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Abstract. In this paper, the planar dynamics of a nonlinearly constrained pipe conveying fluid is examined 
numerically, by considering the full nonlinear equation of motions and a refined trilinear-spring model for the 
impact constraints - completing the circle of several studies on the subject. The effect of varying system parameters 
is investigated for the two-degree-of-freedom (N = 2) model of the system, followed by less extensive similar 
investigations for N --- 3 and 4. Phase portraits, bifurcation diagrams, power spectra and Lyapunov exponents are 
presented for a selected set of system parameters, showing some rather interesting, and sometimes unexpected, 
results. The numerical results are compared with experimental ones obtained previously. It is found that in the 
parameter space that includes N, there exists a subspace wherein excellent qualitative, and reasonably good 
(N ---- 2) to excellent (N ---- 4) quantitative agreement with experiment. In the latter case, excellent agreement is 
not only obtained in the threshold flow velocities (u) for the key bifurcations, but the inclusion of the nonlinear 
terms improves agreement with experiment in terms of amplitudes of motion and by capturing features of behaviour 
not hitherto predicted by theory. 
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1. Introduction 

The linear and nonlinear dynamics of  pipes conveying fluid has been studied quite extensively, 
both theoretically and experimentally, over the past thirty years. In a recent survey of  the 
subject [1], over two hundred papers on various aspects of the problem were reviewed. 

In recent years, increasing attention has been devoted to nonlinear aspects of the dynamical  
behaviour of  the system; notable contributions were made by Holmes [2], Lundgren et  al. 

[3], Rousselet and Herrmann [4] and Bajaj et  al. [5]. From these and several other studies, 
it is clear that the basic system of  a pipe conveying fluid and variants thereof are capable of  
displaying an extremely rich and variegated dynamical behaviour. Thus, the pipe conveying 
fluid is fast becoming a premier paradigm in dynamics, on a par with, but richer than, the 
classical problem of  a column subjected to compressive loading [1]. 

In the past three years, some interest was shown to the question of  whether this system 
is capable of  displaying chaotic behaviour. Variants of the basic system were considered, 
modified to include strong nonlinear forces, known to be conducive to chaos. Thus, Tang and 
Dowell [6] considered a cantilevered pipe with an inset steel strip and equispaced magnets on 
either side, buckling the pipe into one or the other potential well thus generated. Once the flow 
velocity is sufficiently above the threshold for flutter about the buckled state, chaotic motions 
were shown to be possible. Another variant of the basic system was studied by Pa'idoussis and 
Moon [7], involving motion-limiting restraints on which the cantilevered pipe would impact, 
once the post-Hopf limit-cycle motion becomes sufficiently large as the flow velocity is 
increased. It was shown, both theoretically and experimentally, that chaotic oscillations occur 
at sufficiently high flow velocities. This, by the way, was the first closely-knit theoretical- 
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Fig. I. (a) Schematic of the system; (b) scheme for achieving planar motions with steel strip embedded in the pipe, 
also showing motion constraining bars. 

experimental study of chaotic dynamics of an autonomous mechanical system. 
In the experiments [7], motions were made to be planar by embedding a steel strip into 

the flexible pipe. The motion-limiting restraints were parallel bars on either side of the pipe, 
much stiffer than the pipe itself (Figure 1); hence, a good representation of the stiffness of 
these constraints was by a trilinear spring: zero stiffness in the gap, and a large stiffness once 
contact with the restraining bars was made. In the theoretical component of this study three 
principal idealizations were introduced: (i) because the constraining bars were not far apart 
and the amplitude of motion is therefore not large, the linearized equations of motion [8], were 
utilized, apart from the nonlinear impact force term; (ii) a two-mode Galerkin discretization 
of the equations of motion was used for analysis; (iii) the trilinear spring was idealized by 
a cubic one, which has the advantage of being represented by an analytic function, hence 
permitting the calculation of Lyapanov exponents - thereby being able to prove conclusively 
that the chaotic-looking oscillations obtained numerically, after a period-doubling cascade, 
were indeed chaotic. Despite these idealizations, the correspondence between theoretical and 
experimental results was remarkably close qualitatively; but, quantitatively, there remained a 
fair margin for possible improvement. The problem was further studied theoretically with the 
same equations of motion by Pa'idoussis et al. [9], and the route to chaos more clearly defined. 

