculated from the allele 
frequencies in Table 2, followed by the construction of  a 
neighbor-joining tree from each distance measure. All of  
the major branches present in the maximum-likelihood 
tree in Fig. 2 were also present in the neighbor-joining 
trees; the only differences among the trees were minor 

changes in the branching order of the European popula- 
tions (data not shown). 

Previously the TPA 25 (Batzer and Deininger 1991) 
APO, ACE and PV92 (Batzer and Stoneking et al. 1994), 
DI  (Batzer et al. 1995), and factor 13B (Kass et al. 1994) 
Alu repeats have been shown to be absent from the ge- 
homes of  nonhuman primates and located on different 
human chromosomes as outlined in Table 1. Since the 
direction of  mutation for Alu insertions is the insertion 
rather than the deletion of each Alu element, the root of 
the tree was derived by the inclusion of  a hypothetical 
ancestor which did not contain any of the polymorphic 
Alu insertions (i.e., the allele frequencies for each locus 
were set to zero). The hypothetical ancestral population 
connected to the maximum-likelihood network in the Af- 
rican branch (Fig. 2), as was found previously for a larger 
sample of  populations examined for four of these loci 
(Batzer et al. 1994). 

Gene Flow Within Populations 

To determine the relative amount of  gene flow experi- 
enced by each population, we compared the heterozy- 
gosity of  each group to the genetic distance from the 
centroid, as described previously (Harpending and Ward 
1982). A plot of  heterozygosity vs distance from the 
centroid for the worldwide sample of  14 populations 
shows that the Brit ish Afro-Car ibbeans ,  Afr ican-  
Americans, Hispanics, Greenland Natives, Alaska Na- 
tives, and Nigerians are above the predicted values (Fig. 
3A), while all of  the European populations (cluster of 7 
data points) as well as the Pygmies fall below the line 
(Fig. 3A). Since the sampling of  African and Amerind 
populations in this study is much less extensive than the 
sampling of European populations, the African and Am- 
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Table 2. Extended 

Population 

ACE FXIIIB D 1 

Frequency 
of Alu Het SE 

Frequency Frequency Average 
of Alu Het SE of Alu Het SE He t+  SE 

European-Americans 0,511 0.505 0.008 
African-Americans 0.488 0.506 0.009 
Hispanics 0,545 0.502 0.013 
Afro-Caribbeans 0.524 0.505 0.010 
Swiss 0.372 0.473 0.028 
Bretons 0,478 0.505 0.009 
French Acadians 0.511 0.505 0.008 
Greek Cypriots 0.390 0.481 0.023 
Turkish Cypriots 0.333 0.451 0.040 
Nigerians 0.273 0.416 0.090 
Pygmies 0.221 0.349 0.057 
French 0.477 0.505 0.009 
Alaska Natives 0.583 0.492 0.020 
Greenland Natives 0.548 0.501 0.013 
Average heterozygosity (Het) 0.498 
Standard error (SE) 0.002 

Gst 0.039 

0.467 0.503 0.011 0.444 0.499 0.014 0,402 + 0.068 
0.221 0.348 0.050 0.488 0.506 0.009 0.436 + 0.032 
0.705 0.421 0.040 0.364 0.468 0,029 0.420 + 0.056 
0.310 0.433 0.039 0.405 0.488 0,022 0.432 + 0.040 
0.477 0.505 0.010 0.337 0.452 0,034 0.394 + 0.063 
0.400 0,485 0.022 0.389 0.481 0,024 0.425 + 0.051 
0.478 0.505 0.009 0.422 0.493 0.018 0.407 + 0.062 
0,616 0.479 0.026 0.267 0.396 0.045 0.389 +- 0.062 
0.394 0.485 0.028 0.348 0.461 0.037 0.396 __+ 0.073 
0.083 0.159 0.094 0.000 0,000 0.000 0,296 + 0.088 
0.015 0,029 0.028 0.338 0.454 0.038 0,324 + 0.062 
0.420 0.493 0.019 0.455 0.502 0.013 0.396 -+ 0.078 
0.917 0.155 0.050 0.415 0.491 0,020 0.366 +- 0.067 
0.786 0,341 0.051 0.452 0.501 0.013 0.398 + 0.062 

0.499 0.475 
0.002 0.007 
0.236 0.069 

ian 

Ancestral 

Pygmies 

Fig. 2. 

