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The ordinal probit, univariate or multivariate, is a generalized linear model (GLM) structure 
that arises frequently in such disparate areas of statistical applications as medicine and econo- 
metrics. Despite the straightforwardness of its implementation using the Gibbs sampler, the 
ordinal probit may present challenges in obtaining satisfactory convergence. 

We present a multivariate Hastings-within-Gibbs update step for generating latent data and 
bin boundary parameters jointly, instead of individually from their respective full conditionals. 
When the latent data are parameters of interest, this algorithm substantially improves Gibbs 
sampler convergence for large datasets. We also discuss Monte Carlo Markov chain 
(MCMC) implementation of cumulative logit (proportional odds) and cumulative complemen- 
tary log-log (proportional hazards) models with latent data. 
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1. Introduction 

Ordinal response variables are very common in biostatisti- 
cal and econometric applications. For example, the out- 
come variable in a comparative trial of analgesics might 
be participants' self-report of change in pain status on a 
three-point scale consisting of 'improved', 'no change', 
and 'worse'. Generalized linear models with a cumulative 
link function are commonly used to analyse the relationship 
between an ordinal response variable and predictor vari- 
ables, which may be continuous, nominal, or ordinal. 
Assume that for each subject i we observe a response vari- 
able Wi, which may take on any one of k ordered values 
labelled 1 ,2 , . . . , k .  Values of a set of predictor variables 
xi are also observed. A cumulative link model (Agresti, 
1990) for these data would be of the form 

Pr( W~ ~jlx, /3) = G(Tj - x~/3), 

where G is the cumulative distribution function of a contin- 
uous random variable having positive density over the 
entire real line; 7j, J - - 0 ,  1 , . . .k ,  are ordered cutpoints 
dividing the real line into intervals; and/3 is a vector of coef- 
ficients of the predictors. If  G is the logistic c.d.f., then the 
model is a cumulative logit or proportional odds model, while 
0960-3174 �9 1996 Chapman & Hall 

if G is the extreme value (minimum) c.d.f., the model is 
called the cumulative complementary log-log or proportional 
hazards model. We will first consider the model in which G 
is the normal c.d.f .--the cumulative probit or ordinalprobit 
model. For each of the three link functions, maximum like- 
lihood methods may be used to get point estimates and 
asymptotic standard errors of/3 and % although the valid- 
ity of the asymptotic standard errors is questionable for 
small sample sizes. 

Albert and Chib (1993) present Bayesian implementa- 
tions of the ordinal probit model using the Gibbs sampler. 
They point out that the ordinal probit may be visualized in 
terms of an unobservable, or 'latent' continuous variable y~ 
corresponding to each observed variable wi. The value of 
each YT falls into one of k contiguous bins on the real line 
demarcated by the cutpoints 70,~/1,...,-,/k, and the 
observed values of the wi's are determined by the relation- 
ship wi = j  if y; E (Tj-l,'ffj]' Then the assumption that 
y~ ~., N(xTi/3, 1) makes this latent variable model equivalent 
to the cumulative probit. The variance of the unobservable 
yi*'s is assumed to be 1 for consistency with the standard 
normal c.d.f, link function. 

Applying the 'data augmentation' idea of Tanner and 
Wong (1987), Albert and Chib (1993) treat the unknown 
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y* values as additional parameters to be simulated in the 
Gibbs sampler. Once values are obtained for y*, the prob- 
lem of estimating/3 in the ordinal probit model simplifies 
to that of doing so in a standard normal linear model. If 
a flat prior is specified for/3 and "7, then the full conditional 
distributions for/3 and y*, as laid out by Albert and Chib, 
are: 

P(Y*I/3,'7, wi) = N(Ji /3, 1) (la) 

truncated to (%1-1,7wi], and 

P(/3lw, y*) = N( (XwX)- IxT  y ,  (Xa'X)-l). (lb) 