One of the practical limitations associated with the analytical model utilized in [7] and 
[9] was the following: it was not possible to undertake numerical simulations with the cor- 
rect (high) value of impact stiffness (and its equivalent cubic-stiffness counterpart) and the 
correct axial location of the impact constraint, for the solution would then diverge ("blow 
up" in common language). This was attributed to the inability of the two-degree-of-freedom 
approximation to represent the physical system. Nevertheless, parametric studies showed that, 



Nonlinear Analysis of a Constrained Pipe Conveying Fluid 657 

as these parameters were varied and were made to approach the experimental ones, short of 
blowing up, the qualitative dynamics remained the same; so, this aspect was not considered 
to be of undue concern. 

Analysis of typical experimental signals yielded an estimate for the fractal dimension 
of 3.2 in the chaotic regime [10], suggesting that, although two-degree-of-freedom (d.o.f.) 
modelling may be reasonable, four or five d.o.f, models may be necessary to capture all 
essential features of the dynamics. This idea was pursued by Paidoussis et al. [11], still 
utilizing the linearized basic equations of motion, but (i) with the number of degrees of 
freedom, N, in the discretization varied between two and seven, (ii) with a modified trilinear 
spring model for the impact restraints. It was found that for N > 2 it was possible to do 
simulations with the correct location of the restraint and value of the impact stiffness, without 
the solution blowing up. Furthermore, with N = 4 and 5, excellent agreement could be 
obtained between theoretical and experimental threshold flow velocities for the Hopf and 
period-doubling bifurcations, as well as for the onset of chaos: of the order of 10% or better. 

Although better agreement between theory and experiment could hardly be expected, it 
was nevertheless decided to undertake the present study, which completes the circle of these 
studies by examining the effect of other than restraint-related nonlinearities in the equations of 
motion on the dynamics of the system - even when the overall amplitudes are not excessively 
large. Hence, the full nonlinear equations of motion will be utilized and the results compared 
to those in the foregoing studies. Some rather interesting and unexpected results have been 
obtained, as the reader will see in what follows. 

2. The Analytical Model 

2.1. THE EQUATION OF MOTION 

The system under consideration consists of a tubular beam of length L, internal cross-sectional 
area A, mass per unit length m, flexural rigidity E I  and coefficient of Kelvin-Voigt damping 
a, conveying a fluid of mass M per unit length with an axial velocity U. The pipe is assumed 
to be initially along the x-axis (in the direction of gravity) and to oscillate in the (x, y) plane; 
free motions of the pipe are restrained by motion-limiting constraints as shown in Figure 1. 

The nonlinear equation of motion of a vertical cantilevered pipe [3, 12] was modified to 
take into account the presence of motion limiting restraints [9]; for U not varying with time, 
it can be written as 

E I  ( y ' '  + a{]"") + 2MU{]' + MU2y " - (m + M) g(L - s) y" + (m + M)gy'  

+ (m + M) ~ + NI(y) + N2(y) = O, 

where 

NI( ) 
X2(y) 

(1) 

= F ( y )  - 

= y" yl2 [MU 2 - (m M) - 2MU~)' y,2 + 3 + g(L s)] 

+ + g (m + M) y,y,2 + E I  (yn,,y,2 + 4y'y"y" + y,3) 

- y" (m + M)  @,2 + y,~),) ds ds + (2MUy'~)' + MU2y'y '') ds 

/o + y' (m + M)  (~),2 + y,~,) ds ; 
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F(y)  is the nonlinear force on the restraint due to impact, and ( ) and ( )' denote the 
derivative with respect to time, t, and the curvilinear coordinate along the centreline of the 
pipe, s, respectively. In equation (1), y(s, t) is the lateral deflection of the pipe, 6 is the Dirac 
delta function and 9 is the acceleration due to gravity. Thus, in this case, the nonlinearities 
in the equation of motion are not only associated with the motion constraints but also with 
flow-dependent, gravitational and flexural terms. Therefore, equation (1) is also valid for large 
amplitude motions. 

