Comparison of Proteins of ADP-Glucose Pyrophosphorylase from Diverse Sources

Brian J. Smith-White and Jack Preiss

Department of Biochemistry and Graduate Program in Genetics, Michigan State University, East Lansing, MI 48824, USA

Summary. The primary structures of 11 proteins of ADP-glucose pyrophosphorylase are aligned and compared for relationships among them. These comparisons indicate that many domains are retained in the proteins from both the enteric bacteria and the proteins from angiosperm plants. The proteins from angiosperm plants show two main groups, with one of the main groups demonstrating two subgroups. The two main groups of angiosperm plant proteins are based upon the two subunits of the enzyme, whereas the subgroups of the large subunit group are based upon the tissue in which the particular gene had been expressed. Additionally, the small subunit group shows a slight but distinct division into a grouping based upon whether the protein is from a monocot or dicot source. Previous structure-function studies with the Escherichia coli enzyme have identified regions of the primary structure associated with the substrate binding site, the allosteric activator binding site, and the allosteric inhibitor binding site. There is conservation of the primary structure of the polypeptides for the substrate binding site and the allosteric activator binding site. The nucleotide sequences of the coding regions of the genes of 11 of these proteins are compared for relationships among them. This analysis indicates that the protein for the small subunit has been subject to greater selective pressure to retain a particular primary structure. Also, the coding region of the precursor gene for the small subunit diverged from the coding region of the precursor gene for the large subunits slightly prior to the divergence of the two coding regions of the genes for the two tissuespecific large subunit genes.

Key words: ADP-glucose pyrophosphorylase – Protein sequence comparisons

Introduction

ADP-glucose (ADPGlc) pyrophosphorylase catalyzes the synthesis of ADPGlc from ATP and glucose-1-phosphate (Espada 1962). The enzyme is present in nonphotosynthetic and photosynthetic prokaryotes and photosynthetic eukaryotes (Preiss 1973). In bacteria and in plants the enzyme is considered to be the prime regulatory step for biosynthesis of bacterial glycogen (Preiss 1984; Preiss and Romeo 1989) and of starch (Preiss 1982, 1988). It is not known whether the higher plant enzyme evolved directly from the enzyme present in a photosynthetic prokaryote, which is related to the enzyme in a nonphotosynthethic prokaryote or whether these three groups represent one or more examples of convergent evolution.

The enzyme from all sources is found to be allosterically controlled, but the specificity toward the effector depends upon the source of the enzyme. Enzyme from enteric bacteria is activated by fructose 1,6-biphosphate (FBP) and inhibited by AMP (Preiss et al. 1966), whereas the enzyme from almost all higher plant sources is activated by 3-phosphoglyceric acid (3PGA) and inhibited by orthophosphate (Ghosh and Preiss 1966; Sanwal et al. 1968; Plaxton and Preiss 1987). The region of the primary structure of the Escherichia coli enzyme pertaining to the allosteric activator site has been identified (Parsons and Preiss 1978a,b). For one of the two subunits of the spinach leaf enzyme, the region of the activator binding site has been identified (Morell et al. 1988). The site in the enteric bacterial enzyme

Offprint requests to: J. Preiss

is close to the N-terminus, and the site in the spinach leaf enzyme is at the carboxyl end of the respective primary structures.

ADPGlc pyrophosphorylase from all sources is found to be a tetrameric structure. However, the enzyme derived from enteric bacteria is homotetrameric in structure (Haugen et al. 1976), whereas the enzyme derived from angiosperm plants is comprised of two subunits, presumably $\alpha_2\beta_2$ (Morell et al. 1987; Okita et al. 1990; Preiss 1991). One report of the plant enzyme from a nonphotosynthetic tissue being a homotetramer (Sowokinos and Preiss 1982) has been shown to be incorrect (Okita et al. 1990).

Immunologic methods have been used to study the relationship between the enteric bacterial enzyme and the angiosperm enzyme, the results of which suggest that these may be unrelated (Preiss 1982, 1988). The relationship between the two subunits of the angiosperm plant enzyme has also been studied by immunologic methods. The results indicate there are some epitopes shared between the two subunits and some epitopes unique to the subunit exhibiting the greater apparent molecular weight (Morell et al. 1987). In three cereals, wheat, rice, and maize, there appears to be tissue-specific isozymes differing in apparent molecular mass with some of the polypeptides retaining some or all of the antigenic determinants (Krishnan et al. 1986). The large subunit of enzyme from nonphotosynthetic tissue is apparently less reactive to antiserum prepared against the large subunit of enzyme from photosynthetic tissue (Okita et al. 1990; Preiss et al. 1990).

Biochemical genetics (Preiss et al. 1990) allows a one-to-one correspondence between a specific subunit of the enzyme and isolated cDNA clones for only those clones derived from maize endosperm (Barton et al. 1986; Bae et al. 1990; Bhave et al. 1990). The exact identity of the others has been uncertain. The work presented in this paper shows (1) that the known primary structures of angiosperm plant ADPGlc pyrophosphorylase suggest demarcation into representatives of the two subunits with the large subunit group being comprised of two subgroups that show a correlation for the photosynthetic status of the tissue in which the respective genes are expressed, (2) that the small subunit may be distinguished by whether the host organism is a monocot or a dicot, and (3) that the coding regions of the genes of these proteins underwent at least two duplications in the distant past, one for the two subunits of the plant enzyme and one for the two subgroups of the large subunit. Additionally, we demonstrate that the regions of the protein that are involved in substrate binding and allosteric activation of the enteric bacterial protein are conserved in all known enzymes.

 Table 1.
 Sources of nucleic acid and deduced primary structure for plant proteins

Organism/ tissue	Nomen- clature	Reference(s)
Arabidopsis thaliana	A. thaliana	Personal communication from A. Lönneborg, Plant Molecular Biology Lab, Norway
Zea mays		
Endosperm	bt-2	Barton et al. (1986); Bae et al. (1990)
Endosperm	sh-2	Barton et al. (1986); Bhave et al. (1990)
Wheat		
Leaf Endosperm Endosperm	WL7 WE3 WE7	Olive et al. (1989)
Potato		
Tuber	Potato (TO)	Anderson et al. (1990) and the nucleotide sequences of T. Okita and J. Preiss (un- published)
Tuber	S 25-1	Müller-Röber et al. (1990)
Tuber	B 22-1	Müller-Röber et al. (1990)
Rice		
Seed	Rice seed	Preiss et al. (1987); Anderson et al. (1989)

Materials and Methods

The source of the nucleotide sequences from which the deduced primary structures of the angiosperm plant enzymes in Fig. 1 are derived as well as the nucleic acids for Fig. 2 are presented in Table 1. The information for the small subunit of the spinach leaf enzyme, designated SL-51 kd, is from both protein sequence determination of purified small subunit (M. Morell and J. Preiss, unpublished) and the nucleotide sequences of cDNA clones of the ADPGlc pyrophosphorylase (B. Smith-White and J. Preiss, unpublished). The peptide sequences of the large subunit of spinach leaf enzyme, designated SL-54 kd, are from protein sequences determined from proteolytically derived peptides (K. Ball, J. Leykam, J. Hutny, and J. Preiss, unpublished). Only those peptides that show a relationship to previously reported primary structures are included. Those peptides whose position cannot be assigned by relation to other ADPGlc pyrophosphorylase proteins are not presented. Cloning and determination of the nucleotide sequence of the cDNAs encoding the spinach leaf enzyme subunits will be presented elsewhere. Primary structures of enzymes from bacterial sources are reported elsewhere (Baecker et al. 1983; Leung and Preiss 1987). Whether the designation in the text refers to the protein or the nucleic acid will be obvious from the context.

Sequence Alignment

Protein. Dot plot analysis of these primary structures showed between 70 and 90% identity for extensive lengths (unpublished). This suggested that these primary structures could be aligned. Final alignment is achieved manually on a computer using version 3.1 of PC Write word processing software. This is a refinement of an alignment in a recent review (Preiss 1991) that was developed from an alignment in Anderson et al. (1989). The latter alignment was produced with the alignment algorithm of the

