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Abstract. Fairly regular multiannual microtine rodent cycles are observed in 
boreal Fennoscandia. In the southern parts of Fennoscandia these multiannual 
cycles are not observed. It has been proposed that these cycles may be stabilized 
by generalist predation in the south. 

We show that if the half-saturation of the generalist predators is high 
compared to the number of small rodents the cycles are likely to be stabilized by 
generalist predation as observed. We give examples showing that if the half-sat- 
uration of the generalist predators is low compared to the number of small 
rodents, then multiple equilibria and multiple limit cycles may occur as the 
generalist predator density increases. 

Key words: Predator-prey system - Limit cycle - Hopf-bifurcation - Specialist 
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1 Introduction 

Fairly regular multiannual microtine rodent cycles are observed in boreal 
Fennoscandia. In the southern parts of Fennoscandia these multiannual cycles 
are not observed. The quite regular cycles in boreal Fennoscandia have been the 
object of extensive research, and a number of attempts have been made to 
explain the cycles, see [5, 7, 15, 23, 25]. 

May [23] suggested that the delay-differential equation 

)9  = r X ( t ) (  1 - X ( t  - T ) / K )  (1.1) 

may describe the above mentioned phenomenon. Here N is the small rodent 
population, T is a time-lag and K is the environmental carrying capacity. 
Furthermore he showed that a time lag of about 8-9 months could generate a 
3-4  year cycle. It is an interesting fact that the time between the summers in the 
boreal regions is approximately 8-9 months but this does still not explain how 
such a time-lag would ensue. 

H6rnfeldt [7] studied other species interacting with the rodent cycle, in 
particular Tengmalm's owl, an avian vole-eating predator. Several mechanisms 
which could generate the time-lag in the model (l.1) were also proposed in [7]. 
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Among them are predator-based, food-based and disease-based mechanisms. 
However, none of these hypotheses have yet been supported by enough data. 

Some attempts have also been made to explain why the cycles are not 
observed in the southern parts of Fennoscandia, see e.g. [4, 5]. One explanation 
is that the small rodent populations are exposed to different kinds of predation 
in different parts of Fennoscandia. Hanski et al. [4] proposed the models 

S 
= r s ( 1  - -  s / K )  - c x  y s  2 

s + a l  

2 = q x (  1 - x / T s ) ,  (1.2) 

and 

S S 2 

k = r s ( 1  - s / K )  - c x  - -  - y $2 
s + a l  + b 2  

ic = q x ( 1  - x / ~ , s )  (1.3) 
to explain the geographic variations. Here s is the small rodent density, x the 
specialist predator density and y is the generalist predator density. Note that y is 
not a dynamical variable but only a parameter. The growth rate of the prey is 
logistic with carrying capacity K and intrinsic growth rate r. The functional 
response (trophic function) of the specialist predators is Holling II (Michaelis- 
Menten kinetics) with half-saturation al and the functional response of the 
generalist predators is Holling III with half-saturation x~2, cf. [23]. The models 
(1.2) and (1.3) contain two kinds of predation, specialist predation and generalist 
predation and the environmental carrying capacity for the specialist predator is 
directly proportional to the prey density, cf. [22, 24]. 

Hanski et al. [4] also showed by simulation techniques that generalist 
predation is likely to be the main stabilizing factor in the south. In the models 
(1.2) and (1.3) it is assumed that the microtine rodent cycles are pure predator- 
prey cycles, not cycles generated by a time-lag as in the model (1.1), which cause 
the specialist predators to follow the cycle, cf. [7]. 

Models like (1.2) and (1.3) are predator-prey models. Predator-prey models 
have together with their higher dimensional generalizations (competition models, 
food chains and cooperation models) attracted quite much mathematical interest 
during the last decades (especially competition models) see e.g. [1, 2, 8, 9, 14, 17]. 

Although the higher dimensional models seem to have attracted more 
attention mainly due to their rich variety of phenomena (chaos, complicated 
bifurcations and so on) there are still unsolved two-dimensional problems. For 
example there are still only a few quite rough methods of general validity when 
one starts to investigate the simplest nonlinear phenomenon, limit cycles, cf. [28]. 