Introducing next the same nondimensional quantities as in the linear case, 

I 1 ( ~ = ~ ,  ~ = ~ ,  ~= - -  ~ =  - -  
m L 2 ' L 2 ' 

M ½ m + M  L39, ~ -  M '  f ( ~ ) - - -  
u = -E-] UL, "7-  E I  m ~ - -  E I  ' (2) 

and removing the nonlinear inertial terms by a perturbation method [13], equation (1) may be 
rewritten in dimensionless form as follows: 

~g/"' + ~ "  + 2u x / ~ '  + W" [ u2 - ~(1 - ~)1 + ~r/' + / )  + N3 (r/) + N4(~) = 0 ,  (3) 

where ( ) and ( )' are now derivatives with respect to nondimensional ~ and r, and 

= f ( v )  ~(~  - ~ b ) ,  

2U V/-~]t?] t2 -{-/lit [2/2 3 ")/(1 -- ~)] ~]12 1 ,.)/7713 3r/~"r/" 7] 1/3 = - - 7  + + 

+ r/ fO ~ {r] '2--2u V / ~ l ' ~ u - r l ' ~ l  ''' [U2 -- 7(1--  ~)] +rlttr] 'm} d~ 

__ ?./U f l fO' {?:]ti--2U ~r l t~ lu - -z l t r lm [// '2--7(1 - ~ ) ]  -1- r/ '~u' '} d~d~ 

I' - r]" ( v/-~ } L--q'r/2 + 2u . , r / / / +  u2r/r/' + r / ' r / ' ' ,  d~. 

N3(V) 

N 4 ( ~ )  

2.2. DISCRETIZATION 

The infinite dimensional model is discretized by Galerkin's technique, with the cantilever 
beam eigenfunctions, Cr (~), being used as a suitable set of base functions and qr (r) being the 
corresponding generalized coordinates; thus, 

N 
(¢, ¢)= Z ¢ ~ ( ¢ )  q~(~)  • 

r - - - - I  

(4) 

qi q- cijqj -F kijqj + o~ijkl qjqkql + ~ijkl qjqk(tl + "Tijkl qj(tkql = O, (5) 

where cij, kij, Ctijkl, ~ijkl and "~ijkl are coefficients computed from the integrals of the 
eigenfunctions ¢i(~), analytically [8] or numerically [14]; repeated indices implicitly follow 
the summation convention. 

Substituting expression (4) into (3), multiplying by ¢i(() and integrating from 0 to 1, leads to 
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For purposes of numerical simulation, equation (5) is reduced to its first-order form, 

i.e. 

= [A] y + g(y)  , (7) 

where pi = (ti, 9 is a third order polynomial function, and [A] = [A(u, 7,/3)] is a 2 N  × 2 N  
matrix. In equation (6), {q} and {p} are the generalized displacement and velocity vectors, so 
that the deflection of the pipe and its velocity at any point ( may be expressed easily as 

N N 
= = • 

r = l  r----1 

2.3. M O D E L L I N G  OF THE IMPACT AND D A M P I N G  FOR C ES 

Various mathematical models may be used to represent properly the impact forces. The first 
approximation used by Pa'idoussis et al. [7,9] was to model the restraining forces by a cubic 
spring, i.e. f(r/) = ~r/3. A more realistic representation was that utilized by Paidoussis et al. 
[11] involving a 'smoothened' trilinear spring model, fQ/) = t % { r / -  0.5(IV + r/b,~[ -- [71 -- 
%n J)}'~. This enables to represent adequately the free gap (in which the constraints are zero) 
and to smoothen the sharp discontinuity at I~7] = [71b[. Here, the 'cubic' (n = 3) trilinear model 
is chosen, ~3 = 5.6 x 10 6 and 7/53 --- 0.044, to represent the experimental constraints; the 
force-displacement curves of the real and the idealized constraints are shown in Figure 2(a,b). 
From Figure 2(a), the approximation of the cubic spring with t~ = 100 seems appropriate. 
However, the impact forces are very small. Comparing with curves where ~ is larger (Figure 
2(b)) emphasizes the inadequacy of the cubic-spring model. 