In order that the domain of the y*'s may be the entire real 
line, the extreme bin cutpoints, % and 7k, must be fixed 
at - e c  and +ee respectively. Carlin and Polson (1992) 
present a parametric approach to the remaining cutpoints 
that introduces additional assumptions into the ordinal 
probit model (although not into a binary probit). We pur- 
sue the more general approach of Albert and Chib. They 
note that, in order to make the parameters of the model 
identifiable, one additional cutpoint must be fixed; without 
loss of generality they fix 3'x at 0. (An alternative to fixing ~/1 
would be to omit the intercept from the model; however, we 
continue under the assumption that q'l is fixed.) Then the 
full conditional distribution for each variable 7j is uniform: 

P(T/lw,Y*,/3, {71,l r J} 

= U[max(max{y~ : wi =J}iTj 1), (lc) 

min(min{y* : wi = j + 1},7j+1)]. 

Albert and Chib used data augmentation in their imple- 
mentations of the ordinal probit solely so that the full con- 
ditionals in the Gibbs sampler would be standard densities. 
However, in some problems, the values of the latent vari- 
ables may be of interest. For example, Albert (1992) used 
latent data to estimate the polychoric correlation coefficient 
between two ordinal variables. Similarly, Cowles et al. 
(1996) used the values of a latent continuous variable 
underlying an ordinal response to estimate the correlations 
between the ordinal response and two continuous response 
variables. In the latter problem, the ordinal probit was 
just one component of a complex random-effects model 
with over 6000 parameters. In order to conserve computer 
resources, Cowles et al. (1996) sought a sampling algo- 
rithm that would provide good parameter estimates based 
on hundreds, rather than thousands or hundreds of thou- 
sands, of iterations. The present paper gives details of that 
algorithm. 

In Section 2 we demonstrate that, for an ordinal probit 
with latent data, convergence of the Gibbs sampler using 
univariate full conditionals may be slow when the sample 
size is large. In Section 3 we propose a multivariate 
Hastings-within-Gibbs update step that substantially accel- 
erates convergence for the three-bin problem, and in 

Section 4 we extend this method to an ordinal probit 
problem with more than three bins and to cumulative logit 
and cumulative complementary log-log models. Finally, in 
Section 5 we suggest areas for further work. 

2. Convergence of the ordinal probit 

Convergence of the Gibbs sampler implemented by simu- 
lating from the univariate full conditionals (lc), (la), and 
(lb) in sequence appears to depend on how full the bins 
for the y~'s are--that is, on the sample size. Convergence 
is very slow when the bins are full because the interval 
within which each ~/j must be generated from its full con- 
ditional (lc) is very narrow, so the cutpoint values can 
change very little between successive iterations. Until the 
cutpoints are in roughly the right places, the values of the 
yy's are distorted, so convergence of the 3's is also retarded. 

To simulate a simple example of a large-sample three- 
level ordinal probit, we generated N = 2000 data points 
from the model 

Y"; = 30 + 31xi + ci 

ei = N(0, 1) 

with 30 = 1 and 31 = -2.  We then calculated the 1/3 and 
2/3 quantiles of the y* and assigned a corresponding ordinal 
variable wi to each y] as follows: 

1, y~ in lowest tertile 

wi = 2, y* in middle tertile 

3, y~ in highest tertile 

Using the w's and x's from the simulated data, we ran five 
parallel Gibbs sampler chains for 6000 iterations. Figure 1 
shows resulting convergence plots for/3 and 72 (the only 
stochastic cutpoint in a three-bin ordinal probit). To assess 
Gibbs sampler convergence, for each parameter we com- 
puted Gelman and Rubin's (1992) 'shrink factor'--the 
factor by which variance in estimation is inflated due to 
stopping the chain after the number of iterations run 
instead of continuing sampling in the limit. Gelman and 
Rubin suggest running Gibbs sampler chains until the esti- 
mated shrink factors are less than about 1.1 for all param- 
eters of interest. (For a comparative review of this and other 
convergence diagnostics, see Cowles and Carlin, 1996). The 
median and 97.5th percentiles of the shrink factors are 
shown above the plots. The plots suggest that, after 
approximately 3000 iterations, all chains for the /3's are 
traversing the same sample space, and Gelman and Rubin's 
diagnostic perhaps implies that the last 3000 iterations may 
be used for estimation. 

