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Summary. Available sequences that correspond to
the E. coli ribosomal proteins .11, L1, L10, and L.12
from eubacteria, archaebacteria, and eukaryotes have
been aligned. The alignments were analyzed qualita-
tively for shared structural features and for conservation
of deletions or insertions. The alignments were further
subjected to quantitative phylogenetic analysis, and the
amino acid identity between selected pairs of sequences
was calculated. In general, eubacteria, archaebacteria,
and eukaryotes each form coherent and well-resolved
nonoverlapping phylogenetic domains. The degree of di-
versity of the four proteins between the three groups is
not uniform. For L.11, the eubacterial and archaebacte-
rial proteins are very similar whereas the eukaryotic
L11 is clearly less similar. In contrast, in the case of the
L12 proteins and to a lesser extent the L10 proteins, the
archaebacterial and eukaryotic proteins are similar
whereas the eubacterial proteins are different. The eu-
karyotic L1 equivalent protein has yet to be identified.
If the root of the universal tree is near or within the eu-
bacterial domain, our ribosomal protein-based phylo-
genies indicate that archaebacteria are monophyletic.
The eukaryotic lineage appears to originate either near
or within the archaebacterial domain.
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Introduction

Ribosomes are subcellular particles that play a structural
and functional role in the template-directed synthesis of
protein. Ribosomes were already present in the common
primordial ancestor, and their basic structural and func-
tional features have been preserved in all its diverse de-
scendants. As a result, the macromolecular components
of the ribosome, especially the small-subunit ribosomal
RNA, have been useful chronometers with which to
measure evolutionary relationships among extant or-
ganisms.

In the E. coli ribosome, a pentameric complex, con-
sisting of four copies of protein L12 and a single copy
of protein L10, binds cooperatively along with another
protein, L11, to a region in the 23S rRNA between nu-
cleotides 1030 and 1120 (Ryan et al. 1991; Egebjerg et
al. 1990; Dijk et al. 1979). This interaction produces a
distinct and easily recognizable stalk on the large ribo-
somal subunit. This structure is essential for the bind-
ing of the extrinsic factors EF-Tu and EF-G and par-
ticipates in conformational rearrangements of the
ribosome that are accompanied by the hydrolysis of
GTP. (For reviews, see Liljas 1982; Shimmin et al.
1989). Quaternary complexes similar to the E. coli
(L12),L10-L11-t1RNA complex are structurally and
functionally conserved in the ribosomes of archaebac-
teria and eukaryotes (Uchiumi et al. 1987; Beauclerk et
al. 1985; Casiano et al. 1990; El-Baradi et al. 1987). A
fourth protein, L1, binds to large subunit RNA between
nucleotides 2100 and 2200 (Branlant et al. 1981). It
functions to stabilize peptidyl tRNA binding to the ri-
bosome P site and participates indirectly in the factor-
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dependent GTP hydrolysis (Subramanian and Dabbs
1980; Lake and Strycharz 1981; Sander 1983).

In E. coli, the genes encoding L.11, L1, 110, and L12
form a complex transcription unit that also contains the
genes for the two large subunits of RNA polymerase. It
was somewhat surprising to find that the clustering of
the genes encoding these four ribosomal proteins was
conserved not just in eubacteria but also in a range of
distantly related archaebacterial species including
Halobacterium cutirubrum (Shimmin and Dennis 1989),
Haloferax volcanii (Shimmin and Dennis, unpublished
results), Haloarcula marismortui (Arndt and Weigel
1990), and Sulfolobus solfataricus (Ramirez et al. 1989).
In eukaryotes, these genes are not linked (Newton et al.
1990) and the L12 gene has undergone a very ancient
duplication that possibly predates the earliest eukaryotic
organism.

In this paper, we have aligned and analyzed available
L11, L1, L10, and L12 gene and protein sequences from
eubacterial, archaebacterial, and eukaryotic organisms.
We observed that for each of the gene-protein analyses,
there is strong coherence that supports grouping or-
ganisms into the three primary domains: Eubacteria,
archaebacteria, and eukaryotes. That is, the gene or pro-
tein sequences of organisms from within any one of the
three domains are more closely related to each other
than they are to sequences from the other two domains.
The patterns of divergence for the .11, L.10, and L12
proteins between eubacteria, archaebacteria, and eu-
karyotes are surprisingly dissimilar considering their
intimate physiological interactions on the ribosome.

Materials and Methods

The molecular sequences (nucleotide sequences and/or amino acid se-
quences) for ribosomal proteins L11, L1, L10, and L12 were ob-
tained from sequence data banks (EMBL, GenBank, and Swiss-Prot
data banks) associated with the GeneWorks package (IntelliGenetics,
Inc., Mountain View, CA, USA). Sequences not available from the
data banks were obtained from the literature. The abbreviations used
as organism identifiers in sequence alignments and phylogenetic trees
and the reference for each sequence are listed in Table 1.

Sequence Alignment. The amino acid sequences of ribosomal pro-
teins L11, L1, .10, and .12 from eubacteria, archaebacteria, and eu-
karyotes were aligned using the alignment algorithm in the GeneWork
package. The resulting alignments were visually inspected to minimize
the alignment gaps and to maximize amino acid identities. In the cas-
es of ribosomal proteins L10 and L12, the previous evolutionary
models were consulted in order to preserve predicted structural fea-
tures (Shimmin et al. 1989). Our L.12 alignments center on the con-
served arginine-tryptophan residue at position 88. When required for
analysis, nucleotide sequence alignments colinear to the depicted
amino acid sequence alignments were used. Consensus of sequence
alignments was determined visually by a somewhat flexible majori-
ty rule, where conservative amino acid replacements at each alignment
position were taken into consideration. For example, at position 279

in the five archaebacterial L10 proteins there are 2 Ds, 1 E, 1 K, and
1 T. Because of the chemical similarity between D and E, D was cho-
sen as the consensus residue even though it does not represent the ma-
jority residue at this position.