The models (1.2) and (1.3) differ from the mathematically most well-known 
predator-prey systems in the quite special predator equation. Usually the preda- 
tor growth equation is of the form 

( ' )  2 = m  - d x ,  
s - t - a  

i.e. biomass is transferred from the prey population to the predator population. 
In this paper we shall give a qualitative analysis of a single predator-prey 

model containing the models (1.2) and (1.3) as special cases. We shall analyze 
the number and stability of the equilibria and, existence and location of limit 
cycles. The main mathematical methods are the Poincar~-Bendixsson theorem, 
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Lyapunov functions, the Hopf-bifurcation stability formula (cf. [3]) and the 
theory of general rotated vector fields (cf. [28]). The results are summarized at 
the end of the paper. 

2 The model 

We generalize the models introduced in [4] to the following 

= h(s) - x f ( s )  - yfg(S) 

2 = xO(x/s) .  (2.1) 

This model contains the models (1.2) and (1.3) as two important special cases. 
We shall analyze the model (2.1) qualitatively under the following general 
conditions: 

(A-I) All the functions h, f ,  fg and 0 are continuously differentiable of any 
required order (At least C1). 

(A-II) The function h satisfies h(s) > 0 if 0 < s < K and h(s) < 0 if s < 0 or s > K. 

(A-III) The functions f and fg are increasing and have unique zeros at s = 0. 

(A-IV) The function 0 is decreasing and satisfies 0 < O(t) < ov if 0 >~ t < ~c and 
O(t) < 0 if t > to. 

(A-V) The function T(s) defined by 

T(s)  = fA O(~A/s')f(s,) ds" (2.2) 

satisfies lims~o T(s) = ov and lims_.oo T(s) = 0% VA e R+.  

Example  2.1 The systems (1.2) and (1.3) clearly satisfy the conditions (A-I)-(A- 
IV). Moreover, the condition (A-V) is also satisfied because 

q 1 q- 1 + (a, - A)  -z - Aal d£, (2.3) 
C S C S 

£ + a l  

which diverges in the required sense. 
The system (2.1) may be written in the following form 

= f (s ) (Fy(s)  - x)  

2 = xg (x / s )  (2.4) 

which is more suitable for two dimensional phase-plane analysis. The function 
Fy(s) is defined by 

h(s) - yfg(S) (2.5) 
Fy(s) - f ( s )  

We shall also need a function G(s) defined by 

G(s) = fg(s) (2.6) 
f ( s )  ' 
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Remark 2.2 Most of the analysis in this paper is with small modifications also 
valid for the more general predator-prey system 

= f(s)(Fy(s) - n(x)) 

/c = e(x)O(x/s) (2.7) 

where 7t and 0 are supposed to be increasing functions with unique zeros at zero. 
Note, however, that especially the proof  of Theorem 6.4 does not (at least not 
immediately) carry over. 

Theorem 2.3 Assume ( A- I ) - (  A-V). I f  s( O) > O, x( O) > 0 and 

lim Fy(s) > 0 (2.8) 
s - + 0  

then the solutions s(t) and x(t) of  (2.4) remain positive and bounded. 

Proof. (a) Assume first lims_~o Fy(s )=  oo. The solutions will never cross the 
x-axis because we have ~ > 0 close to the x-axis. Hence s( t)> 0. The s-axis 
consists of  different trajectories of  the system, and hence, we have s(t) > 0 by 
uniqueness of  solutions. 

(b) Assume now lims~o Fy(s) = Fy(0) < oo. Put 

x = inf{Fy(s)IFy(s) > ~cs} 

d = {(,, x){0 < s  <x/K,  x > x } .  

We introduce the Lyapunov level curves 

V(s, x) = f~_" O(x_/s') ; x '  - x /~ f(s ')  ds' + ~-x' dx', (2.9) 

in the region d and note that 

P = O ( x / s ) ( F y ( s )  - x )  - O ( x / s ) ( x  - x )  

= O ( x / s ) ( r y ( s )  - x )  - O ( x / s ) ( x  - x )  

+ O ( x / s ) ( x  - x )  - O ( x / s ) ( x  - x )  

= O ( x / s ) ( f y ( s )  - x )  + ( O ( x / s )  - O(x /s ) ) (x_  - x )  <~ O, 

whenever (s, x) e d .  That is, wherever the trajectory starts or enters the region 
d it cannot pass the x-axis at the boundary of d .  The rest of the proof  of 
positivity is analogous to part (a). 