Since we were primarily interested in algorithms that 
would converge rapidly, necessitating fewer than 1000 itera- 
tions, we next examined the first 800 iterations of these 
chains, shown in Fig. 2. Here, both the graphical impression 
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Fig. 1. Three-bin ordinal probit, univariate full conditionals, 6000 iterations 

of the five chains and Gelman and Rubin's diagnostics indi- 
cate that the chains have not mixed well, even for the/3's, let 
alone the cutpoint. Lag-1 autocorrelations were greater than 
0.99 for the cutpoint parameter, indicating extremely slow 
mixing of the sample paths for this parameter. 

Table 1 shows that parameter estimates based on the first 
800 iterations are not good and that even a careful applied 
user of the Gibbs sampler might not detect this. In comput- 
ing standard errors for Table 1, we used two common 
approaches to adjusting for correlations in the Gibbs 
sampler output-- the batch means method (see, for example, 
Ripley, 1987, Section 6.2) and a method based on spectral 

analysis (see, for example, Geweke, 1992, Geyer 1992). As 
shown in Table 1, the estimate of/31 is more than two 
standard errors away from the true value of -2.0 in all 
chains. If the truth had been that there was no linear 
relationship between the predictor and the ordinal 
response--that is, if the true value of f l l  had been zero--  
bias in estimation even of this small magnitude would 
have led to erroneous conclusions of an inverse relationship 
between x and w. Since with the batch means method, a rule 
of thumb is to use batch sizes that lead to autocorrelations 
between the batch means of less than 0.05, it is clear from 
the 'Lag-1 Autocorrelations' columns in Table 1 that too 
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Fig.  2. Three-bin ordinal probit, univariate full conditionals, 800 iterations 
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Table 1. Means and standard errors estimated from Gibbs samples, ordinal probit model, iterations 401-800 

Pooled sample of 5 chains, 2000 iterates 

Batch means method 

25 batches, size 80 10 batches, size 200 

Naive Lag 1 Lag 1 
Parameter Mean Std Err a Std Err Autocorr b Std Err Autocorr 

/30 0.872 0.004 0.040 0.870 
/31 - 1.888 0.004 0.040 0.874 
72 1.731 0.009 0.080 0.870 

Individual chains, 400 iterates each 
25 batches, size 20 

0.066 0.691 
0.065 0.705 
0.129 0.697 

10 batches, size 50 

Naive Lag 1 
Chain Parameter Mean Std Err Std Err Antocorr 

Lag 1 Spectral 
Std Err Autocorr NSE C 

1 /30 0.599 0.003 0.011 0.848 0.018 0.685 0.006 
/3l - 1.623 0.003 0.010 0.586 0.014 0.618 0.006 
"/2 1.193 0.005 0.020 0.882 0.032 0.703 0.010 

2 /30 0.736 0.002 0.006 0.771 0.010 0.624 0.004 
/31 - 1.749 0.003 0.009 0.587 0.014 0.289 0.005 
72 1.466 0.003 0.011 0.859 0.018 0.673 0.006 

3 /30 0.856 0.002 0.005 0.788 0.008 0.609 0.003 
/31 - 1.869 0.002 0.007 0.322 0.008 0.299 0.005 
72 1.700 0.002 0.009 0.893 0.015 0.743 0.005 

4 /30 1.022 0.002 0.004 0.443 0.006 0.368 0.003 
#ix -2.030 0.003 0.007 0.175 0.007 -0.443 0.006 
72 2.020 0.001 0.005 0.834 0.008 0.561 0.003 