Phylogenetic Reconstruction. Parsimony analysis of the aligned
amino acid sequences using the heuristic and/or branch and bound tree
search options and bootstrap analysis were carried out using PAUP
(Swofford 1989). When the heuristic tree search option was used, ran-
dom addition of sequences with 10 replications was used to generate
the parsimony tree. For bootstrap analysis of the L.12 alignments, ran-
dom addition of sequences with one replication was used because of
limitation in computing capacity. The tree bisection-reconnection
(TBR) algorithm was used in the heuristic tree searches (Swofford
1989). The distance matrix method was also employed to construct
distance matrix trees using DNADIST, FITCH, KITSCH, and NEIGH-
BOR programs in the PHYLIP Package (Felsenstein 1991).

Results and Discussion

Alignment and Phylogeny of L11 Proteins

There are five eubacterial sequences and one chloroplast
sequence, which is encoded by the nuclear genome,
available for ribosomal protein L11. They align from
end to end with only two gaps in the alignment at po-
sitions 2-5 and 53 (Fig. 1). The high degree of amino
acid sequence identity among these five sequences
clearly suggests that the chloroplast sequence is of eu-
bacterial origin.

The three available archaebacterial L11 protein se-
quences can be easily accommodated to this alignment.
The archaebacterial proteins retain 7 of the 8 proline
residues that are conserved in the eubacterial alignment
at positions 24, 26, 27, 30, 60, 79, and 98; an eighth pro-
line at position 80 has been replaced only in the S. sol-
fataricus sequence. The archaebacterial L11 proteins are
further characterized by a shorter amino terminus and
by a 25-32-amino-acid-long extension at the carboxy
terminus when compared to the eubacterial L11 se-
quences.

The proteins designated “L15” from S. cerevisiae
(Pucciarelli et al. 1990) and “L.12” from R. rattus (Suzu-
ki et al. 1990) are homologs. They align end-to-end
without gaps and are identical at 115 of the 165 posi-
tions. Based upon (1) immunological cross-reactivity
(Juan-Vidales et al. 1983), (2) a limited degree of amino
acid sequence similarity, and (3) a common binding
site within mouse 28S rRNA (El-Baradi et al. 1987),
these eukaryotic proteins have been implicated as ho-
mologs of the L11 protein of E. coli. The eukaryotic L11
sequences can be accommodated in the alignment by the
inclusion of only two internal gaps (positions 66 and
77). Of the seven positions where proline is conserved
in the archaebacterial and eubacterial proteins, only two
(positions 30 and 79) are retained in the eukaryotic pro-
teins.
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Table 1. Organisms and their abbreviations from which the sequences of the ribosomal proteins L11, L1, L10, and L12 are available

Organism Abbreviation Protein® Reference
Eubacteria
Bacillus stearothermophilus Bst L1 Kimura et al. 1985
L12 Garland et al. 1987
Bacillus subtilis Bsu L12 Itoh and Wittman-Liebold 1979
Desulfovibrio vulgaris Dvu L12 Tioh and Otaka 1984
Escherichia coli Eco L11,L1,L10,L12 Post et al. 1979
Haloanerobium prevalens Hpr Li2 - Matheson et al. 1987
Halophilic eubacterium NRCC 41227 Heu L12 Falkenberg et al. 1985
Micrococcus lysodeikticus Mly L12 Itoh 1981
Proteus vulgaris- Pvu L11, L1 Sor and Nomura 1987
Rhodpseudomonas spheroides Rsp Li2 Itoh and Higo 1983
Serratia marscescens Sma L11,L1 Sor and Nomura 1987
Salmonella typhimurium Sty 110, L12 Paton et al. 1990a,b
Spinacea oleracea (chloroplast) Sol(c) L12 Bartsch et al. 1982
L11 Smooker et al. 1991
Streptomyces griseus Sgr L12 Itoh 1982
Streptomyces virginiae Svi L11 Okamoto et al. 1992
Synechocystis sp. PCC 6803 Sec L10,L12 Sibold and Subramanian 1990
Thermotoga maritima Tma L1t,L1,L10,L12 Liao and Dennis 1992
Eukaryotes
Artemia salina Asa L12T(eL12") Amons et al. 1979, 1982
L12I(eL12)
Dictyostelium discoideum Ddi L10(P0) Prieto et al. 1991
Drosophila melanogaster Dme L10(PO) Kelley et al. 1989
L12M(rp21C), Wigboldus 1987; Qian et al.
L12I(rpAl) 1987
Gallus gallus Gga L121IKP1) Ferro and Reinach 1988
Homo sapiens Hsa L10(PO), L1211(P1) Rich and Steiz 1987
L12I(P2)
Mus musculus Mmu L10(PO) Krowczynska et al. 1989
Rattus norvegicus Rno L10(P0O) Chan et al. 1989
Rattus rattus Rra L121I(P1) L12I(P2) Wool et al. 1990
L11(L12) Suzuki et al. 1990
Saccharomyces cerevisiae Sce L10(P0), L12IA, L12IB, Newton et al. 1990
L12IIA, L121IB Mitsui and Tsurugi 1988;
Remacha et al. 1988
LI1I(L15) Pucciarelli et al. 1990
Schizosaccharomyces pombe Spo L12I(A4), L12IB(A2) Beltrame and Bianchi 1990
L12II(A1), L12IIB(A3)
Trypanosoma cruzi Ter L12I(P2) Schijman et al. 1990
Tetrahymena thermophila Tth L12II(L37) Hansen et al. 1991
Archaebacteria
Halobacterium cutirubrum Hcu Li1,L1,L10, L12 Shimmin et al. 1989
Halobacterium halobium Hha L11,L1,L10,L12 Ttoh 1988
Haloarcula marismortui Hma L11,L1,L10,L12 Arndt and Weigel 1990
Haloferax volcanii Hvo L11,L1,L10,L12 Shimmin and Dennis
(unpublished data)
Methanococcus vannielli Mva L1,L10,L12 Baier et al. 1990
Sulfolobus acidocaldarius Sac L12 Matheson et al. 1988
Sulfolobus solfataricus® Sso L11,1L1,L10,L12 Ramirez et al. 1989