ALIGNMENT OF AMINO ACID SEQUENCES OF KNOWN ADP-GLUCOSE PYROPHOSPHORYLASES

	100	110	120	130	140	15	0	160	170		
SL-54kDa						s	VTADNAS	SETKVRDIG	DKSS	.VA	
sh-2 WE7		HQIRSC	EGDGIDRLEKL ESRAPI.RAPOR	SIGGRKQEKAL	RNRCFGGR	RGPPYWTA	GVTSAP	ROTPLESCI	PSGGLSDP	IEVA	
\$ 25-1			bron hidi yi		1111101-00				PI	DVA	
rice seed				MNVLAS	KIFPSRSN	VVSEQQQS	KREKATI	DDAKNSSKI	IKNLDRSVDI	SVL	
B 22-1									TCLDPDAS	SVL	
SL-51kDa								.VSDSQNS	TCLDPEASE	RSVL	
A. thaliana						CDDDWNA			VNCCQF	ASVL	
E. coli				E	DMALASKA	SPPPWINAI	AABQPII 1	IVSLEKNDHI	MLAROLPLI	SVA	
S. typhimurium							P	IVSLEKNDRV	MLARQLPLI	SVA	
	180	190	200	210	220	230	24	10 2	250	260	270
SL-54kDa	AIILGG	GAGTRLFPL	PAVPLGG	AY LIDVPMSN	QINSGINK			AYNFI	SGGNFGDG	VEVLAA.	K
<i>SI</i> -2 WE7	AVILGG	GIGSQLFPLIS	TRATPAVPVGG	CYRLIDIPMSN	ICFNSGINK	IFVMSOFF	ISASLNRI	ITHRIILE	GGINFADG	SVEVLAAT	OMPGEAAG
S 25-1	AVILGG	GEGTŘLFPLTS	RTATPAVPVGG	CYRLIDIPMSN	CIN	~					~
rice seed	GIILGG	GAGTRLYPLTK	KRAKPAVPLGA	NYRLIDIPVSN	CLNSNISK	IYVLTOFN	SASPNRE	LSRAYGNN	GGYKNE GI	VEVLAAQ	QSPDNPN
B 22-1	GIILGG	GAGTRLYPLTK	KRAKPAVPLGA	NYRLIDIPVSN	ICLNSNINK	IYVLTOF	SASLNRI	ILSRAYASM	IGGYKNE GI	VEVLAAQ	QSPENPD
SL-51kDa	GIILGG	GAGTRLYPLTK	KRAKPAVPLGA	NYRLIDIPVSN	CLNSNISK	IYVLTOFN	SASLNR	ILSRAYASNI	LGGYKNE GI	VEVLAAQ	OSPENPD
A. thaliana ht-2	GIILGG	GAGTRLYPLTK	KRAKPAVPLGA KRAKPAVPLGA	NYRLIDIPVSN NYRLIDIPVSN	ICLNSNINK	TYVLTOFN	ISASLNRI	ILSRAYASNI ILSRAYGSNI	IGGYKNE GI	VEVLAAQ	QSPENPN OSPDNPN
E. coli	LILAG	GRGTRLKDLTN	KRAKPAVHFGG	KFRIIDFALSN	CINSGIRR	MGVITQY	SHTLVQ	IQRGW SF	NEEMNE I	VDLLPAQ	ORMKGEN
S. typhimurium	LILAG	GRGTRLKDLAN	KRAKPAVHFGG	KFRVIDFALSN	ICLNSGIRR	IGVITQY	SHTLVQI	HIQRGW SL	SEEMNE I	VDLLPAQ	QRMKGEN
	28	0 290	300	310	32	0	330	340	350	36	0
SL-54kDa WL7	WFQGTA	DAVRQFGWLFE	DQEIEDI	LILSGD	MDYMDFLQ	NH QSGAL	ISISQL	MDDSSASDI	FGLMK	VLSFSE	KPKGD
sh-2	WFQGTQ	DSIRKFIWVLE	DYYSHKSIDNI	VILSGDQLYF	MNYMELVQ	KHVEDDAL	ITISCAL	VDESRASKI	GLVKIDHT	RVLOFFE	KPKGA
WE7	WFRGTA	DAWRK IWVLE	DYYKNKSIEHI	LILSGDÕLYF	MDYMELVQ	KHVDDNAL	ITLSCAL	VGESRASE	GLVKFDSS	RVVQFSE	QPKGD
WE3 rice seed	WFOGTA	DAVROYLWLFE	E HN VMEE	LTLAGDHLYE	MDYEKETO	AHRETDSI	DITLSCAL DITVAAL	PVGESRASE	GLVKFDSS	FRVVQFSE BIVEFAE	KPKGD
potato(T O)	WFQGTA	DAVRQYLWLFE	E HT VLEY	LILAGDHLYF	MDYEKFIQ	AHRETDAL	ITVAALI	MDEKRATA	GLMKIDEE	RIIEFAE	KPQGE
B 22-1	WFQGTA	DAVRQYLWLFE	E HT VLEY	LILAGDHLYF	MDYEKFIQ	AHRETDAL	ITVAAL	MDEKRATA	GLMKIDEE(GRIIEFAE	KPQGE
A. thaliana	W	DAVROILWEFS	E HIN VMEP	DIDAGOUDIE	CHUIERFIQ	ARREIDAL I	ITVAALI	MDECRATA	FGLMKIDEE	RIIEFAE	KPKGE
bt-2	WFQGTA	DAVRQYLWLFE	E HN VMEF	LILAGDHLYF	MDYEKFIQ	AHRETNAL	ITVAALI	MDEKRATA	GLMKIDEE	RIIEFAE	KPKGE
E. COLL S. typhimurium	WYRGTA	DAVTONLDIIR	RYKA EY RVKA EV	VVILAGDHIYK	ODYSRMLI	DHVEKGAR	CTVACM	VPIEEAS I	FGVMAVDENI	OKIIEFVE	KP AN KD AN
or cyprimarian					QD I DIGIDI	DITUBICOP	CI VACIN				
at 64)-D-	37	0 380	390	400	410	4	20	430	440	450	
SL-54KDa WL7	DLKAM	avdtivlglsk I	EE AEKK PYI	ASMGVYIFKKE	ILLNLLRW	REPTAN	DFGSEI	LIP A LIPAAAREIN	UKAYLFI	ם ס	
sh-2	DLNSM	RVETNFLSYAI	DD AQKYPYL	ASMGIYVFKK	ALLDLLKS	KYTQLH	DFGSEI	LPRAVLDHS	VQACIFT	G	
WE7	DLEAM	KVDTSFLNFAI	DD PAK YPYI	ASMGVYVFKRD	VLLNLLKS	RYAELH	DFGSEI	LPRALHDHN	VQAYVF7	TD TD	
rice seed	QLKAM	MVDTTILGL	DD PAR IPIL DDVRAKEMPYL	ASMGIYVISKN	VILLILLES	QFPGAN	DFGSE	/IPGATNIG	MRVQAYLYI)G	
potato (T O)	QLQAM	KVDTTILGL	DDKRAKEMPFI	ASMGIYVISKI	VMLNLLRD	KFPGAN	DFGSE	/IPGATSLG	MRVQAYLYI	G	
B 22-1 SL-51kDa	OLOAM	KVDTTILGL	DDKRAKEMPFI DDERAKEMPYI	ASMGIYVISKI ASMGIYVISKI	VMLNLLRD	KFPGAN	DFGSE	/IPGATSLG	LRVOAYLYI)G)G	
A. thaliana	ĤLƘAM	KVDTTILGL	DDERAKEMPFI	ASMGIYVVSRI	VMLDLLRN	QFPGAN	DFGSE	/IPGATPLG	LRVQAYLYI	G	
bt-2 F coli	DDSMDN	MVDTTILGL	DDVRAKEMPYI SI.	ASMGIYVFSKI	VMLQLLRE	OFPEAN	DFGSE	IPGATSIG	C RVQAYLYI	IG DEDI. SCW	OSUBUSED
S. typhimurium	PAMLG	DA SK	SL	ASMGIYVFDAD	YLYELLAA	DDKDDASS	HDFGKD	IPKITEEG	M AYAHI	FPLLSCV	QSDPQAEP
4	60	470	480	490 5	00	510	520	53() 54	ŧ0	550
SL-54kDa	YWERIG	T.SFFEANLA	LTIHPS KFSF	YDADKPMYTSF	RNLPPSK.	<u>.</u>				VN	SNVHL
wu/ sh-2	YWEDIG	TIKSFFEANLA	LAROPS KFSF LTROPS KFDF	YDASKPMYTSP YDPKTPFFTAF	RCLPPTO	LDK (KMKY A	TSDGCLLR	CRVEHSFF	GVCSRVS	SGSEL
WE7	YWEDIG	TIASFFDANRA	LCEOP PKFEF	YDPKTPFFTSP	RYLPPTK	SDK C	RIKE A	ILHGCFLR	CKIEHTAF	SRLN	SGSEL
WE3	YWEDIG	TIRSFFDANMS	LCEOP PKFEF	YDPKTPFFTSP	RYLPPTK	SDK (RIKE A	LILHGCFLR	CKIEHTSI	GVPSRLN	SGSEL
potato(T O)	YWEDIG	TIEAFYNANLG	ITKKPVPDFSF	YDRSAPIYTOP	RYLPPSK	MLD A	DVID ST	IGEGCVIKI	CKIHHSVV	GLRSCI	SEGAI
B 22-1	YWEDIG	TIEAFYNANLG	ITKKPVPDFSF	YDRSAPIYTÖF	RYLPPSK	MLD A	DVTD ST	/IGEGCVIK	CKIHHSVV	GLRSCI	SEGAI
SL-51KDa A. thaliana	YWEDIG	TIEAFYNANLG	ITKKPVPDFSF	YDRSSPIYTQP	RYLPPSK	SED 1	WITD S	AIGEGCATE	NCKIHHSVI	GLRSCI	SEGAL
bt-2	YWEDIG	TIAAFYNANLG	ITKKPIPDFSF	YDRFAPIYTQI	RHLPPSK	VLD A	DVTD ST	VIGEGCVIK	NCKINHSVV	GLRSCI	SEGAI
E. coli	YWRDVG	TLEAYWKANLD	LASVV PKLDM	YDRNWPIRTYN YDONWPIRTYN	ESLPPAKF	VADRSGSH	IGMTLNS	LVSGGCVIS	SSVVVQSVLI	SRVRVN	SFCNI
5. cypnimarian	10000	DEATWICHTED		i bythe i ki in		AGRY2021	IGHT DROI	5410001150	3344402541	FRURIN	SPCH1
						~ ~ ~					
SL-54kDa	K DT	D60 LLIGADWYETD	∋/∪ 5 A	ຮບ 59 	KDAITDK	NV1	610 ISNSEG	620 70EAD10	630 VI.SGIT	, /IFKNATT	640 KDGVV
WL7	K DT	VMLGADFYETD	MERGDQLAEGK	VPIGIGENTSI	QNCIIDKN	ARIGKNV	IANAEG	QEADRASE	FHIRSGIT	VLKNSVI	ADGLVI
sh-2 wF7	K DS	VMMGADIYETE	EEASKLLLAGK	VPIGIGRNTKI	RNCIIDMN	ARIGKNV	ITNSKG	IQEADHPEE(JYYIRSGIV	ILKNATI	NECLVI
WE3	KNA	MMMGADSYEDE	DEISRIMSEFK	VPIGVGENTKI	SNCIIDMN	ARIGRDV	ISNKEG	VQEADRPEE	JYYIRSGIV	/IQKNATI	KDGTVV
rice seed	IEDS	LLMGADYYETE	ADKKLLGEKGG	IPIGIGKNCHI	RRAIIDKN	ARIGDNVI	LINVDN	QEAARETDO	SYFIKSGIV	VIKDALL	LAEQLYEVAA
potato(T O) B 22-1	IEDS	LIMGADYYETD	ADRKLLAAKGS	VPIGIGKNCHI	KRAIIDKN	ARIGDNVI	LINKDN	VQEAARETD	JYFIKSGIV.	VIKDALI	PSGIII PSGIVI
SL-51kDa	IEDT	LLMGADYYETD	ADRKLLAAKGS	VVLGIGQNSHI	KRAIIDKN	ARIGDNV	TINSON	QEAARETD	YFIKSGIV	VIKDALI	PSGTVI
bt-2 F	IEDS	LLMGADYYETE	ADKKLLAEKGG	IPIGIGKNSCI	RRAIIDKN	ARIGDNV	ILNADN	QEAAMETD	JYFIKGGIV.	VIKDALL	PSGTVI
E. COLL S. typhimurium	DSAV	LLPEVWD		GRSCRKRC	CVIDRACV	IPEGMVI	SENAEED	ARRFYFSEE	J IVLVIREI JIIVLVIREI	ILRKLOGH	KOWR
											- *

Fig. 1. Alignment of the primary structures of ADPGlc pyrophosphorylase from rice seed, Zea mays sh-2 and bt-2 loci, small [potato (T O) and B 22-1] and large (S 25-1) subunit from potato tuber, wheat endosperm (WE3 and WE7), wheat leaf (WL7), spinach leaf 51-kd and 54-kd subunits, Arabidopsis thaliana, Escherichia coli, and Salmonella typhimurium. Nomenclature is presented in Table 1 except for the small subunit of spinach leaf

enzyme, SL-51 kd; the large subunit of spinach leaf enzyme, SL-54 kd; and those from the enteric bacteria E. coli and S. typhimurium, designated as, respectively, E. coli and S. typhimurium. The order is chosen to maximize the visual impact of relationships among members of apparent groups of proteins. The first digit of the numbers is atop the residue corresponding to that value.

452

	SL-54 kDa	WL7	WE3	WE7	sh-2
Number of residues in					
primary structure		301	298	497	542
SL-54 kd	1.0	0.72/0.80	0.52/0.75	0.59/0.78	0.56/0.75
WL7		1.0	0.43/0.56	0.54/0.71	0.53/0.70
WE3			1.0	0.96/0.97	0.68/0.81
WE7				1.0	0.66/0.78
sh-2					1.0
S 25-1					
A. thaliana					
SL-51 kd					
Potato (T O)					
B 22-1					
Rice seed					
bt-2					

 Table 2.
 Similarity matrix for plant ADPGlc pyrophosphorylase proteins

Fraction of amino acid residues identical and fraction of amino acid residues identical plus fraction of amino acid residues homologous in pairwise evaluation of ADPGlc pyrophosphorylase proteins from plant sources. The total number of residues, used as the denominator value in any pairwise comparison, is from the smaller of the two proteins. Nomenclature is presented in Table 1 except for the small subunit of spinach leaf enzyme, SL-51 kd; and the large subunit of spinach leaf enzyme, SL-54 kd

Wisconsin package of sequence analysis programs (Devereaux et al. 1984). For the refinement, regions of identical amino acid residues are aligned and these aligned domains are arranged to simultaneously allow the protein with the greatest number of amino acid residues between two adjacent aligned domains sufficient space to retain all residues and to maximize similarity of the intervening sequence. All the proteins do not possess exactly the same number of amino acid residues, and the first amino acid of the primary translate is unknown except for three proteins: the two proteins from enteric bacteria and the protein from rice seed. Thus, no numbering scheme to which all the proteins can be aligned is evident. However, identification of a particular location in an aligned group of linear sequences is most readily accomplished by referring to an integer scale with a one-to-one correspondence between the scale and locations in the primary structure. Because the N-terminus of at least WE7 and shrunken-2 (sh-2) extend beyond the N-terminus of rice seed, the integer scale numbering scheme is arbitrarily set to commence at 100 to allow for addition of future information. For those primary structures that we consider to be incomplete because of lack of information, we have included an ellipsis to denote the fact that the presented sequence could continue. For the spinach leaf large subunit sequences, there is an ellipsis between continuous peptide sequences.

Nucleic Acid. Only the nucleic acid corresponding to the cloned angiosperm plant proteins is subjected to pairwise comparisons. Alignment was accomplished manually with the same word processing software. DNA sequences were aligned so that the codons corresponding to aligned amino acids were aligned. The deletions in the plant enzymes introduced in the region delimited by locations 375 and 460 of Fig. 1 are not included in the nucleic acid alignments because these gaps were introduced in the plant primary structures in the alignment of the primary structures to maximize the local apparent similarity between the two apparent groups, enteric bacterial protein and angiosperm plant protein.

Sequence Comparison

Protein. Protein sequences were compared pairwise at each amino acid residue over the entire primary structure for identical residues, conservatively replaced residues, and radically replaced residues. A deletion in one of the pairs under consideration is considered a radical replacement. The following groups are com-

prised of amino acid residues considered to be functionally similar and therefore a conservative replacement: (1) lysine, arginine, asparagine, histidine, and glutamine; (2) aspartic and glutamic acid; (3) serine and threonine; (4) leucine, valine, isoleucin, phenylalanine, tyrosine, and tryptophan. Methionine, glycine, and alanine could be functionally hydrophobic and a conservative replacement if the other residues at that location in the proteins exhibit significant evolutionary pressure to conservatively retain hydrophobic residues. The helix destabilization/distortion capabilities of glycine, histidine, and proline could be considered functionally similar, but are considered a nonconservative replacement in this paper.

Nucleic Acid. The nucleic acid comparisons were from either the codon corresponding to the amino acid at location 178 (indicated by a caret in Fig. 2) or the first codon in common between the two sequences to the last codon in common between the two sequences, where the coding region of the nucleic acid is indicated by iterated triplets. This is different from the protocol for primary structure comparisons to reduce the noise in the comparisons. Random pairs of nucleic acids would exhibit approximately 25% identity, whereas random pairs of protein primary structure would exhibit approximately 5% identity. The regions of the proteins N-terminal of location 184 are apparently random using the information available at present. The nucleic acid comparisons were for base substitutions and deletions. The base substitutions were further characterized as to the alteration of the encoded amino acid from the aggregate substitutions in a particular codon and whether a specific substitution was a transition or transversion mutation. The fraction of identical nucleotides is computed as:

$$1 - [(no. of base substitutions + no. of deletions)
 \div no. of nucleotides] (1)$$

or as:

1 - [(no. of base substitutions + no. of bases deleted)÷ no. of nucleotides] (2)

Weighting of a deletion equal to a base substitution, Eq. 1, follows the sequence analysis programs available from University of Wisconsin (Devereaux et al. 1984), whereas weighting a deletion equal to the number of bases deleted, Eq. 2, follows van den Berg et al. (1978). These should be considered as the bound-

Table	2.	Extended

			Potato		Rice	
S 25-1	A. thaliana	SL-51 kDa	(T O)	B 22-1	seed	bt-2
47	240	450	442	444	479	463
	0.62/0.77	0.60/0.77	0.59/0.75	0.60/0.77	0.59/0.76	0.59/0.76
		0.49/0.68	0.50/0.68	0.48/0.68	0.51/0.72	0.47/0.69
		0.47/0.69	0.45/0.64	0.43/0.64	0.43/0.64	0.44/0.66
0.83/0.94	0.53/0.73	0.47/0.69	0.47/0.68	0.48/0.69	0.44/0.65	0.45/0.66
0.76/0.85	0.52/0.72	0.46/0.68	0.49/0.72	0.47/0.69	0.44/0.67	0.45/0.67
1.0		0.59/0.82	0.61/0.83	0.62/0.85	0.61/0.81	0.62/0.85
	1.0	0.90/0.95	0.91/0.94	0.92/0.96	0.88/0.93	0.86/0.93
		1.0	0.95/0.98	0.94/0.98	0.86/0.93	0.87/0.92
			1.0	0.9954	0.90/0.94	0.88/0.94
				1.0	0.89/0.94	0.88/0.94
					1.0	0.85/0.89
						1.0

(4)

ary conditions for the evolutionary significance of a deletion. Calculation of the evolutionary distance is with either of two formulae:

$$-\frac{1}{2}\ln[(1-2P-Q')(1-2Q')^{\frac{1}{2}}]$$
(3)

where P is the proportion of transition differences and Q' is the proportion of the transversion differences, or

 $-\frac{3}{4}\ln[1 - (\frac{4}{3})\lambda]$

where λ is the proportion of base substitutions.

Equation 3 is from Kimura (1981) and Eq. 4 is from Jukes and Cantor (1969). Because both formulae were derived under the simplified conditions of considering only base substitutions as evolutionary events, both calculations have the number of nucleotides in the region of comparison adjusted for those that are deleted between the pair under examination.

Results

Figure 1 shows the alignment of the protein sequences. The order of the proteins is chosen to maximize the visual impact of the homology between members of apparent groups of proteins. The alignment after location 500 of the enteric bacterial proteins with the angiosperm plant proteins utilizes the alignment of Anderson et al. (1989) as a starting point. The pairwise evaluation of identity and homology for the proteins from plant sources is shown in Table 2. The total number of residues, used as the denominator value in any pairwise comparison, is from the smaller of the two proteins.