5 /30 1.145 0.002 0.004 0.416 0.005 0.591 0.003 
/31 -2.166 0.002 0.006 0.166 0.008 0.011 0.005 
72 2.275 0.002 0.006 0.886 0.010 0.772 0.003 

aAssumes independent samples. 
bBetween means of batches. 
3Numeric standard error: see for example Geweke (1992). 

few i terat ions have been run for  the ba tch  means  me thod  o f  
es t imat ing s tandard  errors  to be t rus tworthy.  However ,  the 
lag-1 autocorre la t ions  between the batches o f  larger sizes 
are less than  0.05 for/31 in chain 5. Thus,  a user who  had  
run  only a single chain for  this p rob lem,  obta in ing  results 
as in chain 5, and who had  mon i to red  convergence only 
of/31 since it is the only pa rame te r  o f  interest, might  well 
have been fooled into concluding sat isfactory convergence 
and  repor t ing p o o r  estimates.  

3. A multivariate Hastings-within-Gibbs update step 
for a three-level ordinal probit 

Liu et aL (1994) show that  'grouping '  or  'blocking'  compo-  
nents usually improves the efficiency of  a Gibbs  sampler. 
Accordingly, we reasoned that  generating the cutpoint  72 
together with the y*'s might solve the problem of  slow mixing 
caused by generating 72 conditional on the y*'s. The joint full 

conditional of  y* and "/2 is easily determined f rom the identity: 

p(72,y*l/3, w) = P(72Ifl, w)p(Y*t72,/3, w), (3.1a) 

where I ( ,  ) is the indicator  function. N o w  

p(72[fl, w) ~ IX ~(-x~gl) 1-I ['I'(72 - xTr - r162 
i:wi=l i:wi=2 

• H [1 - 9I'(7 2 - xmfl)] x I ( 7  2 E (0, oo)) 
i:wi=3 

and 

] 

• - -xTm] 

(3.1b) 
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where �9 denotes the standard normal cumulative distribution 
function and ~b the standard normal density. The right-hand 
side of (3.1b) is the product of truncated normal densities. 
The joint full conditional of '72 together with the y* 's is 

P(72,Y*I/3, w) ~ II+(yt -x7/3) x 1(,72 E (0,~)] .  (3.1c) 
i 

Since (3. lc) is a not a standard, normalized joint density, 
we chose to use a multivariate version of  the Metropolis-  
Hastings algorithm (Metropolis et al., 1953; Hastings, 
1970), which Tierney (1994) and Muller (1994) propose 
using within the Gibbs sampler for sampling from nonstan- 
dard full conditionals. To sample from target density f 
requires selecting a proposal density g(v/u) from which it 
is easy to sample. At each iteration i, starting with the value 
u (i-i) from the previous iteration, a new candidate v is gen- 
erated f rom g(v/u(i-1)). With probability 

a = m i n f l  f ( v ) g ( u ( i - 1 ) l v )  ) (3.2) 
' f(u(i-1))g(vlt/(i-1)) ' 

v is accepted, i.e. u (;) is set equal to v; otherwise u (;) is set 
equal to u (;-1). Hastings (1970) showed that this algorithm 
produces a sequence that converges in distribution to f .  

In constructing a suitable joint proposal density for "72 
and the y*'s we factored it in the same way as we had fac- 
tored the joint conditional density: 

g(~2,new, Y*ew I'Y2,ol~, Yo~,/3, w) 

= g(72,new 1'72,old, Yold,/3, w)g(Ynew ]'72,new, '72,old, Yo~d,/3, W) 

(('72new -- '72old)/ff'~) r -- x/T/3) 

i:wi=l 

�9 T 
• r l  s x,-/3) 

 ('72new - xT/3) - 

�9 T 
~(Yinew - -  Xi/3) 

x H l_-~--~2ne-~_--~-/T/3) 
i:wi=3 

The first term in the above product is a Normal ('72 old, or2) den- 
sity, truncated to (0, ee) to keep the cutpoints in the correct 
order�9 An appropriate value for ~ can be chosen to obtain 
an acceptance rate of approximately 0.44, which Gelman et 
aL (1994) found to be optimal for univariate Metropolis-Hast- 
ings chains of certain types. With this candidate-generating den- 
sity, the acceptance probability a is equal to min(1, R), where 