 The protein designations used in this paper are based on the sequence similarity to the E. coli L11, L1, L10, and L12. The original nomen-

clature where appropriate is given in parentheses

b Our recent unpublished data indicate that the organism used to clone these ribosomal protein genes was actually S. acidocaldarius and not S.
solfataricus. Nonetheless, we have here retained the species designation of Ramirez et al. (1989)

The phylogenetic relationships between the eleven
L11 protein sequences were analyzed using PAUP (Fig.
1B). The eubacteria were contained within a well-de-
fined domain. The location and branching order of three
species within this domain, Streptomyces virginiae,
spinach chloroplast, and 7. maritima, are not rigorous-

ly defined. The two eukaryotic L11 sequences form an-
other well-defined branch that originates from the S. sol-
fataricus lineage within the archaebacterial group. If the
ancestral root of the tree is located near or within the eu-
bacterial domain (below the position of the arrow in Fig.
1B), then the archaebacteria would appear to be mono-
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SceLll MPPKEFDPNEVKYLYLRAVGGEVGASAALAPKIGPLGLS PKKVGEDIAKATKE -FKGIKVYVQLKI ~-QNRQ~AAASV-VPSASSLVITALKEPPRDRKKDK
RraLll MPPKFDPNEIKVVYLRCTGGEVGATSALAPKIGPLGLS PKKVGDDIAKATGD-WKGLRITVKLTI -QNRQ-AQIEV-VPSASALI IKALKEPPRDRKKQK
SsoLll IKIMVEGGSAKPGPPLGPTLSQLGLNVQEVVKKINDVTAQ-FKGMSVPVTIEIDSSTKKYDIKVGVPTTTSLLLKAINAQEPSGDPAH
Heoulll --IEVLVAGGQADPGPPLGPELGPTPVDVQAVVOEINDQTEA-FDGTEVPVTIEYEDDGS -FSIEVGVPPTAALVKDEAGF DTGSGEPQE
HmaLll MAG-T<-—-w~- IEVLVPGGEANPGPPLGPELGPTPVDVQAVVQEINDQTAA-FDGTEVPVTVKY DDDGS-FEIEVGVPPTAELIKDEAGFETGSGEPQE
Sol (c)Lll KA----KKVIGVIKLALEAGKATPAPPVGPALGSKGVNIMAFCKDYNARTAD-KPGFVIPVEITVFDDKS-FTFILKTPPASVLLLKASGAEKGSKDPQM
Ecolll MA-~~-KRKVQAYVKLQVAAGMANPSPPVG PALGQQGVNIMEFCKAFNAKTDSIEKGLPIPVVITVYADRS -FTFVTK TP PAAVLLKKAAGIKSGSGKPNK
SmaLll MA----KRKVQAYVKLQVAAGMANPSPPVG PALGQOGVNIMEFCKAFNAKTDSIEKGLPIPVVITVY SDRS-FTFVTKTP PAAVLLKKAAGTKSGSGKPNK
PvulLil MA~---KKVOAYIKLOVSAGMANPS PPVGPALGQQGVNIMEFCKAFNAKTESVEKGLPIPVVITVIADRS -FTFVIKTP PAAVLLEKKAAGVKSGSGKPNK
SviLll MPPK-KKKVTGLIKLQIKAGAANPAPPVGPALGQHGVNIMEFCKAYNAATES -QRGMVVPVEITVYDDRS ~FTF I TKTPPAARLILKHAGIEKGSGEPHK
TmaLll MA~---KKVAAQIKLQLPAGKATPAPPVGPALGQHGVNIMEFCKRFNAETAD-KAGMILPVVITVYEDKS ~-FTF I IKTPPASFLLKKAAGIEKGSSEPKR
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ScelLll NVKHSGNIQLDEIIEIARQMRDKSFGRTLASVTKEILGTAQSVGCRVDFKNPHDI TEGINAGEIEI PEN
Rralll NIKHNGNITFDEIVNIARQMRHRSLARELSGTIKEILGTAQSVGCNVDGRHPHDI IDDINSGAVECPAS
SsoLll -~ ~KIGNLDLEQIADIAIKKKPQLSAKTLTAAIKSLLGTARSIGITVEGKDPKDVIKEIDQGKYNDLLTNYEQKWNE-AEG
Heulll -~-FVADLSIEQLKTIAEQKKPDLLAYDARNAAKEVAGTCASLGVTIEGEDARTFNERVDDGDYDDVLGD~ -~~~ ~ ELAAA
Hmalll - --FVADLSVDQVKQIAEQKHPDLLSYDLTNAAKEVVGTCTSLGVI TEGENPREFKERIDAGEYDDVFARA -~ ~~~~ E-AQA
Sol (c)Lll --EKVGKITIDQLRGIATEKLPDLNCTTIESAMRI IAGTAANMGIDID---PPILVKKKKEVIF -
EcolLll --DKVGKISRAQLOEIAQTKAADMTGADIEAMTRS IEGTARSMGLVVED-—~~=-~—~—-~—-——— -
Smalll - -DKVGRVTRAQVREIAETKAADMTGSDVEAMTRS IEGTARSMGLVVED -~ ===~ —— -~~~ —m oo — o mmmmm e -
PvuLll -~EKVGKITSAQVREIAETKAADLTGADVEAMMRSIAGTARSMGLVVED -~ -~~~ ———~—- - me o —mmmme o
SviLll -~TKVAKLTAAQVKEIAELKMPDLNANDIDAAVKI TAGTARSMGVTIVEG-——-~-~=————m==———ro oo m s e =
Tmalll ~~KIVGKVTRKQIEEIAKTKMPDLNANSLEAAMKI IEGTAKSMGIEVVD-— - = - - ——mm oo m s m e o -
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EB 100
61 RraLll
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100 PvuL,1ll
Tmalll
SvilLill