Turk. Cyp. 
French~ J e 

I~panic 

eenland 

Alaska 

Maximum-likelihood tree of population relationships. This 
tree was derived directly from the allele frequencies of six polymorphic 
Alu repeats (TPA 25, PV 92, APO, ACE, FXIIIB, and D1) in a total of 
563 unrelated individuals (Table 2) using PHYLIP 3.4; the log- 
likelihood of this tree was 135.76. The genetic distance between pop- 
ulations is proportional to the branch lengths on the tree. Addition of a 
hypothetical ancestor which does not contain any of the Alu repeats 
results in a branch which connects with the tree at the position denoted 
by the a r r o w  in the African branch. 

erind populations were removed and the analysis was 
repeated (Fig. 3B). The Hispanics, African-Americans, 
and British Afro-Caribbeans all fall well above the theo- 
retical line, in accordance with the expectation that these 
admixed populations have received gene flow from other 
sources, while the European populations have not. When 
only the European populations are analyzed (Fig. 3C), 
the fit between the observed and predicted values is quite 
close, suggesting that the model applies to European 
populations. 

Discussion 

Polymorphic Alu insertions represent a unique source of 
nuclear genetic variability for the study of human pop- 
ulation genetics. Each polymorphic Alu insertion arose 
within the human population as a unique event in human 
evolutionary history, making the Alu repeats identical by 
descent from a common ancestor, as opposed to other 
polymorphisms which are merely identical by state 
(Batzer and Deininger 1991; Batzer et al. 1991, 1993, 
1994; Deininger and Batzer 1995). Alu elements appear 
to be stable integrations into the genome which rarely 
delete from a location (Sawada et al. 1985; Sawada and 
Schmid 1986; Bailey and Shen 1993); even when a rare 
deletion occurs, a signature of the original insertion event 
is left behind (Edwards and Gibbs 1992), as an exact 
excision would be an extremely low-probability event. In 
addition, Alu elements are subject to very limited 
amounts of gene conversion (Kass et al. 1995; Batzer et 
al. 1995). Furthermore, the direction of mutation that 
results in an Alu polymorphism is known to be forward 
(i.e., the insertion of the element), facilitating an accurate 
estimation of the root in trees of population relationships 
(Batzer et al. 1994). 

Each of the polymorphic Alu insertions analyzed here 
displayed a significant amount of interpopulation differ- 
entiation with Gst values that ranged from 0.039 for the 
ACE Alu insertion to 0.236 for the factor 13B Alu re- 
peat. Although the populations studied were different 
and the Gst  values are not strictly comparable, Batzer et 
al. (1994) found a range 0.097-0.283 in Gst  values for the 
TPA 25, APO, ACE, and PV92 Alu insertions. In con- 
trast, the Gst  values in this report were slightly lower, 
presumably due to the fact that a number of closely re- 
lated populations of European descent were analyzed (as 
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discussed below). By way of comparison with other nu- 
clear DNA markers, a survey of 42 bi-allelic polymor- 
phisms by Bowcock et al. (1987) found 23 Fst values 
(similar to Gst values) of  0.097 or greater, and only four 
Fst values exceeding 0.283. Therefore, the six polymor- 
phic Alu insertions reported here show a considerable 
amount of interpopulation differentiation. 

The relationships between populations are shown by 
the topology of the maximum likelihood tree. The struc- 
ture of the tree consists of five main branches: African 
( two branches) ,  Afr ican-Amer ican /Br i t i sh  Afro-  
Caribbean, Europeans, and Hispanic/Amerind. This 
structure is consistent with what is known about the his- 
tory of these populations, in that populations from the 
same continent tend to cluster, and admixed populations 
tend to be intermediate in position between the source 
populations: The Hispanic group is on a branch that leads 
from the Europeans out to the two Amerind populations 
at the termini of  the branch, while the African-Americans 
and British Afro-Caribbeans reside on a branch that is 
between the cluster of  European groups and the Africans. 
The admixed nature of Hispanic, African-American, and 
British Afro-Caribbean groups was also apparent from 
the plot of  heterozygosity vs distance from the centroid 
(Fig. 3); these three groups consistently had higher het- 
erozygosities than predicted, indicative of  the greater 
level of  gene flow experienced by these groups. The 
placement of the African-Americans is consistent with 
previous estimates that the African-American gene pool 
is comprised of 10-30% European alleles (Chakraborty 
et al. 1992). The present analysis places the African- 
Americans closer to Africa than a previous study involv- 
ing only four Alu insertions (Batzer et al. 1994); presum- 
ably the increased number of loci in the present study is 
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Fig. 3. Gene flow within individual populations. Each figure represents 
a plot of the heterozygosity (hi) vs distance from the centroid as a 
measure of gene flow, using an island population model (Harpending and 
Ward 1982). The theoretical values are indicated by the dashed line in 
each case. Three different sets of population groups are shown to permit 
maximal resolution of the differences. A (upper left) All of the 
world-wide populations are included (the European groups appear as the 
tight cluster of values at left). B (upper right) The European and admixed 
population groups are included. C (lower left) Only the European 
populations are included. 