(c) To prove dissipativity we note that all solutions will enter the rectangular 
region determined by 0 < s < K and 0 < x < K~. [] 

Remark 2.4 The condition (2.8) states that generalist predators hunt alternative 
prey when the prey population is sufficiently small. 

3 Equilibria and their stability 

In this section we shall do some local equilibria analysis. We have equilibria at 
the solutions of the equations 

h(s) - yfg (s) = 0 

x = O  (3.1) 
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and 

X =  KS 

Fy(s) = xs. (3.2) 

Equilibria lying in the interior of  R2+ are called interior equilibria. Since an 
infinite number of fixed points in a dissipative system can be removed by an 
arbitrary small perturbation we can assume that the number of fixed points is 
finite and introduce the following notation. 

Notation 3.1 We denote the solutions of  h(s) - yfg(s) = 0 in descending order by 
K1, K2, K3, . . . , Kin. 

Notation 3.2 We denote the solutions of  (3.2) in descending order by 
(s*, x*), (s2*, x*) . . . .  , (s*, x~*). If  it is clear from the context, which solution of 
(3.2) is under consideration we shall denote it by (s*, x*). 

The equilibria at (0, Ki) are saddle points if Fy(Ki) < 0 and unstable nodes 
if Fy(Ki) > 0. We shall treat the origin as a saddle point when lims~ o Fy(S) > O. 
The following theorem characterizes the interior equilibria. 

Theorem 3.3 Assume (A-I)-(A-V).  
(a) I f  F y ( s  i ) - t¢ < 0 then the equilibrium at (s*, x*) is not a saddle point. 

On the other hand, i f  Fy(s i ) - K > 0 then the equilibrium at (s*, x*) is a saddle 
point. 

(b) I f  the equilibrium at (s*, x*) is not a saddle point then the expression 

f (s* )F;,(s* ) + KO'(K) (3.3) 

determine the stability of the equilibria as follows: 
I f  f(s*)F'y(s*) + xO'(x) < 0 then (s*, x*) is asymptotically stable and if  

f ( s*  )F'y(s* ) + KO'(K) > 0 then (s*, x*) is unstable. 

Proof Calculation of  the Jacobian matrix at (s*, x*) gives 

J(s , x*) = \ _ 20 (K) J 

and, consequently, the eigenvalues are 

1 ~ t :~ 2+ = g[f(s i )Fy(si ) + Kg'(tc) 

+ x/(f(&* )F'y(s* ) + KO'(K)) 2 -- 4f(s* )O'(K)K(F'y(S* ) -- K)]. (3.5) 
[] 

From (3.2) and Theorem 3.3 we get the following corollaries: 

Corollary 3.4 Assume (A-I ) - (A-V)  and (2.8). I f  Fy(S) < x, s > 0 then the system 
(2.4) has a unique equilibrium in R2+ which cannot be a saddle point. 

Corollary 3.5 Assume ( A - I ) - ( A - V )  and (2.8). I f  Fy(s)<--KO'(~)/ f (s) ,s  > 0  
then all unstable interior equilibria of the system (2.4) are saddle points. 

4 Absence of limit cycles 

In this section we investigate the global stability of equilibria. Similar problems 
have been considered in [16] and [21]. 
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We shall derive functions and construct sets with respect to different vector 
fields later on. In order to indicate the underlying vector field the functions and 
sets are given subscripts referring to the formula in which the vector field is 
defined. We introduce the following notation. 

Notation 4.1 Let (VF) be the vector field defined by 

=f(s,  x) 

2 = g(s, x) (VF) 

and let H(s, x) be a Cl-function. We denote the total time derivative of H(s, x) 
with respect to the vector field (VF) by/:/(vF~. 

Notation 4.2 Let (VF) be the vector field defined as above and let d c R 2. We 
use the notation d(vv) to point out that the set d is constructed with respect to 
the vector field (VF). 

Theorem 4.3 Assume (A-I)-(A-V). Suppose that (2.4) has a unique interior 
equilibrium, (s*, x*). I f  

( F A s )  - F y ( S * ) ) ( s  - s * )  < O, s # s * ,  

in some simply connected region, then the system (2.4) has no limit cycle lying 
completely in this region. 

