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One possible approach to cluster analysis is the mixture maximum likelihood method, in which 
the data to be clustered are assumed to come from a finite mixture of populations. The method 
has been well developed, and much used, for the case of multivariate normal populations. Practical 
applications, however, often involve mixtures of categorical and continuous variables. Everitt 
(1988) and Everitt and Merette (1990) recently extended the normal model to deal with such 
data by incorporating the use of thresholds for the categorical variables. The computations 
involved in this model are so extensive, however, that it is only feasible for data containing very 
few categorical variables. In the present paper we consider an alternative model, known as the 
homogeneous Conditional Gaussian model in graphical modelling and as the location model in 
discriminant analysis. We extend this model to the finite mixture situation, obtain maximum like- 
lihood estimates for the population parameters, and show that computation is feasible for an 
arbitrary number of variables. Some data sets are clustered by this method, and a small simu- 
lation study demonstrates characteristics of its performance. 

Keywords: Cluster analysis, Conditional Gaussian distribution, EM algorithm, graphical 
modelling, location model, mixture maximum likelihood, simulation 

1. Introduction 

A common and very old problem in statistics is the separation 
of  a heterogeneous population into more homogeneous 
subpopulations. A wide variety of approaches and techniques 
for tackling this problem now exists. Generic names for 
these techniques include classification, clustering and 
cluster analysis; for a concise account  see, for example, 
Cormack (1971), Gordon  (1981) or Everitt (1993). 

We here focus on one specific approach, the mixture 
maximum likelihood method of cluster analysis originated 
by Day (1969) and Wolfe (1970), and described fully by 
McLachlan (1982) and McLachlan and Basford (1988). 
The mixture method is particularly suitable for clustering 
data sets that have too many individuals to be handled by 
pairwise distance algorithms; for a recent such application 
arising from analytical flow cytometry data, see Demers 
et al. (1992). In this method, the population of interest, ~r, 
is either known or assumed to consist of g different subpopu- 
lations Ir l , . . .  , ~rg, and the density of a p-dimensional 
observation x from 7r i is assumed to be f i ( x ; O i )  for some 
unknown vector of  parameters  Oi(i= 1,... ,g). In this 
context the problem is to a t tempt  a classification of  a 

0960-3174 �9 1996 Chapman & Hall 

random sample of  n observations Xl , . . .  , x n f rom 7r into 
the subpopulat ions to which they belong. 

The mixture maximum likelihood method treats 
X l , . . . ,  xn as a random sample of size n from a mixture of 
71-1,...,Trg in the proportions a l , . . . , % ( ~ i a i  = 1). The 
likelihood of this sample can be written 

L M  (Xl,  . . . ,xn; O1, . . . , Og; &l, . . . , aS) 

(1) 

Assuming that each observation has an equal chance a 
pr ior i  of belonging to any of the g subpopulations, the pos- 
terior probability that x j  belongs to 7r i can then be written 

a (xj; 0i) 
Ti(Xj ;  Oi; O~i) = Pr{xj]Oi; a i }  = g (2) 

o,) 
t=l 

Maximizing (1) with respect to the unknown parameters 
yields the maximum likelihood estimates Oi,&i for i =  
1 , . . . ,  g. Setting #ij = ~-i(xj; 0~; &i), the likelihood equations 
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are given (McLachlan and Basford, 1988, Equations 1.6.1 
and 1.6.2) by 

= r v  (3 )  

j = l  17 

and 

, ._. ,  . = o (4)  
i = 1  j = l  i 

Observation xj is then assigned to subpopulation 7rk if 
?kj >_ g-ij for i =  l , . . . , g .  