First, Fig. 1 shows that the proteins of the bacterial and angiosperm plant enzymes exhibit many conserved domains. These include the regions from location 180 to 240, from location 272 to 282, from location 392 to 410, and from location 462 to 478. Despite this striking conservation, there are regions where the relationship between bacterial and plant enzyme is minimal or nonexistent, whereas either group is comprised of members that show significant identity among themselves. These include the regions from location 245 to 270, from location 286 to 302, from location 363 to 390, and from location 502 to the C-terminus. This suggests that these two groups are paradigms for two classes of enzyme, the enteric bacterial and the angiosperm plant.

Second, the N-terminal sequence up to the codon at location 178 exhibits similarity in pairwise comparisons for only two groups of proteins. These are the two enteric bacterial proteins and the group of potato (T O), B 22-1, and SL-51 kd. There is no other parameter of the members of the latter group other than empirical observation, which would allow demarcation of a subgroup.

Third, Table 2 and Fig. 1 show that the proteins comprising the angiosperm plant enzyme can be divided into three groups: (1) *brittle-2* (*bt-2*), rice seed, potato (T O), B 22-1, SL-51 kd, and *Arabidopsis thaliana*; (2) *sh-2*, S 25-1, WE3, and WE7; and (3) WL7 and SL-54 kd.

The DNA sequence of the maize sh-2 locus presented elsewhere (Bhave et al. 1990) can be translated to the reported protein sequence only up to nucleotide 1560, corresponding to location 629 in Fig. 1. The nucleotides from 1621 to the indicated translation termination correspond to the last two amino acid residues of the reported primary structure. The nucleotides corresponding to the intervening 20 amino acid residues have apparently been omitted. The sh-2 nucleotide sequence in Fig. 2 is the continuous sequence reported.

In keeping with the protein primary structure, the codons prior to the amino acid at location 178 exhibit apparently random nucleotide sequence. In this region there are no obvious pairs of frame-shifts between a pair of cDNA sequences that would allow one protein to be related to another through their related nucleotide sequences. For the remainder of the coding region, the primary results of pairwise comparisons of the nucleic acid sequences are shown

ALIGNMENT OF CODING REGIONS OF KNOWN PLANT ADPGLUCOSE PYROPHOSPHORYLASES CDNAS

sh-2	ААТ	TCG	GGA	GGC	AAG	TGC	GAT	TTT	GAT	CTT	GCA	GCC	ACC	TTT	TTT	TGT	TCT	GTT	GTG	TAT	CTA	GTA	\mathbf{GTT}	GGA	GGA	GAT
sh-2 WE7	ATG	CAG	TTT	GCA	CTT	GCA	TIG	GAC	ACG	AAC	тса	GGT •••	сст	CAC . CGT	CAG GCG	АТА ТСТ	AGA CCC	TCT CCG	TGT TCA	GAG GAG	GGT TCG	GAT AGG	GGG GCT	ATT CCG	GAC CTG	AGG CGA
sh-2 WE7 Rice seed bt-2	TTG GCG TTT	GAA CCT GTAA	AAA CAA TTCT	TTA AGG ITAA	AGT TCG FTTG	ATT GCG FTGC	GGG ACA AACC	GGC CGG ATG ATG	AGA CAG AAT CATA	AAG CAT GTG ATTC	CAG CAG TTG ICGA0	GAG GCA GCA GCA STTG(AAA CGA TCT CAAA	GCT CAG AAG CCATO	TTG GGT ATC GGAC	AGA CCC TTC ATG	AAT AGG CCT GCT	AGG AGG TCC TTG	TGC ATG CGC GCG	TTT TGC TCC TCT	GGT AAC AAT AAA	GGT GGC GTT GCC	AGA GGC GTT TCC	GTT AGG AGC CCT	GCT GGC GAG CCG	GCA CCG CAA CCA
sh-2 WE7 Rice seed Potato (T O) B 22-1 SL-51 kba A. thaliana	ACT CCA CAA	ACA TAC CAA	CAA TGG TCG	TGT ACA AAG	ATT GCT CGC	CTT GGT GAG	ACC GTC AAA	TCA ACC GCA	GAT TCC ACT	GCT GCC ATT	TGT CCA GAT	CCT GCC GAC	GAA CGG GCT	ACT CAG AAG	CTT ACA AAC	CAT CCC TCG	TCT TTG TCC	CAA TTC AAG	ACA TCC AAC .AAT 	CAG GGA AAA TCA A TCG	TCC CGT AAT CAG CAG CAG	TCT CCT ACA ACA ACT	AGG TCA TGT TGT TGT	AAA GGA CTT CTA CTA CTA CTT	AAT GGA GAC GAC GAC GAT AAT	TAT TTA CGC CCA CCA CCC TGT
<i>bt-2</i>	TGG	AAT	GCC	ACC	GCC	GCC	GAG	CAG	CCA	ATT	CCA	AAG	CGT	GAC	AAA	GCC	GCT	GCA	ААТ	GAT	TCA	ACA	TAC	СТС	AAT	CCT
sh-2 WE7 S 25 -1 Rice seed Potato (T O) B 22-1 SL-51 kDa A. thaliana bt-2	GCT AGC GAT GAT GAA TGT CAA	GAT GAT GTC GCT GCT GCT CAA GCT	GCA CCG GAT AGC AGC AGC AGC TTT CAT	AAC AGG GAG CGG CGG CGG CGC GCA GAT	CGT GAG GAT AGT AGT AGT AGT AGT	GTA GTT GTG GTG GTT GTT GTT GTT	TCT GCG GCT CTT TTG TTG CTA TTG CTA	GCG GCC GCA GGA GGA GGA GGT GGG GGA	ATC GTC GTC ATC ATT ATT ATT ATT ATA	ATT ATA ATA ATT ATT ATT ATT ATT ATC ATT	TTG CTC CTG CTT CTT CTT TTA CTG	GGC GGC GGA GGA GGA GGA GGA GGA	GGA GGC GGA GGT GGT GGT GGT GGT	GGC GGA GGT GGA GGA GGT GGA GGT	ACT ACC GAA GCA GCT GCT GCT GCT	GGA GGG GGG GGG GGG GGG GGT GGA GGG	TCT ACT ACC ACT ACC ACC ACC ACA ACT	CAG CAG AAG AGA CGA CGA CGT CGT AGA	CTC CTC TTA TTG CTT TTG CTT TTG	TTT TTC TTC TAT TAT TAT TAC TAG TAC	CCT CCA CCC CCT CCT CCA CCA CCA	CTG CTC CTT CTC CTA CTA CTA CTT TTG	ACA ACG ACA ACC ACT ACT ACT ACT ACG ACA	AGC AGT AAG AAA AAA AAA AAG AAG AAG	ACA AGA AAG AAA AAA AAA AAA AAG AAG	AGA AGG ACT CGT AGA AGA AGA AGA CGT
sh-2 WE7 S 25-1 Rice seed Potato (T O) B 22-1 SL-51 kDa A. thaliana bt-2	GCT GCC GCA GCC GCA GCA GCA GCA GCC	ACG ACA ACC AAG AAG AAA AAG AAA AAG	CCT CCT CCT CCA CCA CCA CCT CCA	GCT GCT GCC GCC GCC GCC GCC GCC GCC GCA	GTA GTT GTG GTG GTT CTG GTG GTG	CCT CCG CCT CCA CCA CCG CCT CCA	GTT ATT GTT CTG CTT CTT CTT TTG	GGA GGA GGT GGA GGT GGT GGT	GGA GGA GCC GCA GCC GCC GCC GCT GCC	TGT TGC AAC AAT AAT AAT AAC AAC	TAC TAC TAC TAC TAT TAT TAT TAT	AGG AGG AGG CGT CGT AGG AGG AGG	CTT CTC CTA CTT CTG CTG CTG CTT CTT	ATT ATC ATA ATT ATT ATT ATT ATT	GAT GAC GAC GAC GAC GAC GAT GAT	ATC ATT ATC ATC ATT ATT ATT ATT	CCT CCA CCT CCT CCC CCA CCT CCT	ATG ATG GTC GTA GTA GTG GTG GTG GTC	AGT AGC AGC AGC AGC AGC AGC AGC AGC	AAC AAC AAC AAC AAC AAT AAC AAC AAC	TGC TGT TGT TGC TGC TGC TGT TGT	TTC TTC ATC TTG TTG TTG TTG TTG CTC	AAC AAC AAC AAC AAC AAC AAC AAC AAC	AGT AGT AGC AGT AGT AGT AGC AGC	GGT GGC AAC AAC AAC AAC AAC AAC	ATA ATC ATA ATA ATA ATT ATA ATA
sh-2 WE7 Rice seed Potato (T O) B 22-1 SL-51 kDa A. thaliana bt-2	AAT AAC TCC TCC TCC TCC TCC	AAG AAG AAG AAG AAG AAA AAG AAG	ATA ATA ATC ATC ATC ATC ATC ATC	TTT TTC TAT TAT TAT TAT TAT	GTG GTC GTG GTT GTT GTT GTT GTG	ÀTG ATG CTG CTC CTC CTT CTT	AGT ACC ACA ACA ACA ACT ACT ACG	CAG CAG CAA CAA CAA CAA CAG CAA	TTC TTC TTC TTC TTC TTC TTC TTC	AAT AAC AAC AAC AAC AAT AAT AAC	TCT TCG TCT TCT TCT TCT TCC TCT	ACT GCC GCC GCC GCC GCC GCA GCG CCT	TCG TCC TCT TCT TCC TCC TCC TCC	CTT CTT CCG CTG CTG CTG CTC	AAC AAT AAC AAT AAT AAC AAT AAC	CGC CGT CGT CGC CGC CGT CGT CGT	CAT CAC CAC CAC CAC CAT CAT CAC	ATT ATT CTG CTT CTT CTT CTT CTC	CAT CAC TCA TCA TCA TCA TCA	CGT CGC AGA CGA CGG CGG CGA AGA	ACA ACC GCC GCA GCA GCG GCT GCC	TAC TAC TAT TAT TAT TAT TAT TAC	CTT GGG GCT GCT GCT GCT GGG	GAA GGC AAC AGC AGC AGT AGT AGC	AAC AAC AAT AAT AAC AAC	ATT ATG ATG CTG ATG ATT
sh-2 WE7 Rice seed Potato (T O) B 22-1 SL-51 kDa A. thaliana bt-2	GGC GGG GGA GGA GGA GGA GGA	GGG GGA GGA GGA GGT GGT GGG	ATC ATC TAC TAC TAC TAC TAC TAT	AAC AAT AAG AAA AAA AAG AAG AAG	TTT TTC AAT AAC AAC AAC AAT AAT	GCT ACT	GAT GAA GAG GAG GAA GAA GAA	GGA GGG GGC GGC GGC GGG GGA GGG	TCT TCC TTC TTT TTT TTT TTT TTC	GTA GTT GTG GTG GTG GTA GTT GTT	CAG GAG GAA GAA GAA GAA GAA	GTA GTC GTT GTT GTT GTT GTT GTC	TTA TTG CTC CTT CTT CTT CTC TTA	GCG GCT GCT GCG GCC GCT GCT	GCT GCG GCA GCT GCT GCT GCT GCA	ACA ACG CAG CAA CAA CAG CAA CAG	CAA CAG CAA CAA CAA CAA CAG CAG	ATG ATG AGC AGT AGT AGT AGT AGC	CCT CCC CCA CCA CCA CCT CCT CCA	GAA GGG GAT GAG GAG GAG GAA GAT	GAG GAG AAT AAC AAC AAT AAC AAT	CCA GCT CCC CCC CCC CCT CC .	GCT GCT GAT GAT GAC	GGA GGA	TGG TGG TGG TGG TGG TGG TGG	
WL sh-2 WE7 Rice seed Potato (T O) B 22-1 SL-51 kDa bt-2	TTC TTC TTT TTC TTC TTC TTC	CAG CGC CAG CAG CAG CAG CAG	GGT GGA GGT GGC GGC GGT GGT	ACA ACT ACG ACG ACG ACA ACT	GCA GCG GCA GCT GCT GCT GCA	GAC GAT GAT GAT GAT GAT	TCT GCG GCT GCT GCT GCT GCT	ATC TGG GTA GTC GTT GTC GTA	AGA AGA AGA AGA AGA AGG AGG	AAA AAA CAG CAA CAA CAA CAG	TTT ATT TAC TAT TAT TAC TAC	ATC ATC TTA CTG CTG TTG TTG	TGG TGG TGG TGG TGG TGG TGG	GTA GTG CTA TTG TTG CTA TTG	CTC CTT TTT TTT TTT TTT TTC TTT	GAG GAG GAG GAG GAG GAA GAG	GAT GAC GAG GAG GAG GAG GAG	TAT TAT	TAC TAT	AGT AAG CAT CAT CAT CAT CAT	CAC AAT AAT ACT ACT AAT AAT	ааа ааа	TCC TCC	ATT ATA GTT GTT GTT GTC GTC	GAC GAG ATG CTT CTT ATG ATG	.GGG AAC CAC GAG GAA GAA GAA GAA
WL sh-2 WE7 WE3 Rice seed Potato (T O) B 22-1 SL-51 kDa bt-2	GTG ATT ATT TTT TAC TAC TTC	CTG GTA TTG CTA CTT CTT TTG CTA	ATT ATC ATC ATT ATA ATA ATT ATT	CTT TTG TTG CTG CTT CTT CTT	TCT AGT TCG GCT GCT GCT GCT GCT	GGC GGC GGC GGA GGA GGA GGT GGC	GAT GAT GAT GAT GAT GAT GAT	CAC CAG CAG CAC CAT CAT CAT	CTC CTT CTT CTG CTG CTG TTA CTG	TAC TAT TAT TAC TAT TAT TAT TAC	CGT CGG CGC CGC CGA CGA CGT CGG	ATG ATG ATG ATG ATG ATG ATG ATG	GAC AAT GAT GAC GAT GAT GAT GAC	TAC TAC TAC TAT TAT TAT TAT	ATG ATG ATG GAA GAA GAA GAA GAA	GAT GAA GAG .GAG AAG AAG AGA AAG	TTT CTT CTT TTC TTC TTT TTT TTT	GTT GTG GTG ATT ATT ATT ATT ATT	CAG CAG CAG CAG CAG CAA CAA CAA	AGT AAA AAA GCA GCC GCC GCT GCA	CAT CAT CAT CAC CAC CAC CAC CAC	CGG GTC GTG AGA AGA AGA AGA	CAG GAG GAT GAA GAA GAA GAA	AGA GAC GAC ACA ACA ACA ACA ACA	GAC GAT AAT GAT GAT GAT GAT AAT	GCG GCT GCT TCT GCT GCT GCT GCT

Fig. 2. Alignment of the cDNA sequences of ADPGlc pyrophosphorylase from rice seed, Zea mays sh-2 and bt-2 loci, small and large subunits from potato tuber, wheat endosperm, wheat leaf, spinach leaf small subunit, and Arabidopsis thaliana. Coding regions are displayed as iterated triplets. Codons corresponding to aligned amino acids of Fig. 1 are aligned. The gaps corre-

sponding to introduced deletions in the plant primary structures in the alignment in Fig. 1, which only allow correlation of the plant primary structures with the enteric bacterial primary structures, are not included in the alignment of Fig. 2. Nomenclature is presented in Table 1 except for the small subunit of spinach leaf enzyme, SL-51 kd. Continued on pages 455–456.

in Table 3, and these comparisons are summarized in Table 4.