(I)('72~ ]1" ~('72new ~ xT/3) ~ (~(--xT/3) 

x l-I  1 - ~('Y2new - xT/3) 
1 - -  f f ( ' 7 2 o 1 0  - -  X ~ / 3 )  " ( 3 . 3 )  

i ~wi=3 

The term in (3�9 corresponding to i:wi = 1 is omitted 
because it is equal to 1. Accordingly an efficient multi- 
variate Metropolis-Hastings-within-Gibbs algorithm can 
be implemented as follows to generate new values '7~k) 
and y,(k) at iteration k of  the Gibbs sampler: 

1. Generate a candidate value '72,ew from a Normal 
('7~k-t), ~r2) density, truncated to (0, c~). 

2. Evaluate the quantity R in (3.3) to get the acceptance 
probability a. 

3. With probability a, set '7~k)= '72n~w and generate 
new y*(k)'s from their usual full conditionals (la), which 
will de n (k) (k) (k 1) �9 p e d  on the new '72 �9 Otherwise, set "72 = '72 - and 
y~(k) = yy~-l) for all observations i. 
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Fig. 3. Three-bin ordinal probit, multivariate Hastings, 800 iterations 
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Since the acceptance probability depends only on the old 
and new values of  72 and not on the y*'s, in step 3 new 
y*'s need not be generated in any iteration for which the 
new value of  72 is not accepted. 

To complete the Gibbs sampler iteration,/3 (k) is generated 
from its standard full conditional (lb). Note that, despite the 
fact that new y*'s are not generated at every iteration, the 
resulting Gibbs sampler differs from the 'collapsed' Gibbs 
sampler of Liu et al. (1994) in that, since the full conditional 
for /3  depends on the y*'s, generation of the y*'s cannot be 
omitted altogether. Since we have assumed a need for samples 
from the distributions of the latent data, that is just as well. 

This algorithm was applied to the same simulated dataset 
2 described in Section 2. A value of 0.01 was used for cr 7 

in the truncated normal proposal density for 72, producing 
an acceptance ra te  of 0.43--only 0.01 different from the 
rate recommended by Gelman et al. (1994). Figure 3 shows 
convergence plots and statistics for 800 iterations, which 

may be compared to those in Fig. 2. Despite the fact 
that lag-1 autocorrelations within chains still are high, Gel- 
man and Rubin's shrink factors and the graphical impres- 
sion of all five chains suggest very rapid convergence. 
Indeed Table 2 shows that estimation of/31 based on either 
the five chains pooled or on any single chain is very good. 

We also considered other MCMC algorithms for this 
problem. In extremely high-dimensional ordinal probit 
models like the one of interest to us (with very large 
sample size and requiring generation of latent data), it 
is not practical to apply a single multivariate generation 
algorithm such as Hastings (1970), Hit and Run (Belisle 
et al., 1993), or Adaptive Direction Sampling (Gilks et al. 
1994), to the unpartitioned joint posterior distribution of  
the latent data, regression coefficients, and cutpoints. A 
feasible alternative is a 'collapsed' Gibbs sampler (Liu 
et al., 1994), in which the parameters are generated in two 
groups as follows: 

Table 2. Means and standard errors estimated from Gibbs samples ordinal probit model, multivariate Hastings update step. Iterations 401-800 

Pooled sample of  5 chains, 2000 iterates 

Batch means method 

25 batches, size 80 10 batches, size 200 

Naive Lag 1 Lag 1 
Parameter Mean Std Err a Std Err Autocorr b Std Err Autocorr 

/3o 0.003 0.001 0.005 0.058 0.0004 -0.317 
/31 -2.000 0.001 0.006 0.010 0.005 -0.144 
~2 1.967 0.002 0.007 0.076 0.006 -0.259 