For continuous data, normality of populations is a reason- 
able assumption to make in practice. The most general model 
is one in which the means and dispersion matrices are all 
allowed to differ in the subpopulations. However, allowing 
dispersion matrices to differ between subpopulations does 
have some theoretical drawbacks (such as singularities in 
the likelihood surface; see McLachlan and Basford, 1988, 
p. 38) as well as giving rise to too many unknown parameters 
when sample sizes are small. The most common approach 
in practice is therefore to assume that the mean vectors 
are different but the dispersion matrix is the same in all 
the subpopulations, i.e. 

xjlrci ~" U(l~i, Z ) ( i  = 1 , . . .  ,g). (5) 

In this case, the likelihood equations are given (McLachlan 
and Basford, 1988, pp. 38-42) by 

and 

where 

&i=~ ~ij (6) 
j = l  n 

n ^ 
~i ~'~ rijXj (7) 

~ ^ 
j = l  /'t OLt 

t 
g n ^ 

n 
i = 1  j = l  

oq e x p { _  l (xj ' 1 - m )  . v -  ( . j  - m ) }  
~ j - -  g 

Z ~  exp{-  1 (xj - .t)'X'-* (xj - P,t)} 
t = l  

(9) 

These equations can be solved iteratively by substituting 
initial estimates into the right-hand sides to produce new 
estimates on the left-hand sides, which are then substituted 
into the right-hand sides, and so on. These iterative estimates 
can be shown to be the same as those obtained using the 
EM algorithm (Dempster et al. 1977), so that convergence 
is guaranteed. However, this convergence may be to a local 
maximum, so several repeats of the process should be con- 
ducted from different starting values to ensure that a global 
maximum is attained. Also, convergence may be very slow; 

Day (1969) demonstrated that computing could be speeded 
up by a suitable reparametrization in the case g = 2, but 
there is no similar possibility in the general case. 

The main practical drawback with the above scheme is that 
it is applicable only when the observed variables are continu- 
ous (as otherwise the normality assumption is not suitable), 
but in many applications some of the variables are either bin- 
ary or categorical. There is thus need for a corresponding 
scheme with such mixed-mode data. Everitt (1988) pro- 
posed, and Everitt and Merette (1990) studied, an extension 
of the above model for such data. This extension assumes 
that an appropriate model for the data is given by a set of 
multivariate normal variables in which some of the contin- 
uous variables are only observed in categorical form 
because of  thresholding. The thresholds that define cate- 
gories are extra parameters of the model. The likefihood 
equations for mixture separation can be derived readily for 
this extended model, but they now contain multivariate nor- 
mal integrals over as many variables as are thresholded 
with limits of  integration depending on these thresholds. 
Thus each iteration of the process includes some additional 
multivariate quadrature, and as the limits of integration 
depend on unknown parameters this quadrature has to be 
fully repeated in each cycle. Consequently, this model is 
only a practical proposition if the number of categorical 
variables is relatively small. 

In this paper, we therefore propose an alternative scheme 
for mixed-mode data. The model is one that has proved 
very useful for a number of years in discriminant analysis 
when the data contain both continuous and categorical 
variables (Krzanowski, 1993) but has come into prominence 
more recently because of its appearance in the graphical 
modelling of  mixed-mode data (Whittaker, 1990). In 
Section 2 we outline the background, describe the model, 
and develop the mixture maximum likelihood theory. 
Some illustrative data sets are analysed in Section 3, 
and some characteristics of the method are investigated 
by means of  the small simulation study described in 
Section 4. We conclude the paper with a discussion of 
the remaining problems. 

2. Theory 

In graphical modelling, the Conditional Gaussian distribu- 
tion has. been advocated as a suitable model for mixed- 
mode data (Whittaker, 1990; Edwards, 1990; Cox and Wer- 
muth, 1992). This model has various equivalent parametriza- 
tions and expressions, but from our perspective the following 
is the most convenient. Suppose the data comprise p contin- 
uous variables Ul, �9 . . ,  Up and q categorical variables Vl, �9 .. %. 
Let the kth categorical variable have ck categories (k = 
1 , . . . ,  q). Then there are m = [Iq=l ck distinct patterns of 
categorical variable 'values', and the set of categorical 
variables can thus be replaced by a single m-cell multinomial 
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variable, w say. Any associations among the original cate- 
gorical variables are converted into relationships among 
the resulting multinomial cell probabilities. Now consider 
a random sample of size n for which the original p + q 
variables have been observed, and write it according to 
the cell of w that each individual occupies. Then the sample 
can be denoted by 

X l I ~ . . .  ~Xlnl ~... ~Xml~ . . . ~Xmnm~ 

i.e. Xsj is the vector of continuous variable values for thej th  
out of the n, individuals in cell s of the multinomial 
w(s = 1, . . .  , m ; ~ , m l  ns = n). The Conditional Gaussian 
model assumes that the distribution of the continuous 
variables depends upon the multinomial cell into which 
the corresponding categorical variables place an individual. 
Specifically, it is assumed that x~j ~ N(l**, I2,), and that 
the probability of  observing an individual in cell s of the 
multinomial variable is ps(S = 1 , . . . ,  m). 

