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Abstract. Hindcasting of a tsunami by numerical simulations is a process of lengthy and complicated 
deductions, knowing only the final results such as run-up heights and tide records, both of which are 
possibly biased due to an insufficient number of records and due to hydraulic and mechanical limitation 
of tide gauges. There are many sources of error. The initial profile, determined with seismic data, can 
even be different from the actual tsunami profile. The numerical scheme introduces errors. Nonlinearity 
near and on land requires an appropriate selection of equations. Taking these facts into account, it 
should be noted that numerical simulations produce satisfactory information for practical use, because 
the final error is usually within 15% as far as the maximum run-up height is concerned. 

The state-of-the-art of tsunami numerical simulations is critically summarized from generation to 
run-up. Problems in the near future are also stated. Fruitful application of computer graphics is 
suggested. 

Key words. Tsunami initial profile, tsunami propagation, tsunami run-up, tsunami numerical simulation, 
tsunami secondary disaster, computer graphics. 

1. Introduction 

Numer ica l  s imula t ion  has m a d e  much  progress  dur ing  the pas t  30 years  and  is now 

used as one o f  the mos t  effective means  in the prac t ica l  design o f  t sunami  defense 

works  and  structures.  This  progress  was suppor t ed  by  the deve lopmen t  o f  seismol-  

ogy and by  the appea rance  o f  the h igh-speed compute r .  Se ismology made  it 

poss ib le  to es t imate  the faul t  mechan i sm and  the re la ted d isp lacement  o f  the sea 

bo t tom.  This gives the init ial  profile o f  a t sunami  which has never been measured  

on site with conven t iona l  me thods  o f  measurement .  A huge near-field t sunami  such 

as the 1933 Showa G r e a t  Sanr iku  t sunami  has an extension,  one to two hundred  

k i lometers  long and  several  tens o f  k i lometers  wide, when it is generated.  The coas t  

to be affected is several  hundred  k i lometers  long. I f  the effect o f  a d is tan t  t sunami  

such as the 1960 Chi lean t sunami  is discussed,  the whole  Pacific Ocean should  be 

covered by  a net  o f  c o m p u t a t i o n  grids. This  s i tua t ion  is only  solved with electronic 

compute r s  which ensure a huge compu te r  m e m o r y  and  high-speed compu ta t i on .  A 

numer ica l  s imula t ion ,  i f  des igned wi thou t  due  cons idera t ion ,  canno t  p rov ide  any 

rel iable  results.  There  are m a n y  sources o f  e r ror  and  mis judgement .  I f  well- 

designed,  its results  can be used in prac t ica l  t sunami  defense works  with sufficient 

accuracy,  within 15% er ror  as far  as the m a x i m u m  run-up  heights  and  the 
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inundated areas are concerned. The aim of the present paper is to provide a critical 
review of the state-of-the-art of numerical simulation, to summarize problems 
which require further study in the near future, and to show utility of a new 
technique in understanding computed tsunamis. 

In Section 2, the generation problem is examined, taking the 1983 Nihonkai- 
Chubu (the Middle Japan Sea) earthquake tsunami as an example. Contradictions 
are found among tsunami sources determined from seismic data, tide records, and 
run-up heights. Limitation of tide gauges is also discussed. 

In Section 3, the propagation problem is discussed, mainly as the problem of 
fundamental equations and difference schemes. It is evident that a set of equations 
of higher-order approximation yield better results, if used with fine spatial grids. An 
ingenious method is introduced to obtain equivalent results with equations of 
first-order approximation and with rough spatial grids, thus saving much of the 
CPU time and computer money. 

Section 4 reviews the near-shore and run-up problem, in which the major factors 
we encounter are the nonlinearity of the phenomena, instability in the computation, 
and approximation of the moving land boundary. 

In Section 5, three topics are briefed for future study. A theory must be 
developed for edge bores which were observed in 1983. In relation to secondary 
disasters, spread of oils as well as spread and impact of floating materials are in 
urgent need of study. Computer-graphics-aided animation is promising as a way to 
understand tsunamis through computed results. 