The data (Table 3A) indicate that there is no apparent relationship between the frequency of base

substitutions and the frequency of deletions in pairwise comparisons. The cDNAs of WE3 and WE7, even though almost devoid of base substitution differences, exhibit a single three-codon deletion. The

WL sh-2 WE7 WE3 Rice seed Potato (T O) B 22-1 SL-51 kDa A. thaliana bt-2	GG GA GA GA GA GA GA	G ATC T ATC C ATT C ATT T ATT T ATT T ATT T ATT T ATT T ATT T ATC T ATT	AGC ACT ACT ACT ACT ACC ACC ACC ACC ACC AC	ATC ATA TTA GTT GTT GTT GTT GTA GTT	TGT TCA TCA GCT GCC GCC GCT GCT GCT	TGC TGT TGT TGT GCC GCA GCA GCA GCA GCC	TTG GCT GCC CTG CTG CTG CTG CTG CTG	CCT CCT CCT CCA CCA CCA CCA CCA CCG CCA	ATT GTT GTT ATG ATG ATG ATG ATG ATG	GAT GAT GGA GAT GAC GAC GAC GAT	GGC GAG GAG GAG GAG GAG GAG GAG GAG	AGC AGC AGC AGC AAA AAG AAG AAG CAA AAA	CGG CGA CGG CGT CGT CGT CGT CGA CGT	GCG GCT GCA GCA GCA GCC GCC GCC GCC GCC	TCT TCT TCT ACT ACT ACT ACT ACT ACT	GAT AAA GAG GCA GCA GCA GCA GCT GCA	TTT AAT TAC TAC TTC TTC TTT TTC TTT TTT	GGT GGG GGG GGC GGT GGT GGT GGC GGC	CTC CTA CTA CTC CTC CTC CTC CTC CTC CTC	ATG GTG GTG ATG ATG ATG ATG ATG ATG	AAG AAG AAG AAG AAG AAG AAG AAA	ATA ATT TTC TTC ATT ATT ATT ATT ATT	GAC GAT GAC GAC GAC GAC GAC GAT GAT	GAC CAT AGT GAG GAA GAA GAA GAA GAA	ACA ACT TCA GAA GAA GAA GAA GAA	GGA GGC GGC GGC GGG GGA GGA GGA GGA GGG
WL sh-2 WE3 Rice seed Potato (T O) B 22-1 SL-51 kDa A. thaliana bt-2	AG CG CG AG CG AG CG AG	A GTI T GTA T GTG T GTG A ATA C ATI C ATI G ATI T ATI G ATO	ATT GTC GTC GTC ATT ATT ATT ATT ATT	TCA CAG CAA GAA GAA GAA GAG GAA GAG	TTT TTC TTT TTT TTT TTT TTT TTT TTT	AGT TTT TCT GCA GCA GCT GCT GCT	GAA GAG GAG GAG GAG GAG GAG GAA GAG	ААА САС ААС ААС ААА ААА ААА ААА ААА	CCG CCA CCA CCA CCG CCG CCG CCC CCA	AGA AAG AAG AAA CAA CAA CAA AAA AAA	GGA GGT GGT GGA GGA GGA GGA GGG GGA	GCT GAC GAC GAA GAG GAG GAG GAG	GAT GAT GAT CAA CAA CAA CAA CAA CAA	TTA TTG CTG TTG TTG TTG TTG CTA TTG	AAG AAT GAA GAA AAA CAA CAA CAA AAG AAA	GAA TCT GCG GCG GCA GCA GCA GCT GCC GCA	ATG ATG ATG ATG ATG ATG ATG ATG ATG ATG	AGA AAA ATG AAA AAG AAG ATG	GTT GTG GTG GTG GTG GTG CTT GTA GTT	GAG GAC GAC GAT GAT GAT GAC GAC	ACC ACC ACT ACT ACT ACT ACC ACA ACC	AAC AGT AGT ACC ACC ACC ACT ACA ACC	TTC TTT ATA ATT ATT ATC ATT ATA	CTG CTC CTC TTA TTA TTG CTA CTT	AGC AAT AAT GGC GGT GGT GGT GGC	TAT TTC TTC CTT CTT CTG CTT CTT
WL sh-2 WE7 WE3 Rice seed Potato (T O) B 22-1 SL-51 kDa A. thaliana bt-2	GC GC GC	T ATA C ATC C ATC	GAG GAT GAC GAC GAT GAT GAT GAT GAT	GAA GAT GAC GAC GAC GAC GAT GAT GAT	GTG AAG AAG GAG CAG GTG	GCA CCT AGG AGA AGA AGA AGA AGG	GAA GCA GCT GCT GCT GCT GCA GCC GCA	AAG CAG AAG AAA AAA AAA AAG AAG	AAA AAA AAA GAA GAA GAA GAA GAA GAA	TAT TAT TAT ATG ATG ATG ATG ATG	CCA CCA CCA CCT CCT CCT CCT CCA CCT	TAC TAC TAC TAC TAC TTC TAC TTC TAC	ATA CTT ATT ATT ATT ATT ATT ATT ATT	GCT GCA GCT GCT GCT GCT GCT GCT GCT GCT	TCA TCA TCT AGC AGT AGT AGT AGT AGC	ATG ATG ATG ATG ATG ATG ATG ATG ATG	GGA GGC GGA GGT GGT GGT GGA GGT GGT	GTA ATT GTC GTC ATC ATA ATA ATT ATT	TAC TAT TAT TAT TAT TAT TAT TAT TAT	ATA GTC GTC GTC GTC GTC GTC GTT GTT	TTC TTC TTC ATT ATT ATT ATT ATC GTA	AAG AAA AAA AGT AGC AGC AGC AGC AGC	AAA AGA AGA AAA AAA AAA AAA AAA AGA	GAG GAT GAT GAT GAC GAC GAT GAT GAT	ATA GCA GTT GTT GTA GTG GTG GTA GTA	CTT CTG CTG ATG ATG ATG ATG ATG ATG
WL sh-2 WE7 Rice seed Potato (T O) B 22-1 SL-51 kDa A. thaliana bt-2		A AAT A GAC C AAC C AAC T CAG A AAC A AAC A AAT A GAC T CAG	CTT CTT CTT CTC CTA CTA TTG CTA	TTG CTC CTA CTA CTC CTT CTT CTT CTA CTC	AGA AAG AAG CGT CGT CGT CGG CGG CGG CGT	TGG TCA TCA GAA GAC GAC GAT AAT GAA	CGT AAA AGA AGA CAA AAG AAG AAA CAG CAA	TTT TAT TAC TTT TTC TTC TTC TTT TTT	CCC ACT GCA GCA CCT CCT CCT CCT CCT	ACT CAA GAA GGA GGG GGG GGG GGA GAA	GCA TTA CTA CTA GCT GCC GCC GCT GCT GCC	AAT CAT CAT CAT AAT AAT AAT AAT AAT	GAT GAC GAC GAC GAT GAT GAT GAC GAC	TTT TTT TTT TTT TTT TTT TTT TTT TTT TT	GGA GGG GGG GGA GGT GGC GGA GGA	TCT TCT TCT AGT AGT AGT AGT AGT	GAA GAA GAA GAA GAA GAA GAA GAA GAA	ATA ATC ATC GTC GTT GTT GTT GTT GTC	ATT CTC CTC ATT ATT ATT ATT ATT ATT	CCA CCG CCG CCA CCT CCT CCA CCC CCA	GCT AGA AGA GGT GGT GGT GGT GGT	GCA GCT GCT GCA GCA GCA GCA GCC GCC	GCA GTA CTG CTG ACA ACT ACT ACT ACT ACT	AGA CTA CAT CAT AAC TCA TCA TCC CCC AGC	GAG GAT GAC GAC ATC CTT ATA CTT ATA	ATT CAT CAC GGA GGG GGG GGG GGA GGA
WL sh-2 WE7 WE3 Rice seed Potato (T O) B 22-1 SL-51 kDa A. thaliana bt-2	AA AG AA AT AT AT CT CT AA	r r g agg g agg g agg g agg g agg g agg	GTA GTG GTA GTA GTG GTG GTG GTT	AAG CAG CAG CAA CAA CAA CAA CAA CAA CAA	GCA GCT GCT GCT GCT GCT GCT GCT GCT	TAT TGC TAT TAT TAC TAT TAC TAC TAC	CTT ATT GTC GTC TTG TTA TTA TTG CTA CTG	TTC TTT TTC TAT TAT TAT TAT TAT	AAT ACG ACT GAT GAT GAT GAT GAT CAT	GAT GGC GAC GGT GGG GGG GGT GGT GGT	TAC TAT TAC TAC TAC TAC TAC TAC TAC TAC	TGG TGG TGG TGG TGG TGG TGG TGG TGG	GAA GAG GAG GAA GAA GAA GAA GAA GAA	GAT GAC GAC GAC GAT GAT GAT GAT GAT	ATT GTT ATT ATT ATT ATT ATT ATC ATC	GGA GGA GGA GGT GGT GGT GGT GGT GGT	ACT ACA ACA ACC ACC ACC ACC ACC ACA ACT ACC	ATC ATC ATC ATC ATT ATT ATT ATT ATT ATT	AAA AGA AGA GAG GAA GAA GAG GAG GCG	TCC TCA TCC GCA GCT GCT GCT GCA GCA	TTC TTC TTC TTC TTC TTC TTC TTC TTT TTT	TTC TTC TTC TAC TAC TAC TAC TAC TAT	GAA GAT GAT AAT AAT AAT AAT AAT AAC	GCA GCA GCG GCC GCC GCC GCC GCA GCT GCA	AAT AAC AAC AAT AAT AAT AAC AAT AAC	CTT TTG AGG ATG CTG TTG TTG TTG CTT TTG
WL sh-2 WE7 WE3 Rice seed Potato (T O) B 22-1 SL-51 kDa A. thaliana bt-2	GC GC GC GC GC GC GC GC GC GC GC GC	C CTT C CTC C CTC C CTC C CTC C CTC A ATA C ATT C ATT C ATT A ATC A ATA	GCT ACT TGC TGC ACG ACA ACA ACC ACC ACC	GAA GAG GAG AAA AAA AAA AAA AAA AAG AAG	CAG CAG CAG AAG AAG AAG AAG AAA AAG	CCT CCC CCC CCC CCG CCG CCG CCA CCA	TCA TCC GTA GTG GTG GTG GTT ATA	CCA CCA CCA CCA CCA CCA CCA	AAG AAG AAG GAT GAT GAT GAT GAT GAT	TTC TTC TTC TTC TTC TTT TTC TTT TTC	AGC GAT GAG GAG AGT AGC AGC AGC	TTC TTT TTT TTT TTC TTT TTC TTC	TAT TAC TAT TAT TAT TAC TAT TAT	GAT GAT GAT GAC GAC GAC GAT GAC	GCT CCA CCC CGG CGA CGA CGT CGT	AGC AAA AAA TCT TCA TCA TCG TTT	AAA ACA ACT GCT GCC GCC TCT GCT	CCG CCT CCC CCA CCA CCA CCA CCA	ATG TTC TTC ATT ATC ATC ATC ATC ATA	TAC TTC TTC TAT TAC TAC TAT	ACA ACT ACC ACC ACC ACC ACC ACC ACA	TCG GCA TCG CAA CAA CAA CAA	CGA CCC CCT CCT CCT CCT CCT	AGA CGA CGA CGA CGA CGA CGA CGG	AAC TGC TAC CAC TAT TAT TAT CAC	CTA TTG TTG TTG CTA CTA TTG CTG
WL sh-2 WE7 WE3 Rice seed Potato (T O) B 22-1 SL-51 kDa bt-2	00000000000000000000000000000000000000	A CCA F CCG A CCA CCA F CCT A CCA F CCT A CCT A CCT	TCT ACG ACA ACA TCG TCA TCA TCA	ATG CAA AAG AAG AAG AAA AAA AAG AAG	ATC	AGC TTG TCA TCA GTT ATG ATG ATG GTT	GGT GAC GAC CTT CTT CTT CTT	AAG AAG GAT GAT GAT GAC GAT	AGT TGC TGC GCT GCT GCT GCT GCT	AAG AGG AGG GAT GAT GAT GAT	ATC ATG ATC GTG GTC GTC ATA GTG	ACT AAA AAA ACA ACA ACA ACA ACT ACA	GAT TAT GAA GAA GAC GAT GAC GAC	TCG GCA GCG AGT AGT AGT AGT	ATC TTT ATC GTC GTC GTC GTC GTC GTT	ATT ATC ATT ATT ATT ATT ATT ATC ATT	TCC TCA CTG GGT GGT GGT GGT GGT	CAT GAT CAC GAA GAA GAA GAA GAA	GGA GGT GGC GGC GGG GGT GGT GGC GGA	TGT TGC TGC TGT TGT TGT TGT TGT	TTC TTA TTC GTT GTG GTG GTG GTG GTT	TTG CTG TTG ATT ATC ATC ATC ATT	GAT AGA CGT AAA AAG AAG AAG AAA	AAA GAA GAA AAC AAC AAC AAC AAC	TGC TGC TGC TGT TGT TGT TGC TGC	AGG AAC AAA AAA AAG AAG AAG AAG AAG
WL sh-2 WE7 Rice seed Potato (T O) B 22-1 SL-51 kDa bt-2	GT. AT' AT AT AT AT	A GAG C GAG C GAG C GAG A CAC F CAT F CAT F CAT A AAC	CAC CAT CAC CAC CAT CAT CAT CAT	AGT TCT ACT TCC TCA TCC TCC TCC TCT	GTC GTG GCG ATC GTA GTG GTG GTT GTA	GTT ATT TTC ATC GTT GTT GTT ATT GTT	GGA GGA GGC GGA GGA GGG GGT GGA	ATC GTC CTC CTC CTC CTC CTC CTC	CGT TGC CGG AGA AGA CGA	TCT TCA TCA TCC TCA TCA TCA TCT	CGA CGT CGC CGC TGC TGC TGC TGC TGC	ATA GTC CTA CTA ATT ATA ATA ATA ATA	GGC AGC AAC AAC	TCC TCT TCC TCC TCT TCA TCA TCA TCG TCT	AAC GGA GGA GAA GAG GAG GAG GAG	GTA TGT AGC GGC GGC GGA GGA GGT GGT	CAC GAA GAG GAA GCA GCA GCA GCA	CTC CTC CTC ATA ATT ATT ATT ATT	AAG AAG AAG ATA ATA ATA ATA ATT ATA	AAT GAG GAA GAA GAG GAG	GAT GAC GCG GCG GAC GAC GAC GAT GAC	ACG TCC TCA TCA TCA ACG AGT	GTA GTG ATG TTA CTT CTT CTG TTA	ATG ATG ATG CTC TTG TTG TTG CTA	CTC ATG ATG ATG ATG ATG ATG ATG ATG	GGT GGA GGC GGT GGG GGG GGG GGA GGT