Proof. We introduce the Lyapunov-function 

£ - -  fXxX"--Fy(s*) V(s, x) = s O(x*/s') ds" + dx', (4.1) 
, f ( s ' )  , x "  

and get 

~ 2  4~ = O ( x * / s ) ( F v ( s )  - x )  - O ( x / s ) ( r y ( s * )  - x )  

= O ( x * / s ) ( F y ( s )  - x )  - O ( x * / s ) ( F y ( s * )  - x )  

+ O(x*/s)(ry(s*) - x) -- O(x/s)(Fy(s*) - x) 

= O(x*/s)(ry(s) - Fy(s*)) + (O(x*/s) - O(x/s))(x* - x) <<. O. [] 

Example 4.4 We apply this result to the Eq. (1.2). The prey isocline is given by 

Fy(s) r s ( 1 - s / K ) - y s 2  1 (  r 2 ra, ) 
= = -  r s + a l r - - ~ 2 s  - - ~ s - - y s 2 - - a l y s  . (4.2) CS e 

s +a~ 

This is a parabola and hence the maximal derivative of Fy(s) will be approached 
at the origin. We get 

sup F'(s) l ( ra~ ) = -  r - - a l y  (4.3) 
s~>0 e - - g -  ' 

and hence, if the number of generalist predators exceeds r ( 1 -  al/K)/al the 
system (1.2) cannot possess limit cycles and the unique interior fixed point is 
globally asymptotically stable. 
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5 Position of limit cycles 

If the value of the Lyapunov function defined in (4.1) is large enough then all 
limit cycles due to dissipativity are contained in the region determined by the 
corresponding level curve of V(s, x). In this section we shall consider systems of  
type (2.4) satisfying the following conditions. 

lira Fy(s) > x* (5.1) 
s--+0 

s ~ [ m i n ( s * , K m ) ,  KI] t ~  0 

for some x*. We give a numerical example below (Example 5.5) to show that the 
class of systems of type (2.4) which satisfies the conditions (A-I)-(A-V),  
(5.1)-(5.2) and possesses limit cycles is not empty. 

Condition (5.1) guarantees that we can find an E-region near the x-axis 
w h e r e  V(2.4) < 0. Condition (5.2) is the analogous condition for the s-axis. The 
conditions (5.1)-(5.2) will then guarantee that the region defined below does not 
become infinite. Now define 

V(2.4 ) ~--- inf{m ~> 0 1 V(s, x) > m ~ 1)'(2.4 ) < 0}. (5.3) 

From the definition of V(z4~ we immediately get the following theorem. 

Theorem 5.1 Assume (A-I)-(A-V).  Suppose the conditions (5.1) and (5.2) hold. 
Then the region 

 (24> = {(s, x) I V(s, x) < v 24> } 
contains all #mit cycles and interior equilibria of (2.4). 

Proof First note that the Lyapunov-function is positive definite, C 1 and satisfies 
lims~0 V(s, x) = 0% and lims~o~ V(s, x) = oo by (A-I)-(A-V).  The conditions 
limx ~ o V(s, x) = oe and limx ~ ~ V(s, x) = oe, are fulfilled by suitable behavior of  
the integrals of  1 and 1Ix. Conditions (5.1)-(5.2) and continuity of  l?(z4) implies 
that the region {(s, x) e R2+ ) I?(s, x) ~< 0} is a bounded region in the phase-plane, 
which does not intersect the boundary of R ~ .  This holds because conditions 
(A-II) and (A-IV) imply suitable behavior of  V(z4) when s --+ ov and x ~ or. Now 
assume that a trajectory (s(t), x(t)) starts at (s(0), x(0)) e R2+ and that we have 

V(s(t), x(t)) >1 V(z4) + e, e > 0, gt t> 0. (5.4) 

By definition (5.3) /2(2.4)is strictly negative in the region {(s, x) lV(s, x)>~ 
V(z4) + e }.  By continuity and suitable behavior near infinity we can find a value 
M, such that 

~ - M  < 0 (5.5) 

whenever (s, x) ~ {(s, x) [ V(s, x) >i V(za) + e}. Integration of  (5.5) will contradict 
(5.4), and hence, no trajectories starting in R2+ can have oMimit sets outside 
~//'(2.4) " [ ]  

Lemma 5.2 Assume (A-I ) - (A-V)  and (2.8). The rectangular region 

~(2.4) ~" {(S, X ) I O < ~ s  < K 1 , 0 < x  < K,~c} 

contains all limit cycles and interior equilibria of (2.4). 
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Remark 5.3 Observe that it is necessary to use Notat ion 4.2 in Lemma 5.2 
because K 1 is dependent of the system (2.4). 