2. Generation of Tsunamis 

2.1. Three Source Models of the 1983 Nihonkai-Chubu Earthquake Tsunami 

At noon on the 26 May 1983, a huge earthquake occurred in the Japan Sea. A 
tsunami followed. Its highest run-up was measured at more than 15 m above the 
mean sea-water level. Several features of the tsunami were made clear by tide 
records, detailed surveys of run-up height and inundated areas, and many photos 
and videos. 

As for the earthquake, more scientific means were available. For example, 
positions of the major shocks and every after-shock were three-dimensionally 
determined as in Figure 1 (Takagi et al., 1984). An immediate conclusion is that the 
fault dips slightly eastward. Fault mechanism and fault parameters were determined 
from seismic data collected not only locally but also world-widely. 

Figure 2(a) shows the vertical displacement of the sea bottom, calculated by 
Tanaka et al. (1984) with the Mansinha and Smylie (1971) method. Since the source 
was large compared with the water depth and the rupture velocity was very short 
compared with the tsunami propagation velocity, the bottom vertical displacement 
gave the vertical displacement of the free water surface, i.e. the initial tsunami 
profile. Only seismic data were used in this calculation. The major result is that a 
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maximum vertical displacement of about 1.5 m high is obtained at the western side 
of the source, corresponding to the fault which dips eastward. Tanaka et al. verified 
the computed displacement by comparison with the measured displacement at 
Kyuroku Island. 

Figure 2(b) is the result obtained by Satake (1985). He used the tide records 
at 13 tide stations to modify the bottom displacement obtained from seismic 
data. The method of modification will be briefed in Section 2.3. According to his 
results, the fault dips eastward and the maximum vertical displacement is about 
2m. 

Figure 2(c) is the result of a thorough study by Aida (1984a). The fault dips 
eastward and the maximum vertical displacement is about 4 m. He needed this 
maximum vertical displacement in order to explain run-up heights. He used seismic 
data, tide records at remote tide stations, and run-up data on the coast near the 
source. Based upon his rich experience, Aida did not use tide records at tide stations 
near the source, because he might be led to an incorrect conclusion by the fact that 
the hydraulic characteristics of a tide well often render it unable to record high 
frequency components of a nearby tsunami. He used run-up data in a way 
described in Section 2.3. His conclusion was verified by the present author who used 
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Fig .  2. Vertical displacement of  sea bottom due to the 1983 Nihonkai-Chubu earthquake. (a) Tanaka 
e t  al., ( b )  S a t a k e  M o d e l  D 2 ,  (c )  A i d a  M o d e l  N o .  10, a n d  ( d )  Aida Model N o .  19. 

a finer grid length than usual and obtained the maximum run-up height of 15 m. 
The results has been published elsewhere (Shuto et al., 1986). 

2.2. Aida Model  No. 19, a Contradiction 

An ordinary tide gauge has three problems in recording tsunamis: hydraulic 
filtering, poor resolution with respect to time, and possible saturation in the case of  
a huge tsunami. A tide well is usually constructed to eliminate high-frequency 
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sea-level fluctuation, such as wind waves and swells. This characteristic also 
deteriorates the tsunami recording ability of a tide gauge. Satake et al. (1988) 
measured the hydraulic filtering characteristics of  40 tide wells and corrected 
tsunami records of the 1983 Nihonkai-Chubu earthquake tsunami. They found that 
some tide records should be more than doubled in amplitude. 

This results, and the poor  temporal resolution, suggest that we should be very 
careful when we compare the computed tsunami profiles with tide records for 
verification of  the initial tsunami profile. Knowing this fact well, Aida tried another 
effort to estimate the initial profile of the 1983 tsunami. It was fortunate for him 
that a supersonic wave gauge for measuring wind waves and swells was available. 
This instrument recorded the initial small fall and the succeeding sharp rise of the 
1983 tsunami, although the signal was superposed by short wind waves. This wave 
gauge measured directly the vertical distance to the water surface without any 
filtering. The temporal resolution was excellent, because the wave gauge should 
measure wind waves of  only several seconds long. 

Aida thought this record gave the most reliable tsunami profile. He struggled 
again and again to reproduce this tsunami profile by numerical simulation and 
arrived at a surprising conc lus ion-  the Aida Model No. 19, shown in Fig. 2(d) 
(Aida, 1984b). It required that the fault should dip westward, contradicting seismic 
knowledge, although the maximum vertical displacement of  the sea bottom was 
about 4 m, the same as his Model No. 10. 