Pa~doussis et al. [9] took the value of ~ = 100 to overcome some numerical problems, 
since with values closer to the experimental ones the numerical scheme diverged. The results 
obtained with such a 'soft' spring were sometimes quantitatively unrealistic: e.g., the displace- 
ment of  the pipe was in some cases greater than the length of the pipe itself. Nevertheless, 
calculations with ~ = 103 showed that the amplitudes became more reasonable, while the crit- 
ical flow velocities for the various bifurcations did not change appreciably; hence ~ = 100 was 
used for computational convenience. As mentioned in the Introduction, the non-convergence 
of the solution with the more physically realistic values of ~ = O(10 s) was attributed to the 
two-degree-of-freedom model being insufficient to physically represent the real system. 

In the present paper, the nondimensional stiffness chosen for the cubic spring representation 
is ~ = 105, and the idealized curve is very close to the experimental one (Figure 2), while for 
the trilinear model, n 3 • 5.6 x 10 6 and Vb3 = 0.044. 

As in previous work the dissipative forces will be modelled in two ways: either as a 
simple viscoelastic dissipation with c~ = 5 x 10 -3, or as a more realistic viscous damping 
representation with the individual modal logarithmic decrements, gj, corresponding to the 
experimentally measured values [7, 11]: 6~ = 0.028, t~ 2 • 0.081, 63 = 0.144, and 64 -- 0.200 
linearly extrapolated. 
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Fig. 2. Force-displacement curves for different spring stiffness ~; Exp. represents the experimental curve. 

3. Results 

3.1. CALCULATIONS TO BE PERFORMED AND OBJECTIVES 

In what follows, results will be presented with N = 2, 3 and 4, with both the cubic and 
smoothened trilinear model for the constraints. Throughout, the results will be compared with 
those of  the foregoing studies [7, 9, 11]. In this respect it ought to be recalled that it was shown 
that the N = 2 model is reasonably good, in terms of linear dynamics, provided that/3 < 0.3 
[15]. 

The experimental parameters to which the theoretical results will ultimately be compared 
were selected to be "~ = 26.75,/3 = 0.213, ~b = 0.65, ~b = yb/L = 0.055 (Figure 1), er, = 105 
for a true trilinear-spring representation and the experimental 5j. For these parameters, the 
experimental nondimensional threshold flow velocities for the Hopf and first period-doubling 
bifurcations and for the onset of chaos were 

UH = 8 .04 ,  Upa = 8 .43 ,  uch = 8 . 7 2 ,  (8)  

respectively, =1=5%. 



Nonlinear Analysis of  a Constrained Pipe Conveying Fluid 661 

The main aim of the calculations is to explore the effect on the dynamics of the nonlinear 
terms in the unconstrained equation of motions. For that reason, calculations with the same 
parameters as those utilized, e.g., by PaYdoussis et al. [9] were also sometimes used - rather 
than the experimental values: i.e., fl = 0.2, 7 = 10, c~ = 5 x 10 -3, ~ = 100 and ~b = 0.82. 

Throughout, solutions of equation (7) were obtained by using a fourth order Runge-Kutta 
integration algorithm, with a step size of 0.005 and different initial conditions (although in 
most cases they were Yl (0) = 0.1, yj (0) = 0, j > 1). The results are presented in the form of 
bifurcation diagrams, phase portraits, power spectra and Lyapunov exponents. 

3.2. TwO-DEGREE-OF-FREEDOM MODEL (N = 2) 

3.2.1. N = 2 and Cubic-Spring Restraints 

To check the numerical scheme, the case ~ = 100 with no other nonlinear terms was investi- 
gated first with the same parameters as Pai'doussis et al. [9]: fl = 0.2, 7 = 10, 4 = 0.82 and 

--- 5 x 10 -3. Chaos was found to occur at u = 8.03 after the classical sequence of period- 
doubling bifurcations. However, when the intrinsic nonlinear terms [represented by N4Q/) in 
equation (3)] were added, no chaotic motion could be found, even for higher flow velocities; 
the nonlinearities of the pipe evidently 'kill' the big amplitudes, reducing the motion of the 
pipe to simple oscillations! Hence, the system becomes much more stable, from a physical 
and from a numerical point of view. 