Fig. 1.

Alignment of the amino acid sequences of the ribosomal pro-

sites; all of these are included in the parsimony analysis and yield a

tein L11 family and phylogenetic tree based on this alignment. A The
L11 proteins are from 5 eubacteria, 1 chloroplast, 3 archaebacteria,
and 2 eukaryotes. The leader peptide required for import of the chloro-
plast LL11 protein into the organeile is not included in the alignment.
The numbers indicate the common alignment positions. Abbreviations
are listed in Table 1. B A parsimony analysis of aligned sequences was
carried out using PAUP with the branch and bound search option and
the most parsimonious tree is illustrated. There are 130 informative

tree with 472 steps and a consistency index of 0.886. The numbers
indicate percent confirmation of grouping of species to the right of
the node by bootstrapping analysis with 2,000 replications. Only val-
ues greater than 50% are indicated. Below the position of the arrow
indicates the portion of the tree that would contain the root if the root
were located either within the eubacteria or between the eubacteria
and archaebacteria.



phyletic but not holophyletic. However, bootstrap analy-
sis indicates that the positioning of S. solfataricus rel-
ative to eukaryotes is tenuous. In the DNA parsimony
tree (and in all other distance method trees), the ar-
chaebacteria are both monophyletic and holophyletic;
the bootstrap confidence for this arrangement was 0.82.

Alignment and Phylogeny of L1 Protein Sequences

There are five eubacterial and six archaebacterial L1
equivalent protein sequences available (Fig. 2A). Al-
though the proportion of conserved amino acid residues
within the L1 family is relatively high, the alignment is
interrupted by gaps at approximately 15 different posi-
tions. Many of these gaps, particularly the five gaps lo-
cated beyond amino acid position 125, clearly differ-
entiate the archaebacterial proteins from the eubacterial
proteins. Deletion-insertion events are generally rare
and their co-occurrence in multiple sequence align-
ments is a strong indication of common ancestry.

In E. coli, protein L1 binds to nucleotides 2100-2200
of the E. coli 23S rRNA (Branlant et al. 1981). The se-
quence and secondary structure of this binding domain
within large-subunit rRNA of archaebacteria and eu-
karyotes are highly conserved and the E. coli protein can
protect these sites in vitro from ribonuclease digestion
(Zimmerman et al. 1980; Gourse et al. 1981). In E. coli
protein L1 is also an autogenous regulator of translation
of the mRNA containing the L11, L1, L10, and L12
cistrons. A region within the leader of the mRNA ex-
hibits primary sequence and secondary structural simi-
larity to the authentic L1 binding domain in 23S rRNA.
Any deficiency in the production of rRNA results in L1
protein accumulation; the excess protein binds to the
structural mimic on the mRNA and prevents translation
of the L11 and L1 cistrons (Dean and Nomura 1980;
Yates and Nomura 1981; Baughman and Nomura 1983;
Thomas and Nomura 1987; Kearney and Nomura 1987).
Similar mimics of the L1 rRNA binding site have been
identified in the mRNASs of other eubacterial, as well as
halophilic and methanogenic, archaebacterial species
(Sor and Nomura 1987; Liao and Dennis 1992; Shim-
min and Dennis 1989; Baier et al. 1990). Thus, both
structural and regulatory features of the L1 family of
proteins are conserved within eubacteria and at least
some groups of archaebacteria. The eukaryotic homolog
to protein L1 has not been identified.

The PAUP analysis of the L1 protein sequences pro-
duced two equally parsimonious trees that group eu-
bacteria and archaebacteria in separate and well-re-
solved domains. The two trees differ only in their
placement of S. solfataricus; in the first case it branch-
es separately and somewhat closer to eubacteria (solid
branch position in Fig. 2B; 53% bootstrap confirma-
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tion), and in the second case it branches with M. van-
nielli (dashed branch) and separately from the halophilic
L1 sequences. Distance and DNA parsimony methods
position S. solfataricus and M. vannielli together al-
though the grouping is tenuous.

The Sequence Alignments and Phylogeny of
L10 Proteins

Between eubacteria and archaebacteria, the L10 proteins
are in general less conserved than are the 111 and L1
proteins. However, because of domain conservation
within L10 proteins, a reasonable alignment can be
achieved with little difficulty. By using L.10 sequences
from the archaebacterial species H. cutirubrum and S.
solfataricus as “bridges,” Shimmin et al. (1989) demon-
strated that the eukaryotic “P0” proteins are actually ho-
mologs of the bacterial L10 proteins.