A possible explanation to mediate the contradiction may be the existence of a 
secondary fault, as in the case of the 1964 Great Alaska earthquake, as shown in 
Figure 3 (PlaNer, 1965). 

In conclusion, the present method, based upon seismic data, can be applied to 
establish the initial tsunami profile to a first-order approximation, but it does not 
give a full explanation of  the tsunami. In hindcasting, correction should be made by 
using measured data: tide records and run-up heights. In forecasting, there are no 

alternatives. 

2.3. Verification in Terms o f  Aida's K and x 

In order to examine whether the assumed initial tsunami profile is satisfactory or 
not, Aida (1978) introduced two measures, K and ~c. In his original paper, he 
compared the first rise or fall of  computed profiles with measured tide records, with 
no regard to the succeeding waves which were much affected by local topographical 
effects. The measure K is a geometric mean of  the ratio of  the measured amplitude 
to the computed, and ~c is the corresponding standard deviation. If  K is smaller than 
unity, it means the assumed tsunami initial profile (or the assumed total tsunami 
energy) is larger than the true solution. Therefore, he could multiply the assumed 
initial vertical displacement by the obtained value of K to obtain a reduced 
estimate. Another measure x shows whether or not distribution of the vertical 
displacement is appropriate. 
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Vertical displacement of ground and sea bottom of the 1964 Great Alaska earthquake. 

Since the number of tide records available is usually 10 or so, not many for a 
tsunami, and since no tide record was available for a tsunami in the remote past, 
Aida extended the above method to apply to run-up heights, too. Measured run-up 
heights might strongly reflect local topography effects. He divided the coastal line 
into segments 10 or 15 km long. After smoothing the measured data by taking the 
average over each segment, he compared these smoothed values with the computed 
results obtained along the water depth contour of 200 m. If the ratios of the former 
to the latter are between 2 and 3 ( = average run-up ratio), and if the value of x is 
within an appropriate range, he judged that the assumed initial profile gave the 
solution. 

With the initial profile thus given, a detailed numerical simulation can be carried 
out, including the reproduction of local topography effects. For the final judgement 
of whether or not the simulation gives satisfactory run-up heights, the same method 
is applied with no processing of the measured and computed data. For practical 
purposes, a numerical simulation is judged to be satisfactorily carried out if K falls 
between 1.2 and 0.8 and ~: is less than 1.4 after necessary modification of the initial 
profile. Then, for a well-designed simulation, the final error is within 15% as far as 
the maximum run-up height is concerned (e.g., Aida and Hatori, 1984; Hasegawa, 
1986; Shuto et al., 1987). 
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3. Propagation in Deep Sea 

3.1. Linear Longwave Theory and Grid Length for No Decay 

At the time of generation, a tsunami in the water several kilometers deep is several 
tens of kilometers wide and up to 100 km long. Its height is less than 10 m. The 
depth-to-length ratio is on the order of 10 2 and the wave steepness is of order 
10 -3. These values suggest that the linear longwave theory is a good first-order 
approximation. 

Numerical simulations provide only approximate solutions, with errors inevitably 
included in and dependent on numerical techniques. In the following discussions, 
the leap-frog scheme is assumed for discretizing fundamental differential equations. 

Figure 4 shows examples of computed wave profiles. Taking a sectional profile of 
the 1964 Great Alaska earthquake tsunami measured along the A - A  line in Figure 
3 as the initial profile, the one-dimensional propagation on water of constant depth 
is computed with the linear longwave theory. This theory gives a unique wave 
celerity which is not influenced by phase and amplitude dispersion effects. The true 
solution, therefore, should give the mere translocation without any change in the 
wave profile. It is evident, however, from the figures, that the wave profile deforms, 
depending upon the spatial grid length and the travel distance. The smaller the grid 
length is and the shorter the travel distance is, the truer the solution becomes. The 
change is that the leading wave reduces its height and a small wave-train appears 
behind it. 