Individual chains, 400 iterates each 
25 batches, size 20 10 batches, size 50 

Naive Lag 1 Lag 1 Spectral 
Chain Parameter Mean Std Err Std Err Autocorr Std Err Autocorr NSE c 

1 /3o 0.986 0.002 0.007 0.542 0.010 0.383 0.005 
/31 - 1.992 0.002 0.009 0.484 0.013 -0.025 0.006 
72 1.961 0.004 0.012 0.532 0.016 0.445 0.008 

2 /3o 1.002 0.002 0.005 0.362 0.006 0.172 0.004 
/31 - 1.998 0.002 0.007 0.411 0.009 -0.140 0.005 
'~2 1.979 0.003 0.009 0.509 0.012 0.071 0.006 

3 /3o 0.986 0.002 0.008 0.565 0.010 0.123 0.005 
/3x -1.996 0.003 0.010 0.376 0.013 0.363 0.007 
~'2 1.953 0.003 0.012 0.455 0.015 0.204 0.008 

4 /30 0.995 0.002 0.007 0.555 0.010 -0.095 0.005 
/31 -2.005 0.003 0.010 0.484 0.012 0.206 0.007 
"/2 1.974 0.004 0.013 0.633 0.018 0.102 0.008 

5 /3o 0.995 0.002 0.006 0.430 0.009 0.240 0.004 
/31 -2.009 0.003 0.008 0.415 0.010 0.104 0.006 
72 1.969 0.003 0.010 0.466 0.015 0.228 0.006 

aAssumes independent samples. 
bBetween means of batches. 
CNumeric standard error. See for example Geweke (1992). 
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1. Use one of the multivariate methods mentioned above 
to generate /3 and 9'2 together from their joint posterior 
distribution, 

p(/3,9'zlX, W) oc IX +(-xT/3) i:wi= 1 
x IX [+(9'2 - x/T/3) -- r (3.4) 

i:wi=2 

• H [1 - ~I'(72 - xT/3)] • 1(9'2 E (0, oo)). 
i:wi=3 

2. Generate the latent data points from their standard full 
conditionals (la). (This step could be omitted if values of 
the latent data were not needed.) 

We applied this algorithm to our simulated data, using the 
Hastings algorithm for step 1. The proposal density was 
multivariate normal with the first component, correspond- 
ing to the cutpoint, truncated to the positive line and with 
covariance matrix proportional to the sample covariance 
matrix obtained among the Gibbs iterates for 9'2,/30, and 
/31 in the chains shown in Fig. 3. The multiplicative constant 
for the covariance matrix in the proposal density was cho- 
sen to optimize the acceptance rate for a three-dimensional 
problem according to Gelman et al. (1994). Convergence 
plots shown in Fig. 4 for five chains run for 800 iterations 
using the collapsed algorithm indicate that the sample paths 
for each parameter take a few iterations longer to mix with 
this sampler than with the multivariate Hastings-within- 
Gibbs but that the Gelman and Rubin shrink factors are 

G&R: .50 = 1.08, .975 = 1.22 G&R: .50 = 1.05, .975 = 1.12 

C o w l e s  

slightly smaller with the collapsed sampler. We prefer the 
multivariate Hastings-within-Gibbs approach because it 
takes slightly less computer time for the same number of 
iterations and does not require higher-dimensional propo- 
sal densities when the number of predictor variables 
increases. 

4. Extension to other ordinal models 

4.1. Ordinal probit problems with more than three levels of 
the response variable 

To determine whether the same algorithm could be 
extended for use in ordinal probit problems with more 
than three bins, we simulated a dataset in exactly the 
same manner as in Section 2 except that the y*'s were 
divided into septiles and the corresponding wi's took on 
values from 1 up to 7. To analyse this seven-bin problem, 
five cutpoint parameters must be estimated. For each para- 
meter, Fig. 5 shows Gelman and Rubin's shrink factors 
above plots of traces of five parallel Gibbs sampler chains 
run for 1000 iterations using all univariate full conditionals. 