The sequence alignment of the L10 protein family
from 4 eubacteria, 5 archaebacteria, and 6 eukaryotes is
illustrated in Fig. 3A. Amino acid identity among all the
L10 proteins is highest within the amino terminal 121
residues. The most conspicuous feature is the presence
of several highly conserved basic residues at alignment
positions 17 (lys), 51(arg), 68 (lys or arg), 74 (lys or
arg), and 121 (lys). There are also many positions in this
region which have a high incidence of hydrophobic
residues. These features suggest that secondary struc-
tures in this domain may be highly similar if not iden-
tical and that this domain may be involved in rRNA
binding (Gudkov et al. 1980; Pettersson 1979; Mitsui et
al. 1989). It is difficult to align with certainty the car-
boxyl domain of the eubacterial L10 sequences beyond
position 121 with the eukaryotic and archaebacterial
sequences. Nonetheless, the sequence RNLVYVLNAI
of T. maritima 1.10 near the carboxyl end is highly sim-
ilar to the archaebacterial sequences around position
240 (e.g., RNL-SV-NAA in H. cutirubrum; Fig. 3C).
This sequence was used as a starting point to achieve the
depicted alignment between positions 173 and 248.

The archaebacterial and eukaryotic proteins exhibit
a carboxy-terminal extension of approximately 80-100
residues that is clearly not present in the eubacterial pro-
tein. This extension is characterized in part by a clus-
ter of charged amino acids (approximately position
320--359). In the eukaryotic proteins, this charged region
is preceded by an alanine-proline-rich region that is ei-
ther shortened in, or absent from, the archaebacterial
proteins. It has been suggested that these features are a
result of a partial duplication of the L.12 gene that has
been fused to the end of the L10 gene (Shimmin et al.
1989). Within any species of archaebacteria or eukary-
ote, substantial sequence identity is always apparent
between the carboxy termini of the respective 1.10 and
L12 proteins. For example, the identical sequences at the
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HcouLl MADNDIE-EAVAR-ALEDAPQR--==-=-m=—--~-=ux NFRETVDLAVNLRDLDLNDPSQRVDEGVVLPSGTGQETQIVVFADGETAV-RADDVADDVLDE
Hhall MADNDIE-EAVAR-ALEDAPQR- -NFRETVDLAVNLRDLDLNDPSQRVDEGVVLPSGTGRETQIVVFADGETAV - RADDVADDVLDE

HmaL1l
HvoLl
Mvalil
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BstLl
EcoLl
SmaLl
PvulLl
TmaLl
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HhaL1l
HmalLl
HvoLl
MvaLl
SsoLl
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SmaLl
Pvull
Tmall
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BhaLl
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SmaLl
Pvull
Tmall

Fig. 2.

MADQEIE-NAVSR-ALEDAPER- ~-NFRETVDLAVNLRDLDLNDPSNRVDESVVLPAGTGQETTIVVFAEGETAL - RAEEVADDVLDE
MAD-TIV-DAVSR-ALDEAPGR--—~-~~~~-- - ~NFRETVDLAVNLRDLDLNDPSKRVDES IVLPSGTGODTQIVVFATGETP- - ~AEDAADEVLGP
MDSAQIQ-KAVKE-ARTRKPR~NFTQSVDLIV-~-=~~ NFTQSVDLIVNLKELDLTRPENRLKEQIVLPSGKGKDTKIAVIAKGDLAA~QAAEMGLTVIRQ
MKRVLAD-KESLIEALK-~~-LALSTEYNV-KR~~~-NFTQSVEI I LTFKGI DMKKGDLKLREIVPLPKQPSKAKRVLVVPSFEQLEYAKKASPNVVITR

MPKVDKKYLEALK-LVDRSKAYPIAQATEIVKKTNVAKFDATVEVAFRL-GVDPKKADQQI RGAVVLPHGTGKVARVLVFAKGEKAK -EAEAAGADY VG-
MAKLTKRMRVI-REKVDATKQYDINEATALLKELATAKFVESVDVAVNL-GIDARKSDQNVRGATVLPHGTGRSVRVAVF TQGANAE - AAKAAGAELVG -
MAKLTKRMRVI-RDKVDATKQYDITEAIALLKELATAKFVESVDVAVNL-GIDARKSDQNVRGATVLPHGTGRSVRVAVF TQGANAE - AAKAAGAELVG-
MAKLTKRMRNI-REKVEVTKQYEIAEAVALLKELATAKFVESVDVAVNL-GI DARKSDQNVRGATVLPHGTGRSVRVAVFAQGANAE - AAKEAGAELVG~
MPKHSKRYLEA~RKLVDRTKYYDLDEAIELVKKTATAKFDETIELHIQT-GIDYRKPEQHIRGTIVLPHGTGKEVKVLVFAKGEKAK - EALEAGADY VG-~

110 120 140 150 160 170 180 190 200
DDLSDLADDTDAAKDLADETDFFVAE APMMODIVGALGQVLGPRGKMPTPLQPDD- - DVVDTVNRMKNT - VQIRSRDRRTFHTRVGAEDMSAEDI
DDLSDLADLTDAAKDLADETDFFVAE- - ~ - ~APMMQODI VGALGQVLGPRGKMPTPLQPDD- - DVVDTVNRMKNT - VQI RSRDRRTFHTRVGAEDMSAEDT
DELEELGGDDDAAKDLADDTDFFIAE- -~~~ KGLMQDIGRY LGTVLGPRGKMPEPLDPDD- - DVVEVIERMKNT - VQLRSGERRTFHTRVGAEDMSAENT
DELEDFGDDTDAAKDLADETDFFVAE-~ -~ AGLMQDIGRYLGTVLGPRGKMPTPLQPAD- - DVVETVNRMKNT-VQLRTRDRRTFHTRVGEDDMTPDEL
EELEELGKNKKAAKRIANEHGFFIAQ~~--- ADMMPLVGKSLGPVLGPRGKMPTPLPGNA - -NLAPLVARFKKT-VAINTRDKSLFQVY IGTEAMSDEET
EELQKLQGQKRPVKKLAIQNEWFLIN- -~ -~ QESMALAGRI LGPALGPRGKFPTPLPNTA - -DISEY INRFKRS - VIVKTKDQPQVQVF IGTEDMKPEDL