In order to eliminate this kind of numerical decay in wave height, the grid length 
should be carefully determined. According to numerical experiments by Shuto et aL 
(1986), one local tsunami wavelength should be covered by more than 20 grid 
points. Thus, the decay is less than 5% after the wave travels over a distance of four 
wavelengths, which is the longest travel distance for the first wave in the case of a 
typical near-field tsunami near the Japanese Archipelago. This condition should be 
satisfied, not only in deep oceans, but also in shallow seas. 

3.2. Dispersion Effect and Equations 

It was Kajiura (1963) who introduced a criterion to determine whether or not the 
dispersion effect should be taken into consideration. If his Pa defined by 

Pa = ( 6h /R)'/3(a/h) (1) 

is smaller than 4, the dispersion effect is not negligible. Here, h is the water depth, 
R is the travel distance, and a is the length of the tsunami source measured along 
the direction of propagation. 

When the dispersion term is required, we have to switch from the linear longwave 
theory to the Boussinesq or linear Boussinesq equations. Under the same conditions 
as in Figure 4, the one-dimensional propagation is computed with the three 
equations: linear long wave, linear Boussinesq, and Boussinesq equations for two 
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different grid lengths. Figures 5(a) and 5(b) compare the results with the results of 
the linear surfacewave equation. By using the theory of linear surface waves, which 
fully includes the dispersion effect, the true solution is obtained as follows. The 
initial profile is decomposed into the Fourier components, which are translated with 
their own celerity. Then, the component waves are summed up to reconstruct the 
wave profile. 

With the fine grid, the linear Boussinesq and Boussinesq equations almost 
coincide with the true solution, suggesting that the nonlinear term is not important 
in the propagation of a tsunami in deep ocean. The linear longwave theory deviates 
from the true solution in spite of the fine grid length. 

On the other hand, with the coarse grid, the linear Boussinesq equation gives a 
satisfactory result for the major wave but a poor agreeement for the oscillation 
behind the major wave. This means that a higher-order equation with a fine grid 
gives better results. On the contrary, it is interesting to notice that the linear 
longwave equation with the coarse grid yields a better result. It is better than a 
higher-order equation with the same grid length and also better than itself with the 
fine grid length. This is due to the numerical dispersion. 

3.3. Numerical Dispersion and Its Use 

When a differential equation is reduced to a difference equation, approximation 
errors are inevitably introduced. The property and magnitude of the errors depend 
on the type of original equation and discretization scheme. In the following 
discussion, the staggered leap-frog scheme is used. 
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Equation (2) for the linear long waves, 

Oq OM OM . ~ 2  071 

0t  + 8x-x =0 '  Ot + t'° ~xx = 0  (21 

is reduced to the following difference equation 

~ n +  1/2 __ . n  1/2 A t  
,+,/2 , ,~÷,/2+A, tMT+ ~ _ r  ~ m ~  ~ ~ 0,  

(3) 
At 

M T + '  - M n  + C°~ ~xx [ .n+?/2 __ .n~? /2 ]  = 0. 

Here, r/ is the water surface elevation, M is the discharge per unit width, Co is the 
celerity of linear long waves, x and t are the space and time coordinates, Ax and At 
are their grid lengths, the superscript n is the time grid number, and the subscript 
i is the spatial grid number. 

Equation (3) is an approximation of Equation (2). In reverse, if Equation (3) is 
regarded as the true equation, Equation (2) is an approximation having errors. On 
making corrections to include the first term of the errors, a better differential 
expression of Equation (3) than Equation (2) is given as follows 

02q Cg 02q C2 Ax2 (1 2 04/'I 
Ot 2 Ox = 12 - k ) ~ = 0, (4) 

in which k is the Courant number defined by k = Co At/Ax. The third term is the 
numerical dispersion. Although it is of the order of the square of the grid length, 
the accumulated effect becomes nonnegligible after a long travel. 

The linear Boussinesq equation, a higher-order longwave equation which has the 
physically required dispersion term, is given by 

°2q c 202n C2h2 04n-O, (5) 
8t 2 0x 2 2 0X 4 

in which h is the water depth. 
It is Imamura (1989) who proposed the use of numerical dispersion in place of 

physical dispersion, by setting equal the coefficients of the third terms in Equation 
(4) and (5). When the grid length is selected so that the following Imamura number 
is nearly equal to unity 

Im= Ax[1 -- (Co at /Ax)  2] 1/2/2h, (6) 

the linear longwave equation gives the same results as the linear Boussinesq 
equation, thereby saving much of the CPU time and computer memory. 