Fig. 2. Continued.

group of rice seed, potato (T O), B 22-1, SL-51 kd, A. *thaliana*, and bt-2 are without a deletion among them, whereas there are many base substitutions in all pairwise comparisons. Because the four-codon

terminus extension of the rice seed protein is the result of a single base frame-shift mutation in the codon for amino acid residue 639, we do not indicate a deletion between rice seed and the group

WL sh-2 WE3 Rice seed Potato (T O) B 22-1 SL-51 kDa bt-2	GCT G GCG G GCG G GCT G GCA G GCA G GCT G GCT G	SAT T SAC AT SAC TO SAT TO SAT TO SAT TO SAT TO SAT TO SAT TO SAT TO	IC TA IC TA IC TA IC TA IC TA AC TA AC TA AC TA AC TA AC TA	GAA GAA GAG GAG GAG GAG GAG GAG GAG	ACT ACC ACC ACT ACT ACT ACT ACT ACA	GAC GAA GAG GAG GAT GAT GAT GAA	ATG GAA GAC GAT GCA GCT GCT GCT GCT	GAA GAA GAG GAC GAC GAC GAT GAT	AGA GCT ATG ATC AAG AGG CGG AAA	GGC TCA TCG TCG AAA AAG AAG AAA AAA	GAC AAG AGG CTC TTG CTG CTC CTC	CAG CTA CTG CTG CTT TTG CTG CTA CTA	CTG CTG ATG GGT GCT GCT GCT GCC	GCC TTA TCG TCC GAA GCA GCA GCA GCT GAA	GAA GCT GAG GAG AAA AAG AAG AAG AAA	GGA GGC GGC GGC GGC GGC GGT GGT	AAG AAG AAG AGC AGT AGT AGC GGC	GTT GTC GTC GTC ATT GTC GTC GTA ATT	CCG CCC CCC CCC CCA CCA GTA CCT	ATT ATC ATC ATC ATC ATT ATT ATT ATT	GGG GGA GGC GGC GGC GGC GGC GGC GGT	ATC ATA GTC GTC ATT ATC ATC ATT ATT	GGG GGA GGG GGG GGG GGC GGC GGG GGG	GAG GAG GAG AAG AAG AAG CAG AAA	AAC AAC AAC AAC AAT AAT AAT AAT
WL sh-2 WE7 WE3 Rice seed Potato (T O) B 22-1 SL-51 kDa bt-2	ACT I ACA A ACA A ACA A TGC C TGT C TGT C AGC C TCA I	ICG A AG A AG A AG A AG A CAC A CAC A CAC A CAC A CAT A IGC A	TT CAI TA AGO TC AGO TT AGI TT AAI TT AAI TA AAI TC AGO	A AAC AAC AAC AAC AAC AAC AAC AAC AAC AA	TGC TGT TGC GCA GCC GCC GCA GCA	ATC ATC ATC ATC ATC ATT ATT ATA ATC	ATT ATC ATC ATC ATC ATC ATC ATT ATT	GAC GAC GAC GAC GAC GAC GAC GAT GAC	AAG ATG ATG ATG AAG AAG AAG AAG AAG	AAT AAT AAC AAT AAT AAT AAT AAT	GCG GCT GCG GCC GCT GCC GCT GCT	AGG AGG AGG CGT CGT CGT CGG CGA	ATA ATT ATA ATA ATT ATA ATA ATT ATT	GGG GGA GGA GGA GGG GGG GGG GGG GGA	AAG AGG AGG GAT GAC GAC GAC GAC	AAT AAC GAC AAT AAT AAT AAT AAT	GTG GTG GTG GTG GTG GTG GTC GTC GTT	ACC GTG GTC AAG AAG AAG AAG	ATT ATC ATC ATC ATC ATC ATC ATC ATC	GCT ACA TCA ATC ATC ATT ATT CTC	AAC AAC AAC AAC AAC AAC AAC AAC AAC	GCC AGT AAG GTT AAA AGT GCT	GAG AAG GAG GAC GAC GAC GAC GAC	GGT GGC GGA AAT AAC AAC AAT AAT	GTA ATC GTG GTG GTC GTT GTT GTA GTT
WL sh-2 WE7 Rice seed Potato (T O) B 22-1 SL-51 kDa bt-2	CAG G CAA G CAA G CAA G CAA G CAA G CAA G CAA G	JAA G JAA G JAA G JAA G JAA G JAA G JAA G JAA G JAA G	CG GAG CT GA CC GAG CC GAG CT GC CG GC CG GC CA GC CT GC	CAGG CAC AGG AGG AGG AGG AGG AGG AGG AGG	GCG CCG CCG GAG GAA GAA GAA GAA	TCA GAA GAG ACT ACA ACA ACA ACA	GAA GAA GAG GAT GAT GAT GAC GAC	GGC GGG GGG GGA GGA GGA GGA GGT GGG	TTC TAC TAC TAC TAC TAC TAC TAC	CAC TAC TAC TAC TTC TTC TTC TTC	ATC ATA ATC ATC ATC ATC ATC ATC ATC	CGG AGG AGG AGG AAA AAG AAG AAG AAG	TCC TCT TCC AGT AGT AGT AGT GGT	GGT GGG GGG GGC GGG GGG GGA GGA	ATC ATC ATC ATT ATT ATT ATT ATT	ACG GTG GTT GTC GTC GTC GTC GTC	GTT GTG GTG ACC ACC ACC ACC ACT ACA	GTG ATC GTG GTC GTC GTC GTT GTG	CTG CAG ATC ATC ATC ATC ATC	AAG AAG AAG AAG AAG AAG AAG AAA	AAC AAC GAT GAT GAT GAC GAT	TCG GCG GCT GCT GCT GCT GCC GCT	GTG ACC TTG TTG TTG TTG TTG TTG	ATT ATC ATC CTC ATT ATT CTC	GCG AAG CTA CCA CCA CCA CCG CCT
WL WE7 Rice seed Potato (T O) B 22-1 SL-51 kDa bt-2	GAT G GAC G GAC G GCG G AGT G AGT G AGT G	GA T GC A GC A GA C GA A GA A GA A GA A	TA GTO CC GTO AG TTA TC ATO TC GTO CC GTA	C ATA C GTG C GTG A TAT C ATC C ATC A ATC C ATC	TGA TAG GAA TGA TGA TAA TGA	GCTO TAC ₃ TAC ₃ GTA AGGA AGGA AGGA	Gaaaa GogCC GGT GCT AATG AATG GGTG GAAC	AAAG GGCG GGCG GCG CGT ₄ A CGT ₄ A CAAA GTGC	CGAC TGAC TGAC TAA ACTI ACTI FACCI 3ACA	FTCT(G ₄ TT(G ₃ TT(TAT) GGT1 GGT1 AT ₄ CC FGCA(CCAGI TGCC TGCC GCC GTCC TCTI GCTGI	rccad Jacad Jacad FG ₄ CA TCCA TCCT TCT ₁	CAAC ACCTC ACCTC ACCTC ACCTC ACCTC ACCTC ACCTC CTCC CTCC	BAGAI CTCTC CGAC GGAC GGC CCAA CGAC	AATAJ GCTG GCTG(CGAGC TAAA TAAA GT ATTC(AA ATCO CGTTO ACCA CAGC CAGC GAGC	TCC GATCO GGCC CATG CATG	STCGT STCGT SGCAT AGGT AGGT AGGT	CGGG CGTC TATA AGAA AGAA LACC	TTCT GTCT AGAA ACGT ACGT ACGT	CG₄C CGF GAAT GCTG GCTG GCTG	CG ₃ A AGG A4GCZ AACT AACT AACT	 	•••	

Fig. 2. Continued.

456

comprised of *bt-2*, SL-51 kd, potato (T O), B 22-1, and *A. thaliana*.

Also, the assertion made earlier in the text of a grouping of related proteins is confirmed. The fraction of identical nucleotides (Table 4A) independent of the weighting of a deletion indicates that the cDNAs of bt-2, SI-51 kd, rice seed, potato (T O), B 22-1, and A. thaliana are related and the cDNAs of WE3, WE7, S 25-1, and sh-2 are related. The sh-2: WE3:WE7 group was first reported elsewhere (Bhave et al. 1990), and the latter group of three cDNAs was suggested previously (Müller Röber et al. 1990). The fraction of base substitutions resulting in (1) no change, (2) conservative change, and (3) radical change show clear and consistent similarity among A. thaliana, SL-51 kd, rice seed, potato (TO), B 22-1, and bt-2 (Table 3B and C). Except for the pair from wheat endosperm, no other pairs of cDNA sequences demonstrate such a pronounced similarity. For the other cDNA sequences, the fraction of base substitutions resulting in no change is slightly higher for S 25-1, WE3, WE7, and sh-2, whereas the fraction of base substitutions resulting in a radical replacement at a particular location is slightly less for the same group (Table 3B and C). The cDNA analysis confirms the exclusion of WL7 from either group.

The three ratios of types of base substitutions again confirm the same grouping of proteins. In addition, this secondary analysis suggests that there is greater selective pressure to retain the primary structure of the protein represented by rice seed, SL-51 kd, *bt-2*, potato (T O), B 22-1, and *A. thaliana*.

The calculated evolutionary distances are shown in Table 4B. Kimura (1981) derived the equation for calculation of evolutionary distance when the proportions of transition and transversion mutations between two nucleic acid sequences are known. In his derivation, he showed that the formula of Jukes and Cantor (1969) is pertinent when the ratio of transition mutations to transversion mutations is 0.5. Clearly, this is not found exactly with any pair of the mRNAs; but some pairs begin to approximate this condition, whereas some are clearly not near this condition. Apparently, the precursor gene of the coding regions of the genes for the A. thaliana, potato (T O), bt-2, B 22-1, and rice seed proteins diverged from the precursor of the coding regions of the genes for the other proteins slightly prior to the divergence of the coding regions of the gene for the WL7 protein from the precursor for the coding regions of the genes of the proteins of the group comprised of WE3, WE7, S 25-1, and sh-2.

Observation of regions exhibiting identity and conservative replacement of the amino acid residues would be striking enough by itself. However, structure-function studies of the *E. coli* enzyme make the conservation of these regions even more striking.

Even though the enzymes from almost all sources examined to date exhibit allosteric regulation of catalysis by an enzyme with a tetrameric structure, the only property of these enzymes that shows identity

AZIDO ADP-GLUCOSE AND AZIDO AMP BINDING SITE IN E. coli

	260	270	280	290		300
E. colí	FVDLLF	AQORMKGEN	WYRGTADAV	TQNLDIIRRY	(KA	EY
SL-54kDa	GY*EV*A	*s	*FQ*****	R*FGWLFED	2	.EI*D
sh-2	GS*QV*A	*T*MPEEPA	G*FQ**Q*SI	RKFIWVLED	YSH	KSIDN
WE7	GS*EV*A	*T*MPGEAA	G*FR****W	RK IWVLED	*YKNI	KSI*H
rice seed	G**EV*A	*Q*SPDNPN	*FQ*****	R*Y*WLFEE	HN	VME
potato(T O)	G**EV*A	*Q*SPENPD	*FQ*****	R*Y*WLFEE	HT	VLE
B 22-1	G**EV*A	*Q*SPENPD	*FQ*****	R*Y*WLFEE	HT	VLE
SL-51kDa	G**EV*A	*Q*SPENPD	*FQ*****	R*Y*WLFEE	HN	VME
A. thaliana	G**EV*A	*Q*SPENP.				
bt-2	G**EV*A	*Q*SPDNPN	*FQ*****	R*Y*WLFEE	HN	VME
S. typhimurium	******	******	*******	*******	***	**