Corollary 5.4 Let the assumptions of  theorem 5.1 hold. The intersection 
~/f(2.4~ c~ ~(2.4~ contains all limit cycles and interior equilibria of  (2.4). 

In some cases of practical importance we may have some problems when we try 
to use Theorem 5.1. For  example in the model (1.2) the condition (5.1) will not 
be satisfied, and hence, the region ~U(2.4 ~ will be infinite except for parameter 
values already guaranteeing absence of limit cycles. We remark that this difficulty 
can be eliminated by assuming that the functional response 

s 
f(s)  - (5.6) 

s + a  
is an approximation of the more general functional response 

s 2 

f (s)  - s2 + as + b (5.7) 

for a small b. 

Example 5.5 We show that there are systems possessing at least one limit cycle 
and satisfy (A-I)- (A-V),  (5.1)-(5.2). This proves that the presented theorem 
and the analysis below are meaningful. We choose h(s) = r s ( 1 - s / K ) ,  
y = O,f(s) = s2/(s 2 + als + bl) and O(x/s) = q(1 - x/Ts). Conditions (A- I ) - (A-  
IV) and (5.1) are clearly satisfied. A calculation corresponding to the calculation 
in Example 2.1 shows that condition (A-V) holds. Next we choose 
r = 1, K = 1, c = 1, al = 3/200, bl = 1/200, q = 1/5, ~ = 1. We solve the equation 
for the equilibria and get 

f ( s )  = 1 (1 - s)(s 2 + als + hi) ~--- S 
s 

- -  S 3 - -  al s2 -}- (al - b l ) S  q -  bl = O .  

This cubic equation may be solved, the only positive real solution of it is 
approximately s* ___0.185051. Further calculation shows that the equilibrium 
corresponding to this solution is unstable, and hence dissipativity gives that the 
system possesses at least one limit cycle. Now we have to verify the condition 
(5.2). We take the derivative of the function 

O(x */s)Fy(s) - lira O(t)x *. (5.8) 
t ~ O  

The zeros of the derivative of the function (5.8) correspond to the zeros of a 
certain fourth degree equation. By solving this equation we may show that it has 
exactly one positive zero (s ~-0.585045), and this zero corresponds to a maxi- 
mum of the function (5.8). This maximum is approximately -0.00247826, so 
condition (5.2) is satisfied. The regions ff/~(2.4) and 9(2.4 ) corresponding to this 
case are depicted in Fig. 1. 

If  we assume that the hunting efficiency of the generalist predators is low 
compared to the hunting efficiency of the specialist predators at low prey-densi- 
ties we have that 

lira G(s) ~- O. (5.9) 
S ~ 0  

Under this condition the functional response (5.7) will give rise to a system of 
type (2.4) which satisfies the condition (5.1) for all y when h(s)= s ( 1 -  s/K) 
because then l im~0  Fy(s) = oe for all y > 0. 
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Fig, 1 The regions ~(1.z) and ~(1.2)  

for a system of  type (1.2) with the 
more general functional response 
(5.7) r = l , K = l ,  c = l , ~ = l ,  
y = 0, q = 1/5, a~ = 0.015, b 1 = 0.005 

6 Qualitative behavior of limit cycles as the density of generalist 
predators varies 

In this section we shall understand the qualitative behavior of  the limit cycles as 
the density of the generalist predators is varied. The region ~(2.4) (Lemma 5.2) 
will in general shrink because Fy(s) < Fyo(S ) when y >Yo. This does not, how- 
ever, exclude more and more complicated behavior as shown by the following 
example. 