-D-TEY----- INK- -~ IQQGWFDFDVVVATPDMMGEVGK - LGRI IGPKGLMPNPKTGTVTF DVAKAVQEIKAGKVEYRVDKAGNIHVPIGKVSFDMEKL
-~MEDL--~-- ADQ- - - IKKGEMNFDVVIASPDAMRVVGQ~LGQVLG PRGLMPNPKVGTVTPNVAEAVKNAKAGQVRY RNDKNG I IHTTIGKVDFDADKL
--MEDL----~ AFQ-- -IKKGEMNFDVVIASPDAMRVVGQ-LGQI SGPRGLMPNPKVGTVTPNVAEAVKNAKAGQVRYRNDKNG I IHTTIGKVDFDADKL
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Alignment of the amino acid sequences of the ribosomal pro-

this alternative lineage is arbitrary. There are 176 informative sites;

tein L1 family and the phylogenetic tree based on this alignment. A
The L1 proteins from five eubacteria and six archaebacteria are
aligned. The numbers indicate the common alignment positions. Ab-
breviations are listed in Table 1. B A parsimony analysis of the L1
sequences was carried out using PAUP with branch and bound tree
search options. One of the two shortest trees found with 627 steps is
depicted. The other tree differs only in the positioning of S. sol-
faraticus, which is indicated by a dashed line; the branch length of

all of them are included in the parsimony analysis. The consistency
index for the two shortest trees is 0.900, The numbers indicate per-
cent confirmation of grouping of species to the right of the node by
bootstrapping analysis with 2,000 replications. Only values greater
than 50% are indicated. Below the position of the arrow indicates the
portion of the tree that would contain the root if the root were locat-
ed either within the eubacteria or between the eubacteria and ar-
chaebacteria.
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Fig. 3.

Alignment of amino acid sequences of the ribosomal pro-

branch and bound tree search option and two of the six equally short-

tein 110 family and the phylogenetic trees based on the L10 align-
ment. A The L10 ribosomal proteins from 4 eubacteria, 5 archaebac-
teria, and 6 eukaryotes are aligned. In the eukaryotes, these proteins
were previously designated “P0.” Abbreviations are as in Table 1. B
The consensus of the alignment was generated manuaily by majori-
ty rule. When majority is not evident at an alignment position, chem-
ically similar amino acid residues were considered to determine the
consensus. Question marks (?) indicate that there is no simple con-
sensus at such positions. C Alignment of the L10 sequences of T. ma-
ritima and H. cutirubrum at positions 239-248. D A parsimony analy-
sis of the aligned sequences was carried out using PAUP with the

est trees are illustrated (tree I and tree 2). Four other trees simply re-
arrange the three mammalian species (Hsa, Rno, and Mmu). There are
289 informative sites; all were included in the parsimony analysis. The
consistency index for the shortest trees is 0.849. The numbers indi-
cate percent confirmation of grouping of species to the right of the
node by bootstrapping analysis with 1,000 replications. Only values
greater than 50% are indicated. Below the position of the arrow in-
dicates the portion of the tree that would contain the root if the oot
were located either within the eubacteria or between the eubacteria
and archaebacteria.
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carboxy terminus of the L10 and 1.12 proteins from S.

solfa

PSEEEIGGLSSLFG and from human are "KEESEESD
(D/EYDMGFGLFD.

The carboxy terminal four to six amino acid residues
for the four eubacterial L10 protein contain a high pro-
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Fig. 3. Continued.

taricus are "QAAEKKEEKKEEEKKG-

portion of charged acidic or basic residues. This region
is possibly the functional analog to the region of high
charge density within archaebacterial and eukaryotic
L10 proteins. In the depicted alignment these residues
are somewhat arbitrarily placed at positions 343-348.

The analysis of the L10 protein sequences by PAUP



yields six equally parsimonious tree configurations.
These six trees divide into the two types designated
tree 1 and tree 2 in Fig. 3D. The L10 proteins from hu-
man, rat, and mouse are identical except for a few con-
servative amino acid replacements and a single deletion
in the rat protein at position 324. The three subtypes
within the type 1 and type 2 trees result from the re-
arrangement of these closely related mammalian L10 se-
quences.

The type 1 and type 2 trees differ from each other in
two respects: The first is the branching order within the
eubacterial domain and the second is the positioning of
S. solfataricus. In the type 1 tree, Synechocystis is the
deepest branch within the eubacteria and the eukaryotes
branch from the S. solfataricus lineage within the ar-
chaebacterial group. In the type 2 tree, Synechocystis
and T. maritima group together within the eubacteria
and the eukaryotes branch from the methanogen/
halophile lineage within the archaebacterial group.
Neither of these two positions for the origin of the eu-
caryotic domain is supported by bootstrapping. And
again, if the root of the tree is within the eubacterial do-
main (below the position of the arrow in Fig. 3D) the
archaebacteria appear monophyletic but not holo-
phyletic.

Some regions of the L.10 protein alignment are less
certain than others. When positions 249-369, repre-
senting the region of uncertain alignment, were ex-
cluded from parsimony analysis, the shortest trees found
exhibited a topology identical to the two types of tree
illustrated in Fig. 3D. When only alignment positions 1
to 121 were used for parsimony analysis, the branch pat-
tern within the eukaryotic lineage was not well defined,
and branching within the archaebacterial group was re-
organized: Halophiles were closer to eukaryotes, M.
vannielli was closer to eubacteria, and S. solfataricus
was between the two (data not shown).