E. coli SUBSTRATE-BINDING SITE

330	340	350	360
ACME	VPIEEAS	FGVMAVDENDK	IIEFVERPANP
SQL*	MDDSSA*I)**L*K	VLS*S****GD
C*L*	IDGSR**E	**L*KI*DTGR	V*S*S***RGA
S*A*	*DESR**K	N*LVKI*HTGR	VLQ*F***KGA
S*A*	*GESR**E	Y*LVKF*SSGR	VVQ*S*O*KGD
S*A*	*GESR**E	Y*LVKF*SSGR	VVQ*S***KGD
AL	MDEKR*TA	**L*KI**EGR	*V**A***KGE
AL	MDEKR*TA	**L*KI**EGR	****A***QGE
AL	MDEKR*TA	**L*KI**EGR	****A***QGE
AL	MDEKR*TA	**L*KI**TGR	****A***KGE
AL	MDEQR*TA	**L*KI**EGR	****A***KGE
AL	MDEKR*TA	**LIKI**EGR	****A***KGE
****	***K**TA	*******S**	**D******
	330 ACME SQL* C*L* S*A* S*A* *AL* *AL* *AL* *AL* *AL* *	330 340 ACMPVPIEEAS SQL*MDDSSA*I C*L*IDGSR*#I S*A**DESR*#I S*A**GESR*#E *AL*MDEKR*T7 *AL*MDEKR*T7 *AL*MDEKR*T7 *AL*MDEKR*T7 *AL*MDEKR*T7 *AL*MDEKR*T7 *AL*MDEKR*T7	330 340 350 ACMPVPIEEAS FGVMAVDENDK SQL*MDDSSA*D**L*K. C*L*IDGSR**D*L*KI*DTGR S*A**DESR**KN*LVKI*HTGR S*A**GESR**EY*LVKF*SSGR *AL*MDEKR*TA**L*KI**EGR *AL*MDEKR*TA*L*KI**EGR *AL*MDEKR*TA*L*KI**EGR *AL*MDEKR*TA*L*KI**EGR *AL*MDEKR*TA*L*KI**EGR *AL*MDERR*TA*L*KI**EGR

between all prokaryotes and all eukaryotes is the catalyzed reaction. The extended regions of identity are assumed to be involved in the fundamental processes of binding of substrates and/or catalysis. Figure 3 shows the peptide regions associated with azido-ADPGlc binding sites of the E. coli enzyme (Lee and Preiss 1986) as well as the peptide region protected against reductive phosphopyridoxylation by ADPGlc (Parsons and Preiss 1978b). The emboldened lysine at location 270 and the emboldened arginine at 277 are the residues that become trypsin resistant after photoaffinity labeling by azido-ADPGlc (Lee and Preiss 1986), and the emboldened lysine at location 361 is the residue labeled by reductive phosphopyridoxylation (Parsons and Preiss 1978b). Also as emboldened letters in Fig. 3 are two sites that have been studied by site-directed mutagenesis. First, tyrosine 114 of the E. coli enzyme (in Fig. 3, location 276) is a conservative replacement between angiosperm plants and bacteria, whereas this substitution is conserved in identity among all plants examined. Enzyme from the allele of E. coli glgC created in vitro, which has phenylalanine at this location, shows altered kinetic and allosteric properties (Kumar et al. 1988). The significance of the concomitant adjacent conservative replacement of an arginine with glutamine in all plants has not been examined. Second, lysine 195 of the E. coli enzyme (in Fig. 3, location 361) is conserved for all proteins except WE7, where it is conservatively replaced by glutamine. Site-directed change of this residue in E. coli to match this evolutionarily ob-

Fig. 3. Comparison of the primary structures of all of the known ADPGlc pyrophosphorylases relative to that of the peptide of the Escherichia coli protein covalently modified by probes of the substrate binding sites. The integers atop each group correspond to those in Fig. 1. The residues of the other ADPGlc pyrophosphorylase proteins that are identical to that found in the E. coli protein are indicated as a star. The residue identified as being covalently modified in the E. coli protein is emboldened. Nomenclature is the same as in Fig. 1.

served change results in a dramatic loss of kinetic affinity for glucose-1-phosphate (Hill et al. 1991). An identical effect can be obtained by changing this residue to the hydrophobic residue isoleucine, whereas a lesser effect can be achieved by replacement with either a histidine or an arginine (Hill et al. 1991).

Allosteric inhibition of the bacterial enzyme has been examined by use of the photoaffinity analog azido-AMP (Larsen and Preiss 1986). Figure 4 shows one of the peptides labeled by azido-AMP binding to the enzyme from E. coli (Larsen et al. 1986). It is significantly different between angiosperm plant and bacterial enzymes. There are regions of the primary structures that are conserved as a linear peptide sequence. However aligning the enteric bacterial protein and angiosperm plant protein requires the use of a flanking insertion : deletion pair, with the size of each component mutation being approximately equal. Thus, the location of this apparently conserved region within both the subregion and the entire primary structure is different between the enteric bacterial enzyme and the plant enzyme. This divergence is striking when considering the regions of identical and conservatively replaced residues immediately preceding and following. The implication is that part of the change in allosteric inhibitor specificity between the plant and bacterial enzyme is achieved by alteration of the protein in this region. This leads to the suggestion that this component of the AMP binding site is extremely pertinent to the specificity of the allosteric inhibitor for

Table 3. Primary analysis of nucleic acids of plant ADP-glucose pyrophosphorylase cDNAs

	WL7	WE3	WE7	sh-2	S 25-1	A. thaliana	Potato (TO)	B 22-1	SL-51 kDa	Rice seed	bt-2
Part A											
No. of nucle-											
otides	903	915	1338	1281	135	288/423	1338	1338	1338	1338	1338
WI 7		214	220	210	NIA	157	202	272	295	208	371
WL/	7/20	514	330	220	NA	137	284	202	303 473	370 A37	371 414
WE5	10/20	1/2	21	212	21	312	567	552	580	588	581
WE/	7/17	0/0	0/10	515	31	278	537	526	510	538	528
S 25 ± 1	//1/ NA	0/0 NA	9/10	0	-	53	50	520	47	47	50
5 23-1 A thaliana	1NA 6/15	6/8	8/10	7/10	0		140	149	153	148	165
A. Indiana Pototo (TO)	10/10	0/8	15/22	18/19	0	0	-	14	256	287	303
P 22 1	10/19	0/11	15/22	18/19	0	0	0	_	250	288	301
51 51 kDa	10/19	0/11	15/22	18/19	0	Ő	ů Ň	0		294	285
Bice seed	10/19	9/11	15/22	18/19	Õ	Ő	Õ	Õ	0		166
Maize ht-2	6/15	7/8	12/14	13/17	õ	Ő	Õ	Õ	õ	0	_
Walle Di-2	0/15	770	12/14	15/17	Ū	0	Ū	Ū	Ũ	Ũ	
Part B											
WL7	_	0.29	0.29	0.23	NA	0.29	0.31	0.31	0.31	0.28	0.27
WE3	0.25	—	0.61	0.43	NA	0.28	0.25	0.23	0.27	0.20	0.23
WE7	0.25	0.29	-	0.48	0.68	0.29	0.26	0.27	0.28	0.23	0.26
Maize sh-2	0.19	0.23	0.22	_	0.65	0.30	0.28	0.28	0.26	0.26	0.26
S 25-1	NA	NA	0.12	0.13		0.49	0.38	0.40	0.36	0.38	0.50
A. thaliana	0.26	0.30	0.33	0.29	0.28		0.87	0.88	0.83	0.78	0.79
Potato (TO)	0.21	0.25	0.24	0.28	0.36	0.07		0.94	0.77	0.77	0.74
B 22-1	0.25	0.27	0.28	0.30	0.29	0.07	0.06	_	0.86	0.78	0.74
SL-51 kDa	0.23	0.27	0.28	0.32	0.36	0.11	0.10	0.10	-	0.73	0.74
Rice seed	0.25	0.26	0.27	0.25	0.30	0.09	0.09	0.12	0.13	-	0.70
Maize bt-2	0.28	0.27	0.29	0.30	0.24	0.08	0.13	0.13	0.15	0.08	-
Part C											
WL7	-	0.46	0.45	0.57	NA	0.44	0.48	0.45	0.45	0.46	0.45
WE3	0.85	—	0.10	0.33	NA	0.41	0.50	0.50	0.46	0.54	0.48
WE7	0.88	2.0		0.29	0.19	0.38	0.50	0.45	0.44	0.49	0.45
Maize sh-2	0.79	1.48	1.26	_	0.21	0.41	0.44	0.42	0.43	0.49	0.44
S 25-1	NA	NA	0.48	0.65		0.24	0.26	0.31	0.28	0.23	0.28
A. thaliana	0.65	0.74	0.84	0.67	0.71	-	0.05	0.05	0.06	0.11	0.13
Potato (TO)	0.65	0.76	0.73	0.73	0.66	1.81	_	0.00	0.04	0.14	0.12
B 22-1	0.63	0.76	0.73	0.74	0.73	1.78	13	_	0.04	0.11	0.12
SL-51 kDa	0.76	0.76	0.74	0.70	0.34	1.49	1.4	1.35	_	0.13	0.12
Rice seed	0.75	0.67	0.71	0.67	0.56	0.88	1.14	1.26	1.08	-	0.22
Maize bt-2	0.74	0.82	0.81	0.71	0.72	0.99	1.28	1.21	1.09	1.37	-
Part D											
WL7	_	1.16	1.16	1.21	NA	1.09	1.48	1.26	1.34	1.13	0.97
WE3	0.41	-	2.17	1.83	NA	0.91	1.0	0.88	1.03	0.75	0.87
WE7	0.41	1.56	—	2.15	5.25	0.86	1.08	0.95	0.97	0.86	0.91
Maize sh-2	0.30	0.76	0.94		4.8	1.01	0.98	0.94	0.80	1.02	0.86
S 25-1	NA	NA	2.10	1.85		1.73	1.06	1.4	1.00	1.00	2.08
A. thaliana	0.41	0.38	0.40	0.42	0.93	-	11.09	13.2	7.47	8.40	9.36
Potato (TO)	0.45	0.33	0.35	0.39	0.61	6.78		15	8.15	8.19	5.6
B 22-1	0.44	0.30	0.36	0.39	0.68	4.25	15		8.68	6.5	5.89
SL-51 kDa	0.45	0.38	0.38	0.34	0.57	4.88	5.94	6.2		5.54	5.0
Rice seed	0.39	0.25	0.30	0.35	0.62	4.72	3.35	3.29	2.77		9.0
Maize bt-2	0.37	0.31	0.35	0.35	0.96	3.74	2.95	3.07	2.76	2.34	-

Tabulation of pairwise nucleic acid sequence analysis of the aligned cDNA sequences. Part A presents the number of the two types of mutations. Above the diagonal arrangement of horizontal dashes (referred to as the diagonal) is the number of base substitutions, and below the diagonal is the number of in-frame deletions divided by the number of codons removed by these deletions. Above the diagonal of B, below the diagonal of B, and above the diagonal of C is the fraction of base substitutions, and a nonconservative replacement. Below the diagonal of C is the ratio of transition mutations to transversion mutations. Part D is the ratio of base substitution mutations, and below the diagonal is the ratio of silent mutations, and below the diagonal is the ratio of silent mutations, and below the diagonal is the ratio of silent mutations, and below the diagonal is the ratio of silent mutations, and below the diagonal is the ratio of silent mutations to all other mutations

Table 4. Similarity matrix and evolutionary distance for plant ADPGlc pyrophosphorylase cDNAs

					<i>A.</i>	Potato		SL-51	Rice	
	WL7	WE3	WE7	sh-2	thaliana	(1 0)	B 22-1	KDa	seed	Dt-2
Part A. Similarity matrix										
WL7	-	0.59	0.59	0.62	0.43	0.55	0.55	0.55	0.54	0.58
WE3	0.63	_	0.98	0.74	0.35	0.56	0.55	0.46	0.50	0.53
WE7	0.65	0.97	-	0.72	0.23	0.55	0.56	0.58	0.53	0.54
sh-2	0.67	0.72	0.70	_	0.32	0.51	0.52	0.53	0.51	0.52
A. thaliana	0.31	0.31	0.20	0.28	_	0.66	0.64	0.63	0.64	0.60
Potato (T O)	0.60	0.54	0.52	0.48	0.66		0.99	0.80	0.78	0.77
B 22-1	0.54	0.53	0.54	0.49	0.64	0.99	-	0.81	0.78	0.77
SL-51 kDa	0.53	0.44	0.51	0.50	0.63	0.80	0.81	-	0.77	0.78
Rice seed	0.51	0.48	0.51	0.48	0.64	0.78	0.78	0.77	_	0.87
<i>bt-2</i>	0.54	0.51	0.51	0.49	0.60	0.77	0.77	0.78	0.87	_
Part B. Evolutionary distance										
WL7	-	0.507	0.511	0.456	1.49	0.602	0.596	0.614	0.635	0.647
WE3	0.508	_	0.024	0.316	1.96	0.780	0.701	0.798	0.812	0.776
WE7	0.505	0.024		0.366	NC	0.715	0.685	0.619	0.733	0.753
sh-2	0.452	0.324	0.356	_	2.18	0.783	0.797	0.776	0.814	0.795
A. thaliana	1.44	1.71	NC	2.15	_	0.473	0.516	0.529	0.511	0.582
Potato (T O)	0.599	0.670	0.709	0.816	0.449	_	0.011	0.232	0.262	0.283
B 22-1	0.646	0.692	0.679	0.786	0.490	0.011	_	0.229	0.263	0.281
SL-51 kDa	0.680	0.975	0.737	0.768	0.509	0.229	0.224	_	0.268	0.262
Rice seed	0.718	0.836	0.754	0.818	0.485	0.262	0.263	0.269	_	0.141
<i>bt-2</i>	0.641	0.759	0.739	0.791	0.568	0.279	0.277	0.259	0.140	-

Summary of pairwise nucleic acid sequence analysis. Part A is the computation of the fractional identity between two nucleotide sequences. Above the diagonally arranged horizontal dashes (hereafter referred to as the diagonal) a deletion is weighted equal to a base substitution (Devereaux et al. 1984), whereas below the diagonal a deletion is weighted equal to the number of bases deleted (van den Berg et al. 1978). Part B is the calculated evolutionary distance between pairs of nucleic acid sequences. Above the diagonal, the formula of Kimura (1981) was used, whereas below the diagonal the formula of Jukes and Cantor (1969) was used. Nomenclature is the same as in Tables 2 and 3

the bacterial enzyme. Figure 5 shows another peptide labeled by azido-AMP binding to the *E. coli* enzyme, which overlaps the region of the allosteric activator binding site (Larsen et al. 1986). This region is highly conserved in higher plants. When examined, AMP does not modulate the enzyme activity of enzymes from plant sources (Ghosh and Preiss 1966), and there are no reports of AMP being an allosteric effector of ADPGlc pyrophosphorylase from plant sources. Thus, it is not clear how much this conserved region is involved in specificity of the allosteric inhibitor.

Regions of the protein involved in allosteric activation have been studied in enzymes from both higher plant and bacterial sources using pyridoxal-5'-phosphate (PLP), an in vitro activator analog (Gentner et al. 1969). As shown by the emboldened letter in Fig. 5, the lysine that binds PLP at the activator binding site in the *E. coli* enzyme is conserved in identity in all proteins known except those from WE7, S 25-1, and *sh-2*. The region in both directions surrounding this residue exhibits rather remarkable conservation in identity between bacterial and plant enzymes (31 of 50 residues), suggesting that there has been an evolutionary constraint against changing this portion of the enzyme.