Example  6.1 Consider the case when 

S 2 Jr- a I s 

G(s) s z + b2 " (6.1) 

This corresponds to the situation in model (1.3). Suppose nb z ~ al. We have 

lira G(s) = 0 
S ~ 0  

G(b2/a~) ~- 1 

G(nbz/al)  ~- n 

G(al)  ~- 2 

lira G(s )=  1. 

This means that we may force the function Fy(S) to change arbitrarily rapidly for 
small s as the generalist predator density increases. 

Consider the model (1.3). We choose the parameter values r = 1, K =  1, 
a = l ,  c = l ,  7 = 1  and b = l / 1 0 0 0 .  When y = 0  the system has a unique 
equilibrium which is globally asymptotically stable according to Theorem 4.3. If 
we choose y = 2/30 we have three interior equilibria and one of these is a saddle 
point. Note also that two equilibria along the s-axis has occurred. See Fig. 2 
where we have sketched the isoclines for this set of  parameter values in the cases 
y = 0 and y - -2 /30 .  Note that the latter case does not possess limit cycles 

(s3, x3 ) (Notat ion 3.2). This can be shown with a surrounding the equilibrium * * 
region of type 9(1.3) determined by 0 < s < K3, 0 < x < K3~: (recall Notation 3.1) 
and Theorem 4.3. 
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A predator-prey system with limit cycles 

Fig. 2 Isoclines for the system (1.3) 
for the parameter values r = 1, 
K = l , a = l , c = l ,  7 = l  and 
b = 1/1000 for y = 0 and y = 2/30 

F o r  the rest of  this section we restrict ourselves to the case when the 
hal f -sa tura t ion of  the generalist p reda tors  is high compared  to the number  of  
small rodents,  that  is G'(s)  > 0. We start  with a quite general theorem. 

Theorem 6.2 Define two sys tems  according to 

= f ( s ) ( F  1 (s) - x) 

2 = xO(x/s )  (6.2) 

and 

= f ( s ) (Fz ( s )  - x)  

2 = xO(x/s) .  (6.3) 

Assume  ( A - I ) - ( A - V )  for (6 .2) - (6 .3) .  Suppose  that, with respect to (s*, x*) ,  

(i) The conditions (5.1) and (5.2) are satisfied f o r  (6.2). 
(ii) (Fl(s)  - Fz(s))(s - s) < O, s ~ s*, 

then, with respect to (s*, x*) ,  

(i) The conditions (5.1) and (5.2) are satisfied for  (6.3). 
(ii) The region ~U(6.2 ) covers completely  ~//'(6.3). 

Proof.  (i) We have 

I)(6.3 ) - I)(&2) = O(x*/s)(F2(s ) - F2(s*))  + (O(x*/s) - O(x /s ) ) (x*  - x)  

- O(x*/s ) (F  1 (s) - F1 (s*)) - (O(x*/s)  - O(x /s ) ) (x*  - x)  

= O(x*/s)(F2(s) - F, (s)) <<. O, 

SO 

and hence 

~'~(6.3) ~ ~'(6.2) 

{(S, X) I V(6.2) (S, x) -~ O} ~ {(s, x)  I V(6.3) (S, x)  ~ 0 }  

ff/'(6.2) ~ "~(6.3). 
[] 

We shall need the next definition for the formula t ion  of  the next theorem.  
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Definition 6.3 Let M c R2+. The set {M}k is defined by the relation 

(s, x) ~ M ~¢, (ks, kx) ~ {M}k. (6.4) 

Theorem 6.4 Assume (A-I)-(A-V).  Suppose that G'(s) >1 O, y >~ Yo. Let (Sy, xy ), 
(s*o, x*o) be interior equilibria o f  the two systems 

= f(s)(Fyo(S) -- x) 

= x O ( x / s ) ,  

and 

(6.5) 

= f * ( s ) ( r y ( s )  - x )  

2 = x O ( x / s ) ,  (6.6) 

*-< * I f  (5.1) and (5.2) are satisfied for (6.5) and respectively, satisfying Sy ..~ Sy o. 
f*((s* /S*o)S ) =f(s )  then 

(i) The conditions (5.1) and (5.2) are satisfied for (6.6). 
(ii) The region {~[F(6.6 ) O 9(6.6 ) }~o/S ~ will be completely contained in the region 

~'(6.5) f'~ ~(6.5) • 
(iii) Put d = {s > 0 I F~o(S) ~> 0}. I f  inf~ ~ ~ G'(s) > 0 then there exists a y 

such that if y > y then the system (6.6) has an equilibrium which is globally 
asymptotically stable. 