Since the dispersion effect is not a strong effect, it is not necessary to make the 
Imamura number strictly equal to unity.Figure 5(b), in which the Imamura number 
is 1.4, shows a good agreement between the true solution and the result of the linear 
longwave theory. 
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3.4. Coriol& Force 

In a simulation of a tsunami traveling the Pacific Ocean, the Coriolis force 
is necessarily included. However, in the 'ray method' often used to forecast 
the arrival time of a tsunami, no Coriolis force is taken into consideration. 
Figures 6(a) and 6(b) compare the contours of the highest water level in the 
Pacific Ocean computed for the 1969 Chilean tsunami with and without the Coriolis 
force. Due to the Coriolis force, the divergence and the convergence of the tsunami, 
i.e. its height as a result, are different, but the arrival time shows no large 
difference. 

4. Near-Shore and Run-Up Problems 

4.1. Nonlinearity and Equations 

Entering shallow water and approaching the shore, a tsunami increases in height, 
steepness, and curvature of water surface. Equations change according to the order 
of approximation required to describe it: the linear longwave theory, the shallow- 
water theory, the Peregrine equation (1967) and the Goto equation (1984). 

In seas deeper than 50 m, the linear longwave theory gives satisfactory results. As 
water depth decreases, the equations should be switched to the shallow-water 
theory with bottom friction. Generally speaking, the shallow-water theory is 
believed sufficient in tsunami simulation as far as the maximum run-up height and 
inundated area are concerned. It is, however, not sufficient in regard to the 
estimated wave force, which is closely related to wave profiles. 

Figure 7 compares two higher-order equations with hydraulic experiments. The 
Peregrine equation shows an early dispersion which accelerates the fission of waves 
and leads to an increase in height. Although the Goto equation gives better results 
in this example, the range of its application has not yet been examined. In addition, 
if a higher-order equation is extended to the two-dimensional problem, the compu- 
tation becomes extremely complicated. No attempt has been made to carry out a 
two-dimensional tsunami simulation with equations higher than the shallow-water 
theory. 

4.2. Examples of  Instability 

4.2.1. Instability near the Side Boundary. When the capacity of a computer is not 
large enough compared with the number of grid points and the time required for a 
full computation, it is a usual technique to divide the computation into two stages, 
the offshore computation and the near-shore computation. 

In the offshore computation, the entire region, from the tsunami source area to 
the land boundary, is covered with a net of coarse grids 3 and 5 km long for a 
near-field tsunami and about 10 km long for a far-field tsunami. The offshore 
computation assumes perfect reflection from the shoreline, the shape of which is 
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Fig. 6. Computed highest water level of the 1960 Chilean tsunami (a) with and (b) without the Coriolis 
force. 
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very roughly approximated. Computed results, therefore, reflect effects of topogra- 
phy on a large scale. In other words, the results are only reliable at points in deep 
sea far from the land boundary, where effects of run-up and small-scale topography 
become unimportant. 

The next stage is the near-shore computation, in which a net of fine grids varying 
from 1 km in deep sea to several tens of meters on land is used to allow observation 
of more limited areas, including areas of  special concern. The area in the nearshore 
computation is enclosed by four boundaries: the land boundary, the open-sea 
boundary (which is usually set in the neighborhood of  1000 m contour and nearly 
parallel to the land boundary), and two side boundaries normal to the open-sea 
boundary. When outputs of the offshore computation at the coarser grid points are 
inputted on the open-sea and side boundaries in the near-shore computation, linear 
interpolations are used to determine the input at the finer grid points interposed 
between the coarser grid points. These interpolated values are only approximations, 
not the true solution, which will be obtained with the near-shore computation. 
Before waves reflected from land arrive at the boundaries, no difference between the 
assumed and true boundary values give serious influence to the computation. Even 
when reflected waves arrive at the far boundaries in deep sea, no serious dis- 
crepancy is found between the assumed input and the results of  the detailed 
near-shore computation, because wave components reflecting effects of  small-scale 
topography rapidly die out. On the contrary, in the shallow sea, in particular in the 
neighborhood of  a corner where the major shoreline and the side boundary 
intersects with an acute angle, the reflection immediately arrives at the side 
boundary and often gives a considerable difference between the interpolated values 
and the computed results. This is the cause of an instability which will propagate 
rapidly and demolish the whole computation. Figure 8 shows an example of  this 
kind of  instability. 
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4.2.2. Instability at the Front. Figures 9(a) and 9(b) show examples of another 
instability. This oscillation occurs at the front of the second wave, which is running 
up against the back wash of the first wave. The second wave is retarded, its front 
surface steepens, and the oscillation occurs. With a smaller grid length, the length 
of instability waves is shorter. Evidently, this is a numerical instability dependent on 
the grid length used. 