In conjunction with the fact that 3PGA is 3-10-fold more potent than FBP as an activator of the angiosperm enzyme (Ghosh and Preiss 1966) and protects against specific reductive phosphopyridoxylation of the small subunit of the spinach leaf enzyme by PLP at a location significantly distant (Morell et al. 1988), the extensive conservation suggests that this region may also be involved in a fundamental aspect of the enzyme mechanism other than specificity of the allosteric activator. A candidate function for this region is analogous to the P-loop of the nucleotidebinding site (Walker et al. 1982). The nucleotidebinding P-loop motif is GX₄GK[TS] (Saraste et al. 1990), where residues exclusively selected are indicated by their one-letter mnemonic, residues having no evolutionary bias are shown as "X," and residues having some evolutionary bias have the interchangeable residues enclosed in brackets. There is nothing exactly conforming to this motif; however, the group comprised of rice seed, potato (T O), B 22-1, SL-51 kd, A. thaliana, and bt-2 have a large number of conserved glycines, locations 181, 185, 186, 187, and 188, and two conserved lysines, locations 198 and 201. Also 4 of the 12 conserved proline locations are within this region. The differences between the nucleotide-binding P-loop and

AZIDO-AMP BINDING SITE IN E. coli

	370	380	390	400	410	420	430	440	
E. coli	PSMPNDP SK		SLASM	GIYVFDADYLY	ELLEEDDRDENS	SHDFGKDLIP	KITEAG L	AYAHPFPL	SCVQSDPDAEPYWRD
SL-54kDa	DLKAMAVDTT	VLGLSK			FPTA*	***SEI**	A	**LFND	- **ER
WL7	DLKEM	EE A	EKK PYI**	**V*I*KKEI*	LN**RWRFPTA*	***SEI**	AAAREIN V	K**LFND	** <u>E</u> *
sh-2	DLNSMRVETN	FLSYAIDD	AQKYPYL***	*****KK*A*1	D**KSKYTOLH	***SEIL*	RAVLDHS V	'O*CIFTG	**E*
WE7	DLEAMKVDTS	FLNFAIDD F	PAK YPYI***	*V***KR*V*1	N**KSRYAELH	***SEIL*	RALHDHN V	°Õ**VFTD	**E*
WE3	DLEAMKFDTS	FLNFAIDD H	AK YPYI***	*****KR*V*1	N**KSRYAELH	***SEIL*	RALHDHN V	°Õ**VFTD	**E*
rice seed	QLKAMMVDTI	ILGL DDVF	AKEMPYI***	****ISKNVMI	Q**REOFPGA*	***SEV**	GA*NI* MRV	°Õ**LYDG	**E*
potato(T O)	QLQAMKVDTT	ILGL DDK	AKEMPFI***	****ISK*VMI	N**RDKFPGA*	***SEV**	GA*SL* MRV	°Õ**LYDG	** <u>E</u> *
B 22-1	OLOAMKVDT	ILGL DDKF	AKEMPFI***	****ISK*VMI	N**RDKFPGA*	***SEV**	GA*SL* MRV	°Õ**LYDG	**E*
SL-51kDa	QLQAMKVDTT	ILGL DDEF	AKEMPYI***	****ISK*VMI	N**RDKFPGA*	***SEV**	GA*SL* *RV	°Õ**LYDG	**E*
A. thaliana	HLKAMKVDTI	ILGL DDEF	AKEMPFI***	****VSR*VMI	D**RNOFPGA*	***SEV**	GA*PL* *RV	°Õ**LYDG	**EN
bt-2	QLKAMMVDTI	ILGL DDVF	AKEMPYI***	****SK*VM	Q**REOFPEA*	***SEV**	GA*SI*K RV	°Õ**LYHG	**E*
S. typhimurium	A*LGDA **		****	******	****AA**K*DA*	******	****E* M	*******	*******

Fig. 4. Comparison of the primary structures of all of the known ADPGlc pyrophosphorylases relative to that of the peptide of the *Escherichia coli* protein covalently modified by azido-AMP, a small molecule probe of the allosteric inhibitor binding site of the *E. coli* enzyme. The integers atop the group correspond to those in Fig. 1. The residues of the other ADPGlc pyrophosphorylase proteins, which are identical to those found in the *E. coli* protein, are indicated as a star. The peptide identified as being covalently modified in the *E. coli* protein is emboldened. Nomenclature is the same as in Fig. 1.

FBP BINDING PEPTIDE OF E. coli

:	180	190	200	210	220 23
E. coli	LILAGGRO	TRLKDLTNK	AKPAVHFGGI	FRIIDFALS	CINSGIRRMGV
SL-54kDa	AI**G**A	****FP*	***PL**7	Y L**VPM**	Q****NK
sh-2	AI**G**T	SQ*FP**ST	*T***PV**(Y*L**IPM**	*F****NKIF*
WE7	AV**G**T	*Q*FP**ST*	**T***PI**(Y*L**IPM**	**F****NKIF*
S 25-1	AV**G**E	**K*FP**SRT	[*T***PV**(Y*L**IPM*	****
rice seed	GI**G**A	***YP****	*****PL*A	Y*L**IPV**	**L**N*SKIY*
potato(T O)	GI**G**A*	***YP****	*****PL*A1	Y*L**IPV**	*L**N*SKIY*
B 22-1	GI**G**A	***YP****	*****PL*A	W*L**IPV**	**L**N*NKIY*
SL-51kDa	GI**G**A	***YP****	****LPL*A	W*L**IPV**	**L**N*SKIY*
A. thaliana	GI**G**A	****YP*****	*****PL*A	W*L**IPV**	**L**N*NKIY*
bt-2	GI**G**A	**********	*****PL*A1	VY*L**IPV*	**L**N*SKIY*
S.typhimurium	******	********	********	*******	**L******I**

Fig. 5. Comparison of the primary structures of all of the known ADPGlc pyrophosphorylases relative to that of the peptide of the *E. coli* protein covalently modified by PLP at the FBP activator binding site. The integers atop the group correspond to those in Fig. 1. The residues of the other ADPGlc pyrophosphorylase proteins, which are identical to those found in the *E. coli* protein, are indicated as a star. The residue identified as being covalently modified in the *E. coli* protein is emboldened. Nomenclature is the same as in Fig. 1.

this region may be due to a structural distinction. The proteins that have the P-loop use it to bind a phosphate diester-divalent cation complex, whereas enteric bacterial ADPGlc pyrophosphorylase binds FBP. Because 3PGA is structurally similar to half of FBP, this region is possibly involved in binding the phosphate of 3PGA, which corresponds to the phosphorylated sixth position of FBP. However, the failure to modify this region in the spinach leaf enzyme is without explanation. Finally, the region suggests that the two broad groupings of the plant proteins are subject to differential selective pressure upon the member proteins, with the group comprised of rice seed, potato (T O), B 22-1, SL-51 kd, bt-2, and A. thaliana being more like the enteric bacterial protein. The significance of this is unknown.

The emboldened letters in Fig. 6 are the lysines labeled by PLP at the activator binding site in the small subunit (Morell et al. 1988) and large subunit (K. Ball and J. Preiss, unpublished) of the spinach leaf enzyme. This residue is conserved among all angiosperm plants. There are two observations concerning this region. First there has been selective

3 PGA BINDING SITE OF SPINACH LEAF ENZYME

620	630	640	
DODOVD	TROGTO		-
EIDGIF	TRSGIVIVI	KDALIPSGIV	T
VI	*TVIF	KN*T*KD*V*	
ASE*FH	*R***TV*L	*NSV*AD*L*	*
PEE**Y	*R****VIL	*N*T*NECL*	*
PEE**Y	*R****VIQ	*N*T*KD***	v
PEE**Y	*R****VI0	*N*T*KD***	v
*****	********	****LLAEQL	YEVAA
*****	*******	*******	*
*****	*******	********	*
*****	**G*****	****L****	*
	620 ETDGYF **VI ASE*FH PEE**Y PEE**Y PEE**Y ******	620 630 ETDGYFAC 63CI VVI **VI***TVIF ASSFFH*R***TV*L PEE**Y*R****VIQ PEE**Y*R****VIQ ********************************	620 630 640 ETDGYFIKGIVTIKDALIPSGTV .**VI**TVIFKN*T*KD*V* ASS*FH*R***TV+L*NSV*AD4L* PEE**Y*R***VIC*N*T*KD*** PEE**Y*R***VIC*N*T*KD*** PEE**Y*R***VIC*N*T*KD*** *******************************

Fig. 6. Comparison of the primary structure of all of the known plant ADPGlc pyrophosphorylases relative to that of the peptide of the small subunit of the spinach leaf enzyme covalently modified by PLP at the 3PGA binding site. The integers atop the group correspond to those in Fig. 1. The residues of the other angiosperm ADPGlc pyrophosphorylase proteins, which are identical to those found in the spinach leaf small subunit, are indicated as a star. The residue identified as being covalently modified is emboldened. Nomenclature is the same as in Fig. 1.

manipulation of this region during evolution. Almost all the residues of rice seed, A. thaliana, SL-51 kd, bt-2, potato (T O), and B 22-1 are identical whereas WL7, WE3, WE7, S 25-1, and sh-2 have some residues identical and some residues conservatively replaced. Second, the WE3 and WE7 proteins have a glutamine side chain in the hydrophobic region immediately N-terminal to this lysine. The biochemical and functional effects of these distinctions are not known.

Discussion

The large-scale conservation between enteric bacterial enzymes and plant enzymes through the regions that are implicated for the bacterial enzyme in substrate binding suggests that the catalytic mechanism for this enzyme has undergone little modification through evolution. However, the mechanism(s) of allosteric modulation of this catalytic mechanism has(have) been subjected to many attempts at refinement during evolution, presumably to accommodate different metabolic and physiologic conditions.

The question of whether there are representatives of paradigms for the two subunits of the plant enzyme leads to equivocation at best. Figure 1 and Tables 2 and 3 indicate that rice seed, potato (T O), B 22-1, bt-2, SL-51 kd, and A. thaliana show substantial identity to each other while showing essentially the same lessened relationship to all other proteins of ADPGlc pyrophosphorylase. Biochemical genetic studies with maize have shown that the sh-2locus encodes the large subunit of the maize endosperm enzyme and the bt-2 locus encodes the small subunit of the endosperm enzyme (Preiss et al. 1990). In lieu of the exclusion of sh-2 from the group that includes two members which are identified explicitly as the small subunit of the respective enzyme, we consider rice seed, potato (T O), B 22-1, SL-51 kd, bt-2, and A. thaliana as members of a small subunit consensus group.

Unfortunately, a binary dichotomy fails beyond this point. Comparison of the other primary structures shows them to be as related among themselves as to any of the small subunit consensus group. A weak grouping is suggested by the slightly greater similarity of sh-2, S 25-1, WE3, and WE7. This is confirmed in Fig. 1 with a large number of positions in the primary structure of those proteins showing the conserved residues being unique to those proteins. Likewise, there are a number of positions in the primary structure of the WL7 and SL-54 kd that show conserved residues that are unique to that pair. It is suggested that the proteins not of the consensus small subunit group exhibit the property that amino acid residues at some locations in the primary structure are conserved among all members of the group, whereas amino acid residues at other locations show clear evidence that there are at least two different subclasses of these proteins. Examples of this are locations 438-445, 470-490, and 545-552. The region from location 510 to 540 may also conform to this pattern, but awaits determination of the primary structure of the spinach leaf 54-kd subunit. As aligned nucleotides, the cDNAs of S 25-1, WE3, WE7, and sh-2 are a group, whereas WL7 is as related to any one of these as it is to a member of the consensus small subunit group.

In that the dichotomy of the large subunit seems to correlate with tissue type from which mRNA was isolated, photosynthetic versus nonphotosynthetic, we would like to suggest that there may be minimally two sorts of enzyme in the plant—that found in photosynthetic tissue and that found in nonphotosynthetic tissue. Because SL-51 kd is from leaf, bt-2 is from endosperm, potato (T O) and B 22-1 are from tuber, and rice seed is from seed, the two groups of plant enzymes would possess a small subunit with a primary structure almost identical to the small subunit consensus protein group, whereas the other subunit would have a much more plastic primary structure that would be specific for tissue metabolism in an as yet unknown manner. Immunologic comparisons of enzymes from different tissues of a single plant (Krishnan et al. 1986) support this idea. Also, immunologic examinations of purified enzyme from different tissues from various plants support this idea. Antibody prepared against the large subunit of spinach leaf enzyme reacts weakly, if at all, with the large subunit from nonphotosynthetic tissue compared to that from photosynthetic tissue (Plaxton and Preiss 1987; Anderson et al. 1990; Okita et al. 1990; Preiss et al. 1990; Preiss 1991). However, antibody prepared against the small subunit of spinach leaf enzyme reacts very well against the small subunit from both tissues (Plaxton and Preiss 1987; Anderson et al. 1990; Okita et al. 1990; Preiss et al. 1990; Preiss 1991). This suggestion can be further tested with the acquisition of clones that will allow a one-to-one correspondance between the expressed genes and the observed proteins from A. thaliana leaf (Lin et al. 1988a,b), rice leaf (Krishnan et al. 1986), and maize leaf (Krishnan et al. 1986).