In the mixture separation case, it is again assumed that 
the above random sample has been drawn from a mixture 
of the subpopulations r q , . . . ,  %, so a modification of the 
model is needed to take account of this extra grouping 
structure. The most general modification is just to allow 
each unknown parameter to vary arbitrarily from sub- 
population to subpopulation, Thus we now assume that 
Xsj ~ N( l t i s ,  .~?'is) in subpopulation % and that the probabil- 
ity of observing an individual in cell s of the multinomial vari- 
able is Pis in 7r i ( s=l , . . . ,m; i= l , . . . , g  ). This was 
the model assumed by Krzanowski (1983) when deriving 
distances between populations of mixed-mode data. It is a 
perfectly general, and satisfactory, model at the theoretical 
level but again, as noted by Krzanowski (1983), it will cause 
estimation problems when applied in many practical 
situations because of the large number of parameters it 
contains. In order to make satisfactory progress, we 
need to restrict the number of parameters in some way. 
Consideration of similar models in other familiar statistical 
techniques (e.g. multivariate analysis of variance) suggests 
that the most fruitful modification is to constrain all the 
dispersion matrices to be equal, i.e. to set 27i~ equal to I7 
for all i, s. The resulting model is known as the homogeneous 
Conditional Gaussian model in graphical modelling, but was 
originally introduced by Olkin and Tate (1961) as the 
'location model'. It has proved a very successful model for 
discriminant analysis of mixed-mode data (see Krzanowski 
(1993) for a survey of these uses) and so will be considered 
now for the mixture separation problem. 

Assuming, therefore, that x~j ~N(tz~,,U) and that 
P r ( w E c e l l s ) = p ~  in 7 r ~ ( s = l , . . . , m ; i = l , . . . , g ) ,  the 
joint probability of observing an individual in cell s and 
having associated continuous variable vector x~j is given by 

1 ' I fi(x.j, Ws;,) = Pi. exp{-~(x~j- lZis )~-  ( x , j - . i s )  } (10) (27r)P/21EI1/2 

in subpopulation 7ri, where 05 denotes the whole collection 
of unknown parameters. 

Now associate the g (unobserved) indicator variables 
Zlsj, . . .  ,Zgsj with each x~j where zz~j = 1 if x,j E ~ri and 
zi,j = 0 if x,j r 7r i. Then the log-likelihood of the mixture 
sample can be written 

g m n, 

Lc(ff)) = Z ~ ~ Zisj{ln ~ § lnJ}(xsj, w.; qS)} 
i=1 s= l  j = l  

g m ns 
= ~_~Z~-'~zisj{lnai+lnpis+lnh(xsj;l~is,27)} (11) 

i=1 s= l  j - 1  

where the zi~j are missing values and h(x~j; 1*, •) is the 
p.d.f, of a N(iz, ~7) random vector. Structurally this log- 
likelihood is the same as the one for mixture separation 
in the multivariate normal case (McLachlan and Basford, 
1988 p. 37); it just has an extra summation (over cells, s) 
and some extra parameters (Pis)- Indeed, the similarity 
of structure can be emphasised by viewing the log-likelihood 
(11) as a mixture of g • m normal populations having the 
hierarchical structure of g populations (with mixing pro- 
portions a~) and m subpopulations within each of these 
populations (with mixing proportions Pis). The EM algo- 
rithm can be applied to this log-likelihood in exactly compar- 
able form to that of McLachlan and Basford (1988); 
for current parameter values 05(k) the expectation step yields 
z}k3 ---- E(Zisj105(k))= "l-is;(05(k)), i.e. the value of %.~j in (16) 
below evaluated at 05(kJ, and the maximization step yields 
05(k+l) by maximizing Lc(05 (k)) of (11) with zi,j replaced by 
zl{~. This procedure yields the set of maximum likelihood 
equations: 