A method to eliminate this instability was introduced by Goto and Shuto 
(1983a). They use an artificial diffusion which acts to cancel the instability waves 
only in the vicinity of the wave front. When the artificial diffusion acts well, the 
front surface becomes more gently sloping than the front should be. An artificial 
viscosity is used to amend this over-smoothing, at the expense of negligible 
dissipation of energy. Figure 9(c) is an example of this method. 

4.3. Moving Boundary Approximation 

A tsunami front runs up and down the land. It is not easy to express this moving 
boundary with the coordinate system in the Eulerian description. If equations in the 
Lagrangian description are used, the moving boundary condition can be expressed 
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Fig. 9. Oscillation induced at the wave front (a) with Ax = 12.5 m and (b) with Ax = 25 m. (c) Wave 
profiles without oscillations obtained using the artificial diffusion tenn. 

with no approximation (Shuto and Goto, 1978). Even with equations in the 
Eulerian description, a variable transformation in which the origin of the new 
coordinates is located at the front can easily express the moving boundary (Takeda, 
1984). It is unfortunate, however, that these two methods are well applicable only 
to one-dimensional problems, but poorly to any two-dimensional practical problem 
with complicated topography. 
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Fig. 10. Approximated moving boundary conditions. 

There are several approximate moving boundary conditions. In the leap-frog 
scheme, grid points are alternatively located for velocity and water level. Assume 
that the water level is already computed at a computation cell. Then, compare the 
water level with the bottom height of the next landward cell. If the water level is 
higher than the latter, the water may flow into the landward cell. Figure 10 explains 
the ways to estimate the inflow velocity or discharge. 

Iwasaki and Mano (1979) assume that the line connecting the water level and the 
bottom height gives the surface slope to the first-order approximation. 

Hibberd and Peregrine (1979) give a provisional water level in the dry cell on a 
linearly extrapolated water surface. Then, the discharge calculated with this provi- 
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sional water level gives the total amount of water into the dry cell and the water 
depth in the cell. If necessary, the computation will be repeated with the water level 
thus modified. 

Aida (1977) and Houston and Butler (1979) evaluate the discharge into the dry 
cell with broad-crested weir formulas in which the water depth above the bottom of 
the dry cell is substituted. 

These approximations are convenient to handle but introduce numerical errors 
(Goto and Shuto, 1983a). The run-up height computed with the Iwasaki-Mano 
method agrees with the theoretical solution with a 5% range of error if the 
following condition is satisfied 

Ax/o~gT 2 < 4 x 10 -4. (7) 

With the Aida method, the condition is given by 

Ax/o~gT 2 < 10 -3, (8) 

in which ~ is the angle of slope, g is the gravitational acceleration, Ax is the spatial 
grid length, and T is the wave period. 

In closing this section, a comment should be made on the widely-believed opinion 
that there is no difference between linear and shallow-water theories as far as the 
maximum run-up height is concerned. In the case of one-dimensional problems, the 
maximum run-ups are the same even though the two theories give different wave 
profiles. On the other hand, in a practical problem in which the land has a 
two-dimensional complicated topography, the lateral flow is induced and affected 
much by the difference in wave profile; this nonlinearity becomes important. 