To apply our multivariate Hastings update algorithm in 
this setting, at iteration k of the Gibbs sampler we generated 
a vector of candidate cutpoint values, 7]new,J = 2 , . . . ,  6, each 
from the truncated normal density 

(k-l)  (k-l)  
gi,9'jnew 9'j ,9 ' j+l , 9"j 1 new) = N(9 ' )  k - l )  , 0"27) 

(4.1) 
truncated to the i n t e r v a l  ('~i-lnew, /j+l ]" 

G&R: .50 = 1.04, .975 = t.1 G&R: .50 = 1.07, .975 = 1.19 

+ i If I to 

m~ =~ ' + "  " 7 + +~ o~ ++ +''++I 
+ +I,+ +'+'.!,l 1 +++ 

"++ 7 '  
looo <~ 2+0 4+0 6+o 86o 16oo ~ ~ ~ - ~  looo 
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Fig.  6. Seven-bin ordinal probit, multivariate Hastings, 1000 iterations 
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The acceptance probability for the vector of new cutpoints 
was min(1, R) where 

6 (I)((~)+l')(k-l) _ ^ , , ' t / ' ~ ( k - 1 )  __ f f~ ( (  ( k - l )  77- ' ) ) / f f7)  
R -- 11 (k-O 

ff~(Tw, new - -  X T / 3 )  - -  ~ ( T w i - 1  new - -  x T / 3 )  1-1 • 
11 ~ - - _ - ~ - - - ~ - - - ~ - g ~  

�9 ~ ( ~ / w i  - -  X i / 3 )  - -  r  - -  X i / 3 )  

where 70, 71, and 77 are fixed at -o~,  0, and +oo respec- 
tively. Figure 6 shows plots and Gelman and Rubin shrink 
factors for five parallel chains run using this algorithm on 
the simulated dataset for the seven-level ordinal probit. 
Within-chain autocorrelations (not shown) are much smaller 
with the multivariate Hastings algorithm than when the 
univariate full conditionals are used 

4.2. Cumulative logit and cumulative complementary log-log 
models 

It is possible to implement cumulative logit and cumulative 
complementary log-log models with the Gibbs sampler 
using latent variables. Random variates from truncated 
logistic and extreme value distributions (needed for the 
errors of the latent variables in the two respective models) 

are easily generated by the inversion method. As in the 
ordinal probit, latent data enable generation of the cutpoint 
parameters from the same simple full conditional shown in 
(lc). However, in cumulative logit and complementary log- 
log models, the full conditional for/3 is not a standard form 
even when latent data are used. Adaptive rejection sam- 
piing (see Gilks and Wild, 1992, and, for an application 
to generalized linear models, Dellaportas and Smith, 
1993) or the Metropolis algorithm may be used within the 
Gibbs sampler to generate/3 from the univariate full condi- 
tional P(/3IT, Y*) o~ l - I i f (Y~  - xT  /3), wheref is the standard 
logistic or extreme value density. 

To evaluate the performance of the Gibbs sampler in 
these models, we simulated two new datasets of 2000 data 
points each, exactly as we had for the three-bin ordinal pro- 
bit in Section 2 except that the errors were generated from 
the standard logistic distribution and the standard extreme 
value (minimum) distribution respectively. We then ran two 
Gibbs samplers for each model, the first using univariate 
full conditionals and the second using our multivariate 
Hastings-within-Gibbs algorithm to generate the cutpoint 
and the latent data from their joint full conditional. As 
shown in Fig. 7, the results are very similar to those for 
the ordinal probit, with much faster convergence with the 

oe,  i 

.," o 

i o 

"t 

o 
c6 

o,i 

8o, 
.~ to 

Univ. G&R = 7 . 4 9 , 1 3 . 3 6  

\ 
\ 

0 200 400 600 800 
Iteration 

Univ. G&R = 5 . 4 , 8 . 9  

" ' . - , . . ~  

".... 