Y/s ^ 

< =  (12) 
n 

s = l  j = l  

and 

where 

n s ^ 

=$2  (13) Pis ~=1 n&i 

n s ^ 

^ = ~-~ ~JX~ i (t4) 
I'tis ~=1 npis&i' 

n i=1 s = l  j = l  

(15) 

~ i  s j  

1 (x j - uis)'r,-l(Xsj Uis)) aiPis exp - ~ 

g 1 , 
~t=1%Ptsexp{-~(xsj-I~t) .F,-l(Xsg-lZts)} 

(16) 

A full specification of the process requires a method for 
determining starting values for the iterations. The simplest 
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starting values are obtained by choosing a random set of 
re}o) satisfying ,~ (0) = 1 for all s and j. (This can be done 2-.i3"is j 
easily by assigning a random number between 0 and 1 for 
each T}~ and then normalizing them to satisfy the constraint.) 
An alternative possibility is to partition the sample randomly 
into g groups and to take starting values 

o~I ~ 1= - ,  (17) 
g 

!0) 1 ( ) 
P~s = --,  18 

m 

n s 
u!o) ~-~xi~j (19) 

j = l  /~is 

and 

(0)'~ / (0) "~' 

n 
i=1 s = l  j = l  

(20) 

where xisj denotes those observations in cell s that have 
been allocated to group i, and nis is the number of such 
observations. 

Iteration proceeds until successive sets of ~-isj values are 
equal to within preset tolerance limits for all i, s, j. Since 
misj again represents the posterior probability that x~j 
belongs to 7ri, xsj is allocated to 7rk if "Fksj 
?isj(i = 1, . . .  ,g). Since the method derives from the EM 
algorithm, convergence is technically guaranteed from 
any starting values. The problem in practice i s  that the 
log-likelihood surface frequently turns out to be relatively 
flat but with many local maxima. It is therefore recom- 
mended that solutions be obtained for a number of different 
random initial settings, and the solution corresponding to 
the maximum L taken in order to maximize the chances 
of reaching a global optimum. 

3. E x a m p l e s  

In developing discrimination methods for mixed-mode data 

Table 1. Numbersofindividualsandvariablesineachofthedatasets 

Data set n nl n2 q p 

I 40 20 20 3 7 
2 93 63 30 3 4 
3 62 38 24 4 8 
4 186 99 87 3 6 

based on the location model, Krzanowski (1975) analysed 
several data sets each of .which comprised two a priori 
groups of individuals. To illustrate the foregoing theory we 
treat some of these data sets as if they were single heteroge- 
neous collections of individuals, separate each of them into 
two subgroups using the method in Section 2, and compare 
the derived partitions with the original groupings. 

Specifically, we consider data sets 1-4 in Krzanowski 
(1975) as these four sets all contained both binary and contin- 
uous variables. Table 1 gives the total number of individuals 
(n), the numbers in each of the a priori groups (nl, n2), the 
number of  binary (q) and the number of continuous (p) 
variables in each set; for further details of the background 
to each study and to the nature of the variables observed, 
see Krzanowski (1975). 

Each data set was analysed twice, using each of the two 
starting procedures (start A: random T's; start B: random 
assignment) outlined in Section 2. In each case, division 
into two subpopulations was sought (i.e. g = 2). Moreover, 
each analysis was repeated for 100 different random starts, 
the values at convergence were noted for each run, and the 
optimum solution (i.e. the maximum likelihood) over the 
100 runs was taken. For each optimum solution, the classifi- 
cation of individuals into the two subgroups was compared 
with the a priori grouping of the individuals (matching groups 
so as to minimize discrepancies between the two partitions). 
In addition, a search was made through the 100 runs for 
each initialization method in order to identify the solution 
which gave the best match between a priori and recovered 
classification, and the log-likelihood of this solution was 
also noted. Finally, the log-likelihood of the apriori grouping 
was recorded for each data set. Table 2 lists all these various 
log-likelihoods, while Table 3 shows the corresponding 
classification comparisons. The latter are given in the 

Table 2. Log-likelihoods (L) under various conditions for the four data sets 

Data set 

1 2 3 4 

max L (start A) 
L (best allocation, start A) 
max L (start B) 
L (best allocation, start B) 
L (a priori groups) 