4.4. Effect of Large Obstacles 

There are three methods to include the effects of building into tsunami simulation. 
The simple method in a hindcasting is to allot a large friction coefficient f, which 
ranges from 0.2 to 1, to the residential areas. This method is, however, not 
applicable to a forecasting, because an appropriate value of the friction coefficient 
is determined only after comparisons of the computed inundated area with the 
recorded. A more reasonable method which can be used in a forecasting is to 
determine an equivalent friction coefficient by summing up the drag of individual 
buildings (Goto and Shuto, 1983b). The best way is to use very fine grids in the city 
area. If the grids are less than 5 m wide, most of the large buildings can be 
expressed as impermeable boundaries. This inevitably increases the number of grid 
points. Fine grids also introduce the question of whether or not a map used in 
discretization is accurate enough for this detailed computation. 

In the neighborhood of a large obstacle covered by fine grids, the water flow can 
be numerically simulated. However, this leaves the question of whether the com- 
puted result is reliable. Figure 11 shows an example. Uda et al. (1988a) computed 
a tsunami that overflowed a model sand dune. They compared the results with the 
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measured data in hydraulic experiment. Agreement was poor just behind the dune 
where the water flow varied from supercritical to subcritical flows through a jump. 
Then, agreement recovered further behind the dune. 

5. Topics for Future Study 

5.1. Edge Bore 

After entering the North Akita coast 55 km long, the 1983 Nihonkai-Chubu 
earthquake tsunami was trapped along the slightly curved coast of a gentle sandy 
beach. In photos taken from a coastal hill, it was shown that edge bores hit the 
coast again and again. Hydraulic experiments carried out in the Public Works 
Research Institute (Uda et al., 1988b) revealed several interesting phenomena. An 
edge bore propagates sometimes following the ordinary refraction law and some- 
times neglecting the topography. A small difference in the boundary condition 
might introduce a big difference in wave profile, thus suggesting also a big difference 
in wave force. No theory and no simulation method are available now. 

5.2. Spread of the Floating Materials 

In the coastal areas, large quantities of oils and timbers are often stored and small 
fishing boats are often moored in the vicinity of harbors. The presence of these 
materials increases the danger to the surrounding areas if transported by a tsunami. 
In 1964, three towns in Alaska were heavily damaged by fires due to oil spills 
spread by the tsunami. On the occasions of huge tsunamis in the past, timbers, 
boats, and debris of broken houses changed into formidable destructive forces. 
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Goto developed numerical methods to estimate the spread of oil (1985) and 
timbers (1983). Figure 12 shows an example. However, these methods have not yet 
been checked with experimental or measured data. 

Although the impact of timbers needs an urgent study for practical design, there 
is only one paper (Matsutomi, 1989) on this problem. 

5.3. Computer Graphics 

A tsunami numerical simulation creates huge quantities of information, only a few 
of which are used at present. They are the maximum run-up along the coast, the 
inundation area, the time history of water level at several selected points, velocity 
vectors and water level contours at several time intervals, and so on. If a computer- 
graphic-aided video animation is introduced, the whole computed results would be 
efficiently used and would reveal the detailed dynamic movement of the tsunami 
from several viewpoints. The video animation may replace the hydraulic experiment 
on a large scale to some extent, if we keep in mind that the motion in the animation 
is limited by the theory used in the simulation. 

6. Concluding Remarks 

The numerical simulation is now used as a powerful means in the planning of 
tsunami defense works. A hindcasting can give the maximum run-up height and the 
corresponding flooded area within a 15% error. This does not, however, mean that 
tsunami waves are always correctly reproduced. From the generation to the final 
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effect, there is no exact way to calibrate the computed wave profiles, because of the 
shortage and poor resolution ability of tsunami gauges. The most urgent and 
necessary problem in developing simulation techniques is not the simulation itself 
but revealing the truth of tsunamis through observation networks of high accuracy. 
Tsunami gauges in deep sea are not enough in number to catch tsunamis in infancy, 
which will provide a way to check the present method of determination of the initial 
tsunami profile. Tide gauges near land should be improved to overcome their poor 
temporal resolution and possible scale-out in case of a huge tsunami, although there 
is a way to improve its hydraulic attenuation characteristics. 

As for currents and wave forces that are important from the viewpoint of 
structure design, comparisons of the computed results with hydraulic experiments 
of large scale may be the only possible way of calibration. 

If a forecasting is required, there are several problems to be solved in the near 
future. 
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