The Sequence Alignments and Phylogeny of
L12 Proteins

In spite of the major structural discontinuity that occurs
between eubacterial .12 sequences and archaebacteri-
al-eukaryotic L12 sequences, biochemical and genetic
evidence strongly suggests that all .12 proteins are ho-
mologous. First, the organization of the genes encoding
ribosomal proteins L11, L1, .10, and L.12 is maintained
in organisms as divergent as eubacteria and archaebac-
teria; the 112 gene is always located at the end of the
L11, L1, L10, L12 tetragenic cluster. Second, ribo-
somes from all organisms contain multiple copies of the
L12 protein. As a group, these L12 proteins are very
acidic, alanine- and proline-rich, and similar in size,
ranging between about 110 and 120 amino acids in
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length. Four copies of the 12 protein along with a sin-
gle copy of L10 form a distinct stalk on the large ribo-
some subunit that functions in factor-dependent GTP
hydrolysis and mediates structural rearrangements of the
ribosome during the protein synthesis cycle. Further-
more, E. coli 1.12 can form an active hybrid with yeast
core ribosomes from which the acidic proteins have
been removed (Sanchez-Madrid et al. 1981).

In eukaryotic organisms, there are two distinct 1.12
proteins that have been described. These have been des-
ignated type I and type II (or “P2” and “P1,” respec-
tively; Amons et al. 1979, 1982; Rich and Steitz 1987;
Shimmin et al. 1989; Newton et al. 1990). In the yeast
lineage that includes S. cerevisiae and S. pombe, each
of the two genes has been reduplicated to give types IA,
IB, ITA, and IIB (Newton et al. 1990; Beltrame and
Bianchi 1990).

The alignment of 12 eubacteria and 1 chloroplast, 7
archaebacterial and 9 type I and 10 type 1I eukaryotic
proteins of the L12 family is illustrated in Fig. 4A. All
but one of the eukaryotic type I proteins contain a con-
served tryptophan at position 88; this aligns to a con-
served arginine in the type I, the archaebacterial, and the
eubacterial L.12 proteins. It is interesting, and perhaps
significant, that the extension at the amino terminus of
type II proteins shows some sequence similarity to the
amino terminus of the eubacterial L12 proteins (align-
ment positions 1-18). Another salient feature of all L12
proteins, especially the archaebacterial and eukaryotic
proteins, is the highly charged carboxyl terminus. The
alignment reflects this feature. The two large alignment
gaps near the C-terminus within the eubacterial L12
sequences are located within the loops connecting 8
sheet [B] and o helix [C], and o helix [C] and 3 sheet
[C], respectively (according to the crystal structure of
the C-terminal domain of E. coli L12 protein; Leijon-
marck et al. 1980). Consequently deletions (or inser-
tions) in these regions could be accommodated without
dramatically altering the overall protein structure.

In eukaryotic and archaebacterial species, the L12
carboxy terminal sequences are preceded by an ala-
nine-proline-rich region and exhibit substantial simi-
larity to the carboxy terminus of protein L10. (See
above.) Eubacterial .12 proteins have a similar ala-
nine-proline-rich region, but it is located more proxi-
mally to the amino-terminus in the protein at positions
39-60. In all the proteins, these alanine-proline-rich re-
gions are believed to be highly flexible and to serve as
“hinges” between two distinct domains (Leijonmarck et
al. 1980; Leijonmarck and Liljas 1987; Shimmin et al.
1989). The relocation of this hinge to a more amino-ter-
minal position in eubacterial L.12 proteins cannot be eas-
ily explained. Recent biochemical studies on the S. sol-
fataricus L12 protein have concluded that the amino-
and carboxyl-terminal domains of the protein are func-
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Fig.4. Alignment of the amino acid sequences of the ribosomal pro- of the alignment which was generated manually by a flexible major-
tein L12 family. A The L12 equivalent proteins from 13 eubacteria, ity rule. When majority was not evident at an alignment position,
7 archaebacteria, and 19 eukaryotic L12 equivalent proteins were chemically similar amino acid residues were considered to determine
aligned. The eukaryotic proteins divide into two types designated as the consensus. Question marks (7) indicate that there was no simple

type I and type II. Abbreviations are as in Table 1. B The consensus consensus at such positions.



tionally equivalent to the corresponding amino- and
carboxyl-terminal domains of the E. coli L12 protein
(Kopke et al. 1992); this result supports a colinear align-
ment. To simplify visualization and comparison, a con-
sensus of the eukaryotic type I and II, the archaebac-
terial, and the eubacterial L12 proteins are aligned in
Fig. 4B.

It should be stressed here that in any alignment (and
in particular this .12 alignment) the assumption of
common ancestry of each amino acid at a given align-
ment position is less than certain. That is, alignments
simply reflect a guess, hopefully a best guess, of com-
mon ancestry at every position.

The phylogenetic relationships among the L12 fam-
ily of protein sequences were determined using parsi-
mony (Fig. 5) and distance matrix methods (not shown).
Because of the uncertainty in generating a reliable align-
ment between eubacterial and archaebacterial-eukary-
otic L12 sequences, we first determined the phylogenies
of eubacteria, archaebacteria, and eukaryotes separate-
ly, and then for comparison we determined the “uni-
versal” phylogeny. In general, the branch patterns with-
in the eukaryotic, archaebacterial, and eubacterial
groups were essentially identical in the “universal” tree
and the three individual trees. The universal parsimony
tree (shown in Fig. 5) and a Fitch-Margoliash distance
tree (not shown) both indicated that the eubacterial se-
quences form a single coherent group that is confirmed
by bootstrap analysis. However, the branching order
within this group is not substantiated by bootstrap analy-
sis.