-1049.81 
-1049.94 
-1049.81 
-1081.48 
-1127.50 

-1421.00 
-1425.79 
-1423.36 
-1428.31 
-1512.42 

-1678.69 
-1687.25 
-1688.13 
-1766.39 
-1810.05 

-5725.40 
-5725.40 
-5725.40 
-5774.10 
-5943.40 
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Table 3. Classification matrices for each situation in Table 2 

Data set 

1 2 3 4 

maxL, start A 14 10 32 10 22 14 72 51 
6 10 31 20 16 10 27 36 

L (best allocation start A) 14 10 43 14 25 9 72 51 
6 10 20 16 13 15 27 36 

max L (start B) 16 11 54 21 19 16 40 26 
4 9 9 9 19 8 59 61 

L (best allocation, start B) 15 7 56 22 24 6 58 34 
5 13 7 8 14 18 41 53 

89 

form of  2 x 2 arrays 

nil n12"~ 

n21 n22 / 

in which nij denotes the number of individuals allocated to 
group i by the method but originating from a priori group j 
for i , j  = 1,2. 

Experience with these data sets showed that convergence 
of the log-likelihood maximization typically took between 
20 and 40 iterations of the EM algorithm, and that there 
was quite a high level of consistency in the values at conver- 
gence of both log-likelihood and parameter estimates over the 
100 runs for each initialization method. Data sets 1 and 4 
yielded the same maxima with both initialization methods, 
but  random r's provided a slightly better solution than 
random allocations for the other two data sets. In all 
four cases, the log-likelihood for the a priori grouping 
was quite a long way f rom the maximum achieved, which 
indicates some conflict between model and data. Of  
course, these are four data  sets that have arisen from 
real applications so there is the possibility of data recording 
errors, outliers or various other contaminations. Neverthe- 
less, the consistency over replicates and initialization methods 
is encouraging, and the mechanics of the process stood up 
well to the different data sets. 

Of particular interest is the classification of individuals, as 

Table 4. Measures of confidence for assignment of individuals in the 
four data sets 

Data set 

Start Measure 1 2 3 4 

A T 0.9996 0.9965 0.9918 0.9983 
Tl 0.9993 0.9977 0.9872 0.9984 
T2 0.9999 0.9915 0.9972 0.9980 

T 0.9999 0.9975 0.9986 0,9987 
T! 0.9999 0.9916 0.9986 0.9992 
T 2 0.9999 0.9989 0.9986 0,9982 

this is often the major objective of the analysis. One measure 
of performance of the method is the confidence with which 
individuals are assigned to groups, and this can be assessed 
by considering the ?is/. Assignment of Xsj to subpopulation 
7ri is made with confidence if ?isj is much greater than all 
other ?ksj (i.e. close to 1), while the assignment is equivo- 
cal if two or more ?isj are close in value. Adapting the 
measures in McLachlan and Basford (1988, p. 126) to 
the mixed-mode setting, therefore, we assess the overall 
level of  confidence of  assignment by 

T = ~ ~-2~, (max i ?isj) , (21) 
n s=l j=l 

and the group-specific levels of confidence by 

~=1~.~=1 (~isj~isj)7 (22) T i = 17og i 

where ~isj = 1 if ?isj ~ ?ksj Vk and 0 otherwise. The closer 
each of  these quantities is to 1, the more 'definite' are the 
individual assignments to subpopulations.  Table 4 pre- 
sents these values for the maximum likelihood solutions 
with each starting configuration on each data set (i.e. cor- 
responding to the first and third rows of  Table 2). It is evi- 
dent that the assignments are very clear cut for all four 
data sets. 