leading to a more accurate placement of this admixed 
population on the tree. 

The root of  the maximum likelihood tree of popula- 
tion relationships resides within Africa near the Nigeri- 
ans. The placement of the root involves a very minimal 
number of assumptions in comparison to the placement 
of roots along trees derived from other classical poly- 
morphic markers. This suggests that these polymorphic 
Alu insertions arose within Africa and is consistent with 
a previous study of four recent Alu insertions (Batzer et 
al. 1994) as well as a study of a polymorphic Sb2 Alu 
repeat located on the Y chromosome (Hammer 1994). In 
addition, these data support the African-origin hypothe- 
sis for modern humans. The placement of the ancestral 
human population in Africa compares favorably with a 
number of previous studies involving nuclear DNA 
(Bowcock et al. 1991, 1994; Wainscoat et al. 1986; 
Batzer et al. 1994), mitochondrial DNA (Merriweather et 
al. 1991; Cann et al. 1987; Vigilant et al. 1991), and 
protein markers (Cavalli-Sforza et al. 1988; Nei and 
Roychoudhury 1993). Therefore, these data provide ad- 
ditional, compelling support for the African origin of 
modern humans. 

The amount of variation within each Alu insertion 
was quite large between European and non-European 
population groups. However, the variation between the 
groups of European origin was much smaller, as indi- 
cated by the lack of significant heterogeneity in allele 
frequencies, the tight clustering of the European popula- 
tions on one branch of the maximum likelihood tree, and 
the good fit between the observed and predicted relation- 
ship between the heterozygosity and distance of each 
population from the centroid. These data compare favor- 
ably with previous studies that suggest that Europeans 
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are o f  re la t ive ly  r ecen t  origin,  and  h e n c e  show re la t ive ly  

smal l  gene t ic  d i f fe rences  ( C a n n e t  al. 1987; D i R i e n z o  

and  W i l s o n  1991;  Cava l l i - S f o r za  et  al. 1993; P i azza  

1993; Tor ron i  et  al. 1994).  

In conc lus ion ,  this  s tudy suppor ts  the  ut i l i ty  of  poly-  

m o r p h i c  A lu  inser t ions  for  the  accura te  d i s sec t ion  o f  the  

e v o l u t i o n a r y  h i s to ry  of  i n d i v i d u a l  p o p u l a t i o n  groups .  

The  mob i l i z a t i on  and  inse r t ion  of  new  A l u  e l emen t s  is a 

c o n s t a n t  p roces s  (Wa l l ace  et  al. 1991; V i d a u d  et  al. 

1993). The  inse r t ion  of  new  A l u  repea ts  at d i f fe rent  t imes  

dur ing  h u m a n  e vo l u t i ona r y  h i s to ry  p rov ides  d i f fe ren t  

amoun t s  o f  i n fo r m a t i on  abou t  popula t ions :  Alu  repeats  

m a y  be  un ique  to an  ind iv idua l  (Wal l ace  et  al. 1991; 

V i d a u d  et al. 1993),  f ami ly  (Mura t an i  et  al. 1991),  or  

species  or genus  of  p r ima tes  (Ba tze r  et  al. 1993; De in -  

inger  and  B a t z e r  1995). Thus ,  A l u  repea ts  of  d i f fe ren t  

evo lu t iona ry  ages  p rov ide  d i f fe rent  pe r spec t ives  on  the  

evo lu t iona ry  h i s to ry  of  h u m a n s ;  as A l u  repea ts  con t inue  

to e x p a n d  wi th in  the  h u m a n  genom e ,  so does  the  infor-  

m a t i o n  they  p rov ide  on  h u m a n  popu la t i on  re la t ionships .  
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