Theoretical results were then obtained for parameter values as in the experiments, as given 
in Section 3.1, and with the full nonlinear equation of motion. It is of interest that computations 
can now be carried out with the correct ~ without the solution blowing up. This shows that one 
of the problems (the value of t~) encountered previously and thought to be related to the N = 2 
modelling is in fact seen to be related to the previous neglect of nonlinear terms; however, a 
second problem, related to ~b remains: it is only possible to find chaotic oscillations provided 
46 is sufficiently large, as compared to the experimental 46 = 0.65. 

Indeed, for 4v = 0.75, after the Hopf bifurcation, a pitchfork bifurcation, followed by 
a series of period-doubling bifurcations, arises, leading to chaotic motions. Sample results 
are shown in Figure 3 for various values of u. At u = 7.35, a Hopf bifurcation occurs, 
leading to periodic oscillations (Figure 3(a)). A new periodic orbit is created through a 
pitchfork bifurcation, at u = 9.22, which breaks the 'symmetry' of the system (Figure 3(b)); 
mathematically, this comes from the crossing of a Floquet multiplier associated with the 
periodic trajectory, with the unit circle at + 1 [9, 16]. Physically, the system oscillates around 
a newly generated steady-state. Finally, the period-doubling bifurcation is clearly visible at 
u = 10.2 (Figure 3(c)) and at u = 10.295 (Figure 3(d)). For u > 10.35, the motion becomes 
narrow-band chaotic, and wide-band chaotic at u > 10.38 (Figure 3(e,f)). From a physical 
point of view, the mechanism leading to chaos is related to the interaction of limit-cycle 
motion and potential wells associated with divergence of the pipe at the constraints. 

In all the results presented in Figure 3, it should be noted that the displacement amplitudes 
are now quite reasonable, the tip amplitude being of the same order of magnitude as the gap 
to the constraint, unlike the results obtained previously [7,9]. 

All these characteristics can be observed either in the phase-plane portraits or in the 
corresponding power spectra (chaotic oscillations being associated with a wide frequency 
band). Notice, however, that the main frequency is still discernible at u = 10.4 (Figure 3(i)). 

The results are summarized in two bifurcation diagrams where the maximum tip displace- 
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Fig. 4. (a) Bifurcation diagram for the N = 2 model: the tip (end) displacement as a function of the flow velocity 
u; (b) Lyapunov exponents, also as a function of.w; ~ = 105, G = 0.8,/3 = 0.18, "T = 26.75, ~ = 5 x 10 -3.  

ment and the Lyapunov exponents ~r are plotted as functions of the flow velocity u (Figure 
4(a,b)). For the autonomous system, ~r < 0 represents stable equilibria, cr -- 0 corresponds to 
periodic oscillations and ~r > 0 to chaotic motions [17]. 

It is observed that, after the region of  chaos, the system 'regains stability', the solutions 
being attracted to a new stable equilibrium point. This corresponds exactly to experimental 
observations: for higher flow velocities, beyond the chaotic regions, the system attaches 
itself permanently to one of  the constraints; i.e., the system becomes unstable by divergence. 
This clearly appears in the bifurcation diagrams as well as in Figure 5. The oscillations are 
periodic for u --- 10.82 and are overdamped for even higher flow velocities (Figure 5(a)). 
An investigation of the existence of fixed points indicates that a subcritical saddle-node 
bifurcation occurs at 'u = 9.85; two fixed points exist beyond that value of u: one of  them 
stable, and the other one unstable [18]. The computation of their respective eigenvalues leads 
to the conclusion that the stable fixed point becomes 'more and more'  stable when u increases 
(Figure 4 and 5(b)), until finally it becomes the strongest limit set in the system. By setting 
initial conditions close to the stable equilibrium, the detection of  the fixed points is possible, 
even within the chaotic regions (Figure 5(c)). Hence, different attractors coexist all along. 
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3.2.2. N = 2 and Smoothed Trilinear Restraints 