Finally, turning to the actual comparison of groups to 
which individuals were assigned by the method and their 
original group membership, there was rather more variation 
between replications and between initialization methods than 
there had been for the log-likelihood values or for the para- 
meter. In addition to the classification achieved by the 
random start which provided the maximum of  the log- 
likelihood for each initialization method,  Table 3 also 
gives the best classification (i.e. the one most  closely 
matching the a priori grouping) over the 100 random starts 
for each initialization and the corresponding log-likelihoods 
appear in Table 2. While there is relatively little difference 
among the four log-likelihoods for each data set, there is con- 
siderable variation in the classifications of the individuals and 
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hence in the 'errors' relative to the a priori groups. This fea- 
ture reflects the volatility of the process. Of course, there is 
considerable overlap in the a priori groups (estimated error 
rates over a range of discriminant functions varying between 
17% and 35% for the four data sets; see Krzanowski, 1975). 
Hence it would be unrealistic to expect very close agreement 
between known and recovered classification. Also, the 'true' 
grouping is never known in a practical application so the 
second and fourth rows of each table will never be computa- 
ble-they merely represent the 'best' that could be achieved 
over these replicates. The classification errors that would be 
achieved are those computed from the first or third rows, 
and these all fall around the 30%-40% level (comparable 
to the discriminant function errors quoted earlier). 

It might be noted that the quantities T, T1 and T2 defined 
above can also be used to estimate error rates when initial 
group membership is unknown. Specifically, 1 - T is an 
estimate of the overall error rate, while 1 - Ti is an estimate 
of the group-specific error rate for 7r i. However, McLachlan 
and Basford (1988, pp. 126-32) point out that these estimates 
are optimistically biased (as is very evident from Table 4), and 
provide bootstrap schemes for correcting the bias. These 
schemes are very intensive computationally, however, so 
were not carried out here. 

4. M o n t e  Carlo study 

A small Monte Carlo study was mounted in order to 
investigate some of the characteristics of  the proposed 
methodology. Each replicate comprised 20 observations 
generated from each of two 4-variate normal populations. 
One population had mean vector (0,0,1,1), the other had 
mean vector (0,0,6,6), and both populations had common 
dispersion matrix 

2 1 1 1 

1 2 1 1 

1 1 2 1 

1 1 1 3 

The first two variates for each observation were dichotomized 
by thresholding: if xij is the generated value of continuous 
variable i in population j, then a binary value Yij is produced 
by settingyij = 0 i fxij  < wij andyij  = 1 i fxij  >_ wij. Chosen 
thresholds were wij = 0 for all i,j. The resulting data set thus 
comprised 20 observations on p = 2 continuous and q -- 2 
binary variables from each of two populations. The mixture 
separation technique described above was then applied with 
g = 2 (i.e. partitioning into two groups); initialization of the 
iterative process was by means of random ~-'s (method A), 
and 50 random starts were included in each replication. 
The resulting clustering can be compared with the true group- 
ing to determine the error rate of the procedure, and the esti- 
mated parameter values can be compared with the true 
values. The whole process was replicated 50 times to investi- 
gate variability under repeated sampling. 

Figures 1 and 2 show histograms of the maximum log- 
likelihood values and the numbers of misclassified 
individuals over the 50 replications. The average maximum 
log-likelihood value was -212.30 with a standard error 
of 0.77, and the average number of misclassificiations 
was 12.56 with a standard error of 0.78. Thus an approximate 
95% confidence interval for the error rate in a single 
application of the process lies between 27.5% and 35%. 
Note however that the histogram of maximum log-likelihood 
values exhibits a reasonably normal shape, but the one 
for the average number of misclassifications is much 
more uniformly spread. Also, for the underlying 4-variate 
normal population, the difference in (true) mean vectors is 
(0,0,5,5) and the inverse (true) dispersion matrix is (7 221  ) 

1 - 2  7 - 2  

9 - 2  - 2  7 

-1  -1  -1  

This yields a (true) Mahalanobis D 2 between populations 
of 25, and hence the best possible discriminant procedure 
(using identified individuals and true parameter values) 
would still incur an error rate of 2~( - (1 /2)D)  = 1.25% 
(McLachlan, 1992, p. 17). In the present case we have 
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Fig. 1. Histogram of the maximum log-likelihood values over 50 replications of the simulation experiment 
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Fig. 2. Histogram of the numbers of misclassified individuals over 50 replications of the simulation experiment 

unidentified training data and samples rather than popula- 
tions, so the success rate of the classification is in fact 
very good. 