The archaebacterial L12 sequences also appear to
form a coherent group that is both mono- and holo-
phyletic. By bootstrap resampling, the confirmation of
this grouping was 57% for the protein alignment and
58% for the corresponding nucleic acid alignment ana-
lyzed by PAUP (data not shown). In contrast, the eu-
karyotic .12 sequences clearly resolve into two groups
corresponding to the type I and type II proteins. This
distinct division implies that the duplication of the L.12
gene occurred very early in the eukaryotic lineage.

Phylogenetic Considerations

The alignment and phylogenetic analysis presented
above using L11, L1, L10, and L12 protein sequences
generally support the concept that organisms divide in-
to three distinct and well-defined groups: Eubacteria, ar-
chaebacteria, and eukaryotes. The ribosomal protein
sequences from member species within a group are in
most cases more similar to each other based on amino
acid identity than to the sequences from species outside
the group. Furthermore, numerous deletions, insertions,
or structural rearrangements in these ribosomal protein
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sequences confirm this three-part delineation and de-
marcation.

If the root in these ribosomal protein-based trees is
near or within the eubacterial domain, then it is clear
that the archaebacteria appear monophyletic, originat-
ing from a common ancestor that is distinct from eu-
bacteria. The origin of the eukaryotes is more prob-
lematic. They appear to originate as a distinct branch
either outside of the archaebacterial group as suggest-
ed by the L12 protein phylogeny or alternatively from
within the archaebacterial group as suggested by the L11
and L10 protein phylogenies.

Although ribosomal proteins at first glance might be
considered good candidates for phylogenetic analysis,
in reality they are less than perfect for a number of rea-
sons. First, they are relatively small proteins, and sec-
ond, their divergence and structural rearrangements of-
ten make alignments difficult and ambiguous. Because
of these limitations, the origin of the eukaryotic lineage
either from within or outside of the archaebacterial
group cannot be statistically substantiated.

Phylogenetic analysis of rRNA sequences and trans-
lational] elongation factors Tu and G sequences sug-
gests that the hyperthermophilic eubacteriom 7. ma-
ritima is a representative of a deep branching lineage
within the eubacterial group (Achenbach-Richter et al.
1987; Bachleitner et al. 1989; Tiboni et al. 1991). Rep-
resentatives of deep branching lineages within the ar-
chaebacteria are also hyperthermophilic. This has led to
the suggestion that the ancestor of eubacteria and ar-
chaebacteria (i.e., the common ancestor represented as
the root of the universal tree) was hyperthermophilic
(Achenbach-Richter et al. 1987; Burggraf et al. 1992;
Stetter 1993). This would place the position of the root
either deep within the eubacterial or archaebacterial
groups or somewhere between the two groups. Previous
analyses of translational elongation factors and sub-
units of ATPase have placed the root somewhere be-
tween eubacteria and archaebacteria (Iwabe et al. 1989;
Gogarten et al. 1989).

In contrast to the phylogenetic analysis based on
rRNA and the elongation factors Tu and G (Achen-
bach-Richter et al. 1987; Bachleitner et al. 1989; Tiboni
et al. 1991), our analysis using L11, L1, L10, and L12
ribosomal protein sequences is less definitive with re-
spect to the placement of T. maritima within the eu-
bacteria. The resolution of our trees is limited by the rel-
atively small size of these proteins and in some cases by
the limited number of sequences available for analysis.
The tree for the L12 protein, containing 13 eubacterial
sequences, is virtually devoid of resolution that is con-
firmable by bootstrap analysis. In the L11 tree, the
mesophile S. virginiae appears to branch more deeply
than T. maritima. These observations seem to suggest
that different molecules, although they are all compo-
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nents of the protein synthesis apparatus, can diverge to
some extent independently and give rise to incongruent
phylogenies. The “true” organismal phylogeny will
hopefully become apparent from a consensus of mole-
cular phylogenies.

Rivera and Lake (1992) have suggested that the eu-
karyotic lineage arose as a branch from the sulfur-me-
tabolizing thermophilic lineage (i.e., the “eocytes” or eu-
ryarchaeota) within the archaebacterial group. Other
analyses indicate that the eukaryotic lineage originates
outside of the archaebacterial domain. Our data neither
confirm nor refute either of these two positionings.
However, our analysis clearly highlights the major dis-
continuity that separates archaebacterial and eukaryot-
ic ribosomal protein sequences. The sequence (amino
acid identity) and structure (deletions, insertions, and re-
arrangements) of a ribosomal protein from organisms
within a group (i.e., eubacteria, archaebacteria, or eu-
karyotes) are clearly more similar to each other than to
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Fig. 5. Phylogenetic tree inferred from the
alignment of L12 amino acid sequences. A
parsimony analysis of aligned sequences was
carried out by using PAUP with the heuristic
tree search option. Illustrated is the majority
rule consensus of the 14 equally shortest
trees. There are 147 informative sites in the
alignment; alf of them were used for
parsimony analysis. The consistency index is
0.598. When the first 18 alignment positions,
and the flexible hinge regions (position 43 to
74 for eubacteria and 119-146 for
archaebacteria and eukaryotes) were excluded
from analysis, 20 shortest trees were found;
the majority rule consensus of these trees has
essentially the same topology as the tree
shown here. The numbers refer to the percent
confirmation of grouping of the species to the
right of the node by bootstrap analysis with
100 replications. Only values greater than
50% are indicated. Below the position of the
arrow indicates the portion of the tree that
would contain the root if the root were
located either within the eubacteria or
between the eubacteria and archaebacteria.

BstLl2
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the sequence and structure of the protein from organisms
outside the group.
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