Similar bifurcation diagrams and phase plots were constructed, but without giving more new 
insight of the problem. Therefore, the results will be discussed, without any additional figures 



Nonlinear Analysis of  a Constrained Pipe Conveying Fluid 665 

being given. 
First, it is interesting to note that for ~b = 0.8, a bifurcation diagram similar to the one 

shown in Figure 4 is found, but with lower nondimensional flow velocities u. Indeed, in this 
case, denoting by p f  and pd the pitchfork and the period-doubling bifurcations, one finds 
U p f  ~ 7.6 and Upa = 7.75, while chaotic oscillations occur at uch = 8.0. These values 
are lower than in the case of the cubic spring. Moreover, an inspection of the influence of 
the impact location ~b proves that for ~z = 8.7, chaotic motions occur only in the range 
0.75 < ~b < 0.82 (for ~b < 0.75 the system oscillates and for ~b > 0.82 it converges to one 
of the stable fixed points). Qualitatively, this has been observed in the experiments. However, 
for ~b ----- 0.65, which is the experimental value, chaos does not occur; this shows that, in the 
case N = 2, the better model of the impact forces does not improve very much the thresholds 
at which period-doubling or chaos may occur. 

3.2.3. Concluding Remarks for the N = 2 Model 

The principal findings of this series of calculations were three. First, the nonlinear terms 
in the equation of motion play a very important role, to the extent of invalidating some 
of the qualitatively attractive results obtained earlier with the linearized equation (always 
apart of the nonlinear constraint term). Second, it is now possible to conduct simulation with 
realistic values of the spring constraint (~ = O(105)), and the limit-cycle amplitudes are 
now quite reasonable. Third, bifurcation diagrams with ~b as a variable were constructed 
(since experimentally the location of the constraints may be varied very easily), and the 
cascade of period-doubling bifurcations was observed, followed by a 'static restabilization', 
confirming the qualitative agreement with the experiments of the nonlinear N = 2 model. 
However, it is not possible to find chaotic oscillations for the experimental ~b = 0.65. Finally, 
with the parameter values close to the experimental ones (except for (b), the N = 2 model 
generates critical values for the various bifurcations which are fairly close to those observed 
experimentally. 

3.3. THREE- AND FOUR-DEGREE-OF-FREEDOM MODELS (N = 3 OR 4) 

Based on the quite reasonable and promising results obtained with the N = 2 system with 
the experimental parameter values, it was fully expected that the results with N = 3 would 
be similar, and perhaps closer to the experimental values. However, the dynamical behaviour 
in this case was much more complex and less close to the experiments. A typical bifurcation 
diagram for the case of a cubic spring is shown in Figure 6(a), where it is seen that, beyond 
the pitchfork bifurcation (occurring at u = 9.25), rather than obtaining the usual cascade of 
period-doubling bifurcations, the amplitude of the oscillations decreases until the oscillations 
finally die out for u = 10.4. Therefore, for u > 10.4, the system settles down to one of the 
stable equilibrium points. It should be mentioned that the asymmetry due to the pitchfork 
bifurcation has been kept in Figure 6(a), but if opposite initial conditions had been used, the 
other part of the curve could have been obtained very easily. 

It ought to be remarked that similar atypical results had been obtained for N = 3 in the 
study by Pa'/doussis et al. [11], utilizing the linearized equation of motion; they were in the 
original paper but were eventually left out because of space limitations. 

However, the results for Figure 6(b), obtained with a smoothened trilinear spring, are less 
atypical and much more reasonable, both qualitatively and quantitatively. Period-doubling is 
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Fig. 6. Bifurcation diagram for the N = 3 model with (a) the cubic spring and (b) the trilinear representation of 
the constraints. All other parameters are adjusted to the experimental ones (see Section 3.1). 

obtained at u = 8.8 and chaos at u = 9.2. Nevertheless, a complete qualitative agreement with 
the experiments is not achieved since no restabilization can be found• Different configurations 
have been tried to obtain this static restabilization (using for example the Kelvin-Voigt repre- 
sentation or different constraint configurations [11]), but no better agreement was obtained. 