A final point concerns the estimation of parameters. The 
two population mean vectors for the continuous variables 
were (1,1) and (6,6). Averages of their estimates over the 
50 replications were (2.52, 2.53) and (4.47, 4.47) respec- 
tively, with standard errors around 0.1 for each element 
of each vector. There has thus been a shrinkage of about 
1.5 towards the centre for both variates. This shrinkage is 
of course highly correlated with the error rate noted above, 
as misclassification of individuals will inevitably contract 
the difference between the groups. The dispersion matrix 
for the two continuous variates, 

1 3) 
had average estimate 

1 .7530 .883)  

0.883 2.320 

with standard errors 

0.185 0.173) 

0.173 0.119 

over the 50 replicates. 

5. Discuss ion 

Experience with application of the methodology outlined 
here has been very encouraging to date, and relatively few 
problems have been encountered. Convergence of the EM 
algorithm has been very satisfactory for the scale of data 
sets analysed, with never more than about 60 iterations 
required, but the log-likelihood surface has typically con- 
tained many local maxima of fairly comparable heights. 
Thus, while there is a large measure of consistency in the 
actual maximum values over different random starts for a 

given data set, the parameter estimates and classifications 
of the individuals do show considerably more variation 
over these local maxima. It is thus important to ensure 
that the algorithm is run from plenty of different random 
starts; we used between 50 and 100 in all our analyses in 
order to be confident of reaching an optimum solution. 

In all those analyses in which there existed an a priori 
grouping of individuals, matching recovered groups with 
original groups was not immediate and had to be done by 
trial and error. We always chose that matching which 
yielded fewest misclassifications, so there is liable to be 
some optimistic bias in our reporting. However, this match- 
ing is artificial in that in any practical application there is 
no a priori grouping, so the focus of interest is generally 
on the adequate description of the recovered groups 
from the estimated parameters of the model. Of course, 
the additional question of determining an optimum number 
of subgroups into which to divide the data raises exactly 
the same problems as in the continuous case (McLachlan 
and Basford, 1988), so no definitive method is available for 
the mixed-mode case either. 

Computing times have been quick for all the analyses 
reported here, and there appears to be no reason why the 
method should not work equally well on arbitrarily large 
numbers of categorical and continuous variables. Of 
course, increasing the number of categorical variables auto- 
matically increases the number of multinomial cells in the 
Conditional Gaussian model, and hence increases consider- 
ably the number of parameters to be estimated. There must 
be a trade-off between number of parameters and sample 
sizes for viability of method, but we have not investigated 
this aspect yet. If samples are small then some constraints 
on the model parameters may be necessary (e.g. the sort of 
linear model structure that has proved valuable in discrimi- 
nant analysis; see Krzanowski, 1993, for details). This is 
another question for future study. 

We conclude with some general points of comparison 
between the Conditional Gaussian model used in this 
paper and the threshold model employed by Everitt 
(1988) and Everitt and Merette (1990). Both models 
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assume normality of  the continuous variables, and both 
either assume or imply common dispersion matrices for 
these variables across subpopulations. However, the 
threshold model also implies the existence of  a continuous 
latent variable underlying the categories of each observed 
categorical variable, while the Conditional Gaussian 
model merely assumes a different conditional distribution 
of the continuous variables for each category combination of 
the categorical variables. Furthermore, the threshold model 
imposes several inherent orderings: of the categories in each 
categorical variable (induced by the cut-points of the latent 
variables) and of the conditional means of the continuous 
variables (due to the linear regression structure imposed by 
the normality assumption). 

It is thus important to bear these constraints in mind 
when considering practical applications. In particular, 
the threshold model should be employed only in those 
situations where existence of an underlying latent continuum 
for the categorical variables is justifiable, and where the 
implied orderings make substantive sense. None of these con- 
straints appears to be particularly restrictive in the special 
case of binary categorizations and, indeed, the threshold 
model has provided a satisfactory basis for multivariate 
probit analysis as well as for other techniques associated 
with dose-response relationships (see for example Ashford 
and Sowden, 1970). Greater care is needed for more general 
categorical variables, however. The Conditional Gaussian 
model, by contrast, appears to be defensible in quite general 
circumstances. Indeed, it will also provide satisfactory perfor- 
mance on data conforming to the threshold model (as 
demonstrated by the simulation results above). 
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