Attempts to subdivide the small subunit group are difficult because the members of the group are so similar. However two points should be noted. First, the few base substitutions in the cDNAs and the resulting even fewer residue changes in the deduced primary structures between potato (T O) and B 22-1 probably represent allelic variation between cultivars. Second, rice seed and bt-2 are slightly more related to each other than they are to any other member of the small subunit group. Of the 51 residues of the primary structure that are different between the two, irrespective of conservative or nonconservative replacement, 13 occur prior to location 178, the apparent demarcation between the random N-terminus and the conserved body. The Table 2 entry for the comparison of these two proteins can be amended for a comparison of only the body of the two proteins, adjusting the denominator for the shortened basis of comparison. The amended fractional similarity for these two proteins is 0.91/0.94, which is greater than the similarity between either of these proteins and any one of the other small subunit group members. This fractional identity could be even greater, in that the frame-shift at the rice seed C-terminus introduces 10 differences in the primary structure and the frame-shifted DNA in the rice seed cDNA is 100% identical to the bt-2cDNA. Performing this amended comparison for the other pairs is irrelevant either because one of the proteins does not extend sufficiently far N proximal of location 178 (other small subunit proteins) or the bodies of the two proteins are sufficiently different that reduction of the noise will not significantly affect the fractional similarity (large subunit proteins WE7 and sh-2). That rice and maize are monocot plants, whereas the other representatives of the small subunit are from dicot plants, leads us to suggest that the small subunit of the enzyme from monocot plants may have a distinctive primary structure relative to the small subunit of the enzyme from dicot plants. Again, the comparison of nucleic acids confirms this subgrouping with the cDNA corresponding to the small subunit from a monocot source being slightly more similar to small subunit cDNA from another monocot than small subunit cDNA from a dicot, and the cDNA corresponding to the small subunit from a dicot source being slightly more similar to small subunit cDNA from another dicot than small subunit cDNA from a monocot. Whether there are concomitant biochemical distinctions devolving from this grouping is not known. The analysis for this distinction cannot be performed upon the large subunit proteins.

The retrieval of multiple clones suggesting multiple mRNA species in wheat endosperm is of interest. These could represent evolution of identical loci in a polyploid organism. Wheat is the only polyploid organism in this group of plants. However, there is no evidence to exclude the possibility of multiple proteins of such similarity being present in the pertinent tissue of any of the other plants. These results could arise from differences of style of operation in different laboratories. Only the wheat clones were examined in detail for subtle differences of structure prior to nucleotide sequence determination. DNA sequences of all the others are the result of nucleotide sequence determinations of the clone with the largest insert.

Conclusive elucidation of the evolutionary relationship between the various genes awaits isolation of genomic clones representing the different expressed mRNA species. However this initial comparison suggests that the genes encoding proteins not of the small subunit consensus group are related by gene duplication with subsequent divergence. Thus, the pairwise comparisons between either the proteins or the nucleic acids corresponding to sh-2, S 25-1, WE3, and WE7 are orthologous comparisons as is the comparison between either the proteins or the nucleic acids from WL7 and SL-51 kd. A parologous comparison occurs when the proteins or nucleic acids are from a different group. Paralogous comparisons in Fig. 1 and Tables 3 and 4 suggest that the two subgroups of the large subunit group separated at about the same time as the large subunit diverged from the small subunit.

The N-terminus region shows only a random relationship between any pair of proteins from plant sources. This is made more acute in light of the extensive identity and functional similarity of residue side chains over the remainder of the protein. This variability of the N-terminal sequences may be similar to that found among the chloroplast transit sequences of the small subunit of ribulose bisphosphate carboxylase/oxygenase (RUBISCO) (Mazur and Chui 1985), or it may merely reflect a lack of information; but this abrupt change from a random relationship to an ordered relationship between the primary structures allows an explanation of the underlying basis of tissue-specific isoforms of the subunits of ADPGlc pyrophosphorylase (Krishnan et al. 1986). There are two general ways to achieve a significant difference of mass while retaining similar antigenicity. One is to interpose among the retained epitopes lengths of polypeptide that show a clear pattern of size difference. The other is to append to one or both ends of an invariant region a length of polypeptide. For ADPGlc pyrophosphorylase one of the two possibilities in the latter method is applicable. Taking the proteins from wheat ADPGlc pyrophosphorylase, the only organism for which some of the proteins from two different tissues are known, sufficient length variation to produce the observed tissue-specific differences of molecular mass can occur in only one region of the primary structure, the N-terminal region. The large-scale similarity between proteins of wheat and the other plant species, independent of tissue source, suggests that this observation can be generalized to all plant species.

For a measure of the evolutionary constraint upon the allowed alteration of primary structure of the encoded protein, we submit comparisons to analysis performed by others upon proteins that are considered to have been conserved through evolutionfrom plants, the small subunit of RUBISCO; from vertebrates, the proteins encoded by the globin genes; and from all organisms, cytochrome c. For RUBIS-CO, Broglie et al. (1983) report an apparent relationship between representatives from monocot and dicot sources similar to ADPGlc pyrophosphorylase with some residues invariant, some residues somewhat constrained, and some residues random. They report 75-80% identity between the deduced primary structures. For orthologous globin genes, Mivata et al. (1980) report that the deduced primary structures are 78-95% identical. For cytochrome c, Dickerson and Timkovich (1975) report that the proteins from plants show some residues invariant, some residues somewhat constrained, and some random rare residues. They report from 80 to 95% identity, depending upon the particular pair chosen for comparison. The data presented here suggest that the primary structure of at least the small subunit of the ADPGlc pyrophosphorylase enzymes from angiosperm plants is as equally conserved as the primary structures of other proteins considered to be evolutionarily conserved.

Acknowledgments. The alignment from location 370 to 460 in Fig. 1 of the enteric bacterial proteins relative to the plant proteins is the work of Yee-Yung Charng. This work was supported in part by National Science Foundation grant DMB86-10319 and USDA/DOE/NSF Plant Science Center Program 88-37271-3964.

References

- Anderson JM, Hnilo J, Larsen R, Okita TW, Morell M, Preiss J (1989) The encoded primary sequence of a rice seed ADPglucose pyrophosphorylase subunit and its homology to the bacterial enzyme. J Biol Chem 264:12238-12242
- Anderson JM, Okita TW, Preiss J (1990) Enhancing carbon flow into starch: the role of ADPglucose pyrophosphorylase.
 In: Vayda ME, Park WD (eds) The molecular and cellular biology of the potato. C.A.B. International Wallingford, Oxon, UK, chapter 12
- Bae JM, Giroux J, Hannah L (1990) Cloning and characterization of the *brittle-2* gene of maize. Maydica 35:317–322
- Baecker PA, Furlong CE, Preiss J (1983) Biosynthesis of bacterial glycogen: primary structure of *Escherichia coli* B
 ADPglucose synthetase as deduced from the nucleotide sequence of the glgC gene. J Biol Chem 258:5084–5088
- Barton C, Yang L, Galvin M, Sengupta-Gopalan C, Borelli T (1986) Isolation of the shrunken-2 and brittle-2 genes from maize. In: Shannon JC, Knievel DP, Boyer CD (eds) Regulation of carbon and nitrogen reduction and utilization in maize. American Society of Plant Physiologists, pp 363-365
- Bhave MR, Lawrence S, Barton C, Hannah LC (1990) Identification and molecular characterization of *shrunken-2* cDNA clones of maize. Plant Cell 2:581–588
- Broglie R, Coruzzi G, Lamppa G, Keith B, Chua N-H (1983) Monocot and dicot genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase: structural analysis and gene expression. Stadler Symp 15:59-71
- Devereaux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387-407
- Dickerson RE, Timkovich R (1975) Cytochromes c. In: Boyer PD (ed) The enzymes, vol. 11. Academic Press, New York, pp 397-548
- Espada J (1962) Enzymic synthesis of adenosine diphosphate glucose from glucose-1-phosphate and adenosine triphosphate. J Biol Chem 237:3577-3581
- Gentner N, Greenberg E, Preiss J (1969) TPNH and pyridoxal-5'-phosphate: activators of ADP-glucose pyrophosphorylase of *Escherichia coli* B. Biochem Biophys Res Commun 36: 373-380
- Ghosh HP, Preiss J (1966) Adenosine diphosphate glucose pyrophosphorylase: a regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem 241:4491-4504
- Haugen TH, Ishaque A, Preiss J (1976) Biosynthesis of bacterial glycogen: characterization of the subunit structure of *Escherichia coli* B glucose-1-phosphate adenyltransferase (EC 2.7.7.27). J Biol Chem 251:7880–7885
- Hill MA, Kaufmann K, Otero J, Preiss J (1991) Biosynthesis of bacterial glycogen: mutagenesis of a catalytic site residue of ADP-glucose pyrophosphorylase from *Escherichia coli*. J Biol Chem 266:12455-12460

- Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21-132
- Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78:454–458
- Krishnan HB, Reeves CD, Okita TW (1986) ADPglucose pyrophosphorylase is encoded by different mRNA transcripts in leaf and endosperm of cereals. Plant Physiol 81:642-645
- Kumar A, Tanaka T, Lee YM, Preiss J (1988) Biosynthesis of bacterial glycogen: use of site-directed mutagenesis to probe the role of tyrosine 114 in the catalytic mechanism of ADPglucose synthetase from *Escherichia coli*. J Biol Chem 263: 14634–14639
- Larsen CE, Preiss J (1986) Covalent modification of the inhibitor binding site(s) of *Escherichia coli* ADP-glucose synthetase: specific incorporation of the photoaffinity analogue 8-azidoadenosine 5'-monophosphate. Biochemistry 25:4371– 4376
- Larsen CE, Lee YM, Preiss J (1986) Covalent modification of the inhibitor-binding site(s) of *Escherichia coli* ADP-glucose synthetase. J Biol Chem 261:15402–15409
- Lee YM, Preiss J (1986) Covalent modification of substratebinding sites of *Escherichia coli* ADP-glucose synthetase. J Biol Chem 261:1058–1064
- Leung PSC, Preiss J (1987) Biosynthesis of bacterial glycogen: primary structure of *Salmonella typhimurium* ADPglucose synthetase as deduced from the nucleotide sequence of the glgC gene. J Bacteriol 129:4355-4360
- Lin T-P, Caspar T, Somerville C, Preiss J (1988a) Isolation and characterization of a starchless mutant of *Arabidopsis thaliana* (L.) Heynh lacking ADPglucose pyrophophorylase activity. Plant Physiol 88:1131-1135
- Lin T-P, Caspar T, Somerville C, Preiss J (1988b) A starch deficient mutant of *Arabidopsis thaliana* with low ADPglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol 88:1175–1181
- Mazur BJ, Chui C-F (1985) Sequence of a genomic DNA clone for the small subunit of ribulose bis-phosphate carboxylaseoxygenase from tobacco. Nucleic Acids Res 13:2373–2386
- Miyata T, Yasunaga T, Nishida T (1980) Nucleotide sequence divergence and functional constraint in mRNA evolution. Proc Natl Acad Sci USA 77:7328-7332
- Morell MK, Bloom M, Knowles V, Preiss J (1987) Subunit structure of spinach leaf ADPglucose pyrophosphorylase. Plant Physiol 85:182–187
- Morell M, Bloom M, Preiss J (1988) Affinity labeling of the allosteric activator site(s) of spinach leaf ADPglucose pyrophosphorylase. J Biol Chem 263:633-637
- Müller-Röber BT, Koßmann J, Hannah LC, Willmitzer L, Sonewald U (1990) One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet 224:136–146
- Okita TW, Nakata PA, Anderson JM, Sowokinos J, Morell M, Preiss J (1990) The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol 93:785–790
- Olive MR, Ellis RJ, Schuch WW (1989) Isolation and nucleotide sequences of cDNA clones encoding ADPglucose pyrophosphorylase polypeptides from wheat leaf and endosperm. Plant Mol Biol 12:525-538
- Parsons TF, Preiss J (1978a) Biosynthesis of bacterial glycogen: incorporation of pyridoxal phosphate into the allosteric activator site and an ADP-glucose-protected pyridoxal phosphate binding site of *Escherichia coli* B ADP-glucose synthetase. J Biol Chem 253:6197-6202
- Parsons TF, Preiss J (1978b) Biosynthesis of bacterial glycogen: isolation and characterization of the pyridoxal-P allosteric

activator site and ADP-glucose-protected pyridoxal-P binding site of *Escherichia coli* B ADP-glucose synthetase. J Biol Chem 253:7638-7645

- Plaxton WC, Preiss J (1987) Purification and properties of nonproteolytically degraded ADPglucose pyrophosphorylase from maize endosperm. Plant Physiol 83:105-112
- Preiss J (1973) Adenosine diphosphoryl glucose pyrophosphorylase. In: Boyer PD (ed) The enzymes, vol 8. Academic Press, New York, pp 73–119
- Preiss J (1982) Regulation of the biosynthesis and degradation of starch. Annu Rev Plant Physiol 33:431-454
- Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419-458
- Preiss J (1988) Biosynthesis of starch and its regulation. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 14. Academic Press, New York, chapter 6
- Preiss J (1991) Biology and molecular biology of starch synthesis and its regulation. In: Miflin BJ (ed) Oxford survey of plant molecular and cellular biology, vol. 7. Oxford University Press, Oxford, UK, pp 59-114
- Preiss J, Romeo T (1989) Physiology, biochemistry and genetics of bacterial glycogen synthesis. In: Rose AR, Tempest DH (eds) Advances in microbial physiology, vol 30. Academic Press, New York, pp 183-238
- Preiss J, Shen L, Greenberg E, Gentner N (1966) Biosynthesis of bacterial glycogen. IV. Activation and inhibition of adenosine diphosphate glucose pyrophosphorylase of *E. coli* B. Biochemistry 5:1833-1845
- Preiss J, Bloom M, Morell M, Knowles VL, Plaxton WC, Okita TW, Larsen R, Harmon AW, Putnam-Evans C (1987) Reg-

ulation of starch synthesis: enzymological and genetic studies. In: Bruening G, Harada J, Kosuge T, Hollaender A (eds) Tailoring genes for crop improvement. Plenum, New York, pp 132–152

- Preiss J, Danner S, Summers PS, Morell M, Barton CR, Yang L, Neider M (1990) Molecular characterization of the *brittle-2* gene effect on maize endosperm ADPglucose pyrophosphorylase subunits. Plant Physiol 92:881–885
- Sanwal GG, Greenberg E, Hardie J, Cameron EC, Preiss J (1968) Regulation of starch biosynthesis in plant leaves: activation and inhibition of ADPglucose pyrophosphorylase. Plant Physiol 43:417-427
- Saraste M, Sibbald PR, Wittinghofer W (1990) The P-loop-a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430-434
- Sowokinos JR, Preiss J (1982) Pyrophosphorylases in Solanum tuberosum III. Purification, physical and catalytic properties of ADPglucose pyrophosphorylase in potatoes. Plant Physiol 69:1459-1466
- van den Berg J, van Ooyen A, Mantei N, Schambock A, Grosveld G, Flavell RA, Weissmann C (1978) Comparison of cloned rabbit and mouse beta-globin genes showing strong evolutionary divergence of two homologous pairs of introns. Nature 276:37-44
- Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the α - and β -subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

Received May 6, 1991/Revised and accepted November 11, 1991