The reason why N = 3 gives such atypical results is not understood. Perhaps it should be 
mentioned that physically discrete, articulated systems also display a discontinuous 'conver- 
gence' in terms of  increasing N for N = 2 and 3 [19]; for N > 3, on the other hand, the 
convergence to the continuous system - cf. the results obtained here to the N = co case - is 
smooth. 

Calculations were performed also with N = 4 for the case of  a trilinear representation 
of  the restraint stiffness. As expected again, very good agreement, both qualitatively and 
quantitatively, is achieved. First period-doubling bifurcation and chaotic oscillations occur 
at upd = 9.1 and Uch = 9.2, respectively (Figure 7(a)) - cf. values in (8). After a range of  
velocity for which periodic oscillations are observed (9.35 < u < 9.55), stronger chaotic 
motions appear again (u = 9.6) in Figure 7(b), and for u > 9.7, the system settles down onto 
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Fig. 7. (a) Bifurcation diagram and (b-d) some corresponding phase portraits for the N = 4 model and the trilinear 
representation of the constraints. All other parameters are adjusted to the experimental ones (see Section 3.1 ). For 
(b) u = 9.3, (c) u = 9.57, (d) u = 9.6. 

one o f  the constraints. This is exactly what has been observed experimentally.  

Again,  many  configurations have been tested for N = 4. For  viscous damping  (~ = 0.005) 

the same qualitative bifurcation diagram was obtained, with Upd : 8.6, ueh = 9.0 and static 
restabil ization at ur~ = 9.7, while for another  impact  model ,  Upd = 8.95, uch ----- 9.2 and 
u~c = 9.65 were found. Therefore,  the m a x i m u m  difference with the exper imental  values is 
less than 8%. 

It should be ment ioned that in the case N = 4, a lmost  no difference among  the critical 

velocities u was found when the intrinsic nonlinear terms were removed.  The static resta- 

bilization howeve r  was then not observed,  which leads to the conclusion that the nonlinear 
terms still play an important  role in the dynamics  of  the system. 

As seen in Table 1, the results for N --  4 appear  to be close to convergence.  This compares  
well  with the results obtained by Pa'fdoussis et al. [11], which is meaningful ,  in view of  the 
observat ion made  in the previous paragraph;  in [11], convergence was found to have been 

achieved be tween N -- 4 and N = 5. This conclusion of  convergence  circa N = 4 is further 
reinforced by noting that the H o p f  bifurcation limit cycle has nondimensional  ampli tude of  
,,~ 0.1 for  N = 3 and ~ 0.12 for _N = 4; the corresponding m a x i m u m  ampli tudes for chaos 
are 0.15 in both cases. 
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Table 1. Convergence of nondirnensional flow 
velocities, u, for the key bifurcations; subscripts 
H, pd, ch and re stand for Hopf period dou- 
bling, chaos and restabilization (divergence), 
respectively. 

[ I N  = 3[  N = 4[Experimental I 

[ UH I 7"95 I 8"40 [ 8.04 [ 

I Up,l [ 8.90 I 9.05 I 8.43 I 

I uch I 9'20 I 9"20 I 8.72 [ 

I"r~ 110 .35 [  9.65 I ~9.0 ] 

4. Conclusion 

In this paper, the effect of the nonlinear terms in the equation of motions on the dynamics of a 
constrained cantilevered pipe conveying fluid was explored. However, more broadly, this is a 
multidimensional investigation of the effects of (i) the aforementioned nonlinearities (of the 
type associated with large motions), (ii) the number of degrees of freedom in the modelling 
of the system, and (iii) the impact model for the motion constraints. 