200 400 600 800 
Iteration 

Univ. G&R = 1 0 . 5 2 , 2 5 . 3 9  

-~- "-'- -'~. ~ ~ _ ~ _ _  

. .  . . . . .  . . - - .  

200 400 600 800 
Iteration 

Hastings G&R = 1 . 0 8 , 1 . 2  

; /  
0 200 400 600 800 

Iteration 

Hastings G&R = 1 . 0 9 , 1 . 2 2  

. . l •  
%% "; 

,r ,,re'/ 
0 200 400 600 800 

Iteration 

Hastings G&R = 1 . 1 1 , 1 . 2 7  

0 20o 4oo coo ItOO 
Iteration 

Un v G&R = 1 2 . 5 6 , 2 1 . 2 2  

o. 
"7 

in 

Hastings G&R = 1 . 0 4 , 1 . 1  

i; 

oo. 
0 200 400 600 800 200 400 600 800 

Iteration Iteration 

Univ. G&R = 8 . 7 6 , 1 4 . 8 7  Hastings G&R = 1 . 1 5 , 1 . 3 7  

~4 
200 4OO 600 8OO 

Iteration 

Univ. G&R -- 1 8 . 9 7 , 3 7 . 3 2  

Fig. 7. Three-bin cumulative logit and complementary log-log models, 800 

0 200 400 
Iteration 

iterations 

L 

J~V 
' /  

0 200 400 600 800 
Iteration 

Hastings G&R = 1 .04 ,1 .1  

Ol 

200 400 600 800 
Iteration 



110 Cowles 

new algorithm. However, in cumulative logit and comple- 
mentary log-log models, it is more efficient (and no more 
difficult) to use a collapsed Gibbs sampler as described at 
the end of  Section 3, with the cumulative normal distribu- 
tion in (3.4) replaced by the cumulative logistic or cumula- 
tive extreme value distribution. 

Institute of  Allergy and Infectious Diseases FIRST Award 
1-R29-AI33466 supported this work in part. In addition, 
Dr Ming-Hui Chen and two reviewers provided helpful 
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References 

5. Discussion and areas for further research 

It is clear that our simple method of generating from the 
joint full conditional of the cutpoint parameters and the 
latent data accelerates Gibbs sampler convergence for 
cumulative-link GLMs applied to large datasets. The algo- 
rithm is very general. It is always possible to factor a joint 
full conditional as in (3. l a): 

p(a, blrest) = p(a[rest)p(b[a, rest), 

where a and b may be either vector or scalar parameters and 
'rest' refers to all the other parameters in the model. If the joint 
proposal density is then constructed as the product of a suita- 
ble proposal density for a times the full conditional of b: 

g(anew, bne w laold, bold, rest) 

= g(anew laold, rest)p(bnew lanew, rest), 

then the full conditional of b will cancel out of the accep- 
tance probability c~. Thus this algorithm would be easy to 
implement when the marginal conditional of a is easy to 
derive and the full conditional of b (which is sampled in 
exactly the same way with this algorithm as in the usual 
Gibbs sampler) is easy to sample. It would be efficient 
when the full conditional of a is slower-mixing than the 
joint full conditional of a and b, particularly if, in addition, 
the full conditional o fb  is slow to sample so that it is advan- 
tageous not to have to sample from it when a new candidate 
for a is rejected. All of these factors hold in the ordinal pro- 
bit. Further work is needed to identify other types of  prob- 
lems in which the same simple algorithm would be useful. 

The Gibbs sampler probably is the most popular MCMC 
method at present. However, as illustrated in this paper, 
there are problems for which the pure Gibbs sampler with 
exclusively univariate full conditionals is poorly suited. 
For  such problems, other MCMC algorithms, or hybrids 
of algorithms, must be employed. Even with faster algo- 
rithms, there is no way of  determining with certainty by 
examining or analysing output from a Monte Carlo Mar- 
kov chain that the samples are representative of  the true 
underlying stationary distribution. It is to be hoped that 
progress will be made in the area of determining theoretical 
convergence bounds for generalized linear models. 
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