Of course, this is a very specific problem, and this study can be justified only in terms of the 
more general conclusions that are reached concerning the analytical modelling of nonlinear 
systems when trying to match experimentally observed behaviour. Such questions as the effect 
of selective straining of parameters to give 'good agreement' in some sense, how easy it is 
to misinterpret the reasons for 'failure' of an analytical model, the fragility versus robustness 
of the theoretically predicted behaviour, etc., are some of the aspects of this study that are 

of generic interest. The problem at hand, may then be considered simply as a vehicle in the 
exploration of some of these questions, in the sense of the previous paragraph. Having said 
that, however, there is no question that the study of large-amplitude-related nonlinearities in 
the equation of motions of the specific problem under consideration had to be studied, in 
order to complete the circle of studies of References [7, 9-11 ] - e.g., to remove any suspicion 
that the excellent agreement between theory (without these nonlinear terms) and experiment 
achieved by Pa'/doussis et al. [11 ] may have been fortuitous. 

It is shown that one can 'force' the system to some extent, by straining (relaxing) some of 
the physical parameters, to yield dynamical behaviour which is qualitatively similar to that 
observed - and with reasonable quantitative prediction of some of this behaviour. This was 
achieved with the N = 2 models, with a cubic-spring representation of the constraints [7, 
8]: if the values for constraint location ((b) and spring stiffness (~) were strained, critical 
flow velocities for the bifurcations (Hopf, period-doubling, onset of chaos) could be pre- 
dicted remarkably well. Admittedly, some other aspects of the predicted behaviour are then 
unrealistic, e.g., the amplitudes of limit-cycle motion. 

It is of interest that the straining in the values of ~b and ec (N = 2 model) was forced  on the 
investigators involved [7, 9] by the fact that no convergent solutions could be obtained for the 
correct values. One of the findings of this paper is that the reasons supposed to be responsible 
(N = 2, instead of higher N) were erroneous: once the nonlinear terms are included in the 
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equations of motion, then convergent solutions with the correct ~ are possible. Thus, one 
of the main conclusions of this paper is that the nonlinear terms in the equation of motions, 
despite 'small motions' being modelled, can have an important effect on system dynamics 
- the extent of which cannot be gauged a priori. Moreover, as more realism is introduced 
(e.g. in the modelling of the constraint stiffness), the model can be tightened up to predict (i) 
realistic amplitudes of motion, (ii) the hitherto never predicted new equilibrium resulting (in 
the experiments) in the 'sticking' of the pipe to one of the constraints at sufficiently high flow 
velocities, u, (iii) critical u for the important bifurcations reasonably close to the experimental 
ones. 

One looks at the behaviour of the system in the multidimensional parameter space, and 
hence the 'section' of the dynamics for N = 2, and at the changes occurring as nonlinear terms 
are included or ~ is increased, and so on. Hence, the model N = 2 can be considered fragile. 
Therefore, it is essential to look at other 'sections', notably for higher-dimensional models 
(corresponding to N > 2), to probe the robustness of the analytical model, since dimension 
calculations have shown that to be able to capture the essential behaviour of the system, N = 4 
or 5 would be needed [10], as confirmed by the excellent agreement obtained even when the 
nonlinear terms in the equations of motion were absent [ 11 ]. It is shown here that the inclusion 
of the nonlinear terms, although it still has an effect on the dynamics, otherwise improves the 
agreement between theory and experiment, by (i) being able to predict the static restabilization 
(sticking) observed experimentally at high u, (ii) predicting more realistic amplitudes, while 
(iii) not having a detrimental effect on the excellent agreement between experimental and 
theoretical values of u [11] for the key bifurcations (Hopf, period-doubling, et seq.). Equally 
interestingly, the number of parameters that need to be strained and the degree of straining are 
greatly diminished when the full nonlinear equation is used, even with N = 2. For N = 4, the 
degree of agreement with experiment becomes excellent, with zero straining of the parameters 
when the full nonlinear equation is used. More importantly, it is shown that the behaviour of 
the system is now very robust, and small excursions in this part of the parameter space have 
little effect on the predicted dynamics of the system. 

The final conclusion is something that has been known for some time: one should be 
chary of 'good agreement' between observed and modelled behaviour, unless all aspects of 
the analytical model and its robustness have been looked into. This study documents one 
such case where the initial model was in a fragile parameter sub-space, but the final, modified 
model is very robust and capable of predicting well almost all essential aspects of the observed 
dynamical behaviour. 
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