Proof. We transform the system 

= f (s)(Fy(s) - 2) 

= 20(2/~), (6.7) 

by the linear transform 

and arrive at 

s*° £, x = x*° 2 (6.8) s = s-5 

= f ( s ) ( P ( s )  - x )  

2 = xO(x/s), (6.9) 

where we have used the fact that 

f ,  ( s *  ) = f(s) (6.1 O) 
\S .o  s 

and defined if(s) as 

;(,) S*o  ( s . )  
=-2;- y s . (6.11) 

Sy \S~o 

Now replace the system (6.2) and (6.3) in Theorem 6.2 by the systems (6.5) 
and (6.9), respectively. We have to verify the conditions (i)-(i i)  of Theorem 6.2. 
The condition (i) follows because of our assumptions. 

To verify condition (ii) observe that 

ff(S,o) = S*y_OOFu(s,) Syox,=S,otC=x,=Fyo(S,o)* 
" s*y = - 2 .  y y o  Sy 
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Fig. 3 Simultaneous changes of the 
functions f(s), h(s), fg(s) in the 
model (2.1) for the ideal case 
described by Theorem 6.4 together 
with the changes in the isoclines for 
y = 0 (solid, y = 0.4 (dashed), 0.8 
(dashdotted), 1.2 (dotted). The 
system corresponding to y = 0 is 
(1.2) with the more general 
functional response (5.7) and r = 1, 
K = l , c = l , y = l , a  1=0.015, 
b~ = 0.005 

and 

0 < a'(s) = Fyo( ) - F'y(s) = dss Fy°(S) - ~syY° Fy \S*yo s = ds (Fy°(S) - if(s)). 

To prove  assert ion (iii) we m a y  note  that  as the density of  generalist  
p reda tors  increases we shall sooner  or  later have F'y(s) < O. [] 

Example 6.5 I f  we use the model  (1.2) the condi t ion G'(s) > 0 of  T h e o r e m  6.4 is 
satisfied. However ,  the condi t ion (5.1) is not  generally satisfied, but  we have 
already noted that  this difficulty can be removed  using the more  general  specialist 
p reda to r  functional  response (5.7) (Sect. 5). 

Remark 6.6 T h e o r e m  6.4 describes an ideal case when the mot ion  of  the limit 
cycles is expected to be mos t  regular.  I t  states that  the functions h(s), f (s)  and 
fg(s) in the system (2.1) have to follow the var ia t ion in the generalist p reda to r  
density in a suitable sense. These var ia t ions are depicted in Fig. 3 for the system 
(1.2) with the more  general functional  response (5.7). 

7 Construction of multiple limit cycles 

The Hopf -b i fu rca t ion  stability fo rmula  see e.g. [3] enables us to construct  
multiple limit cycles in the model  (1.3). Similar ideas have been used to construct  
multiple limit cycles in other  systems cf. [6, 26, 27]. Our  example  will show tha t  
this is possible wi thout  assuming that  the system (1.3) has several interior 
equilibria. 

We choose the parameters  involved in the model  (1.3) so that  the system 
undergoes  a Hopf -b i fu rca t ion  at the equil ibrium (s*, x* ) .  The choice 

f ( s * )  = 1 (7.1) 

= 1 ( 7 . 2 )  

~9'(rc) = - 1/2 (7.3) 
t :t: Fy(si ) =  1/2 (7.4) 

0(")(~) = 0, n > 1 (7.5) 

7 = 1 (7.6) 
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will simplify our work with the coordinate transforms required for using the 
Hopf-bifurcation stability formula. 

By (7.2) we have x* = s*. We move the equilibrium (s*, s* ) to the origin by 
the affine transform 

= s  = s *  

t /=  x - s* (7.7) 

and the system (2.4) transforms into 

= f ( ~  + s* )[gy(~ + s* ) - q - s* ] 

0 =(,~ +=t)o \¢-U~.*,) 

In order to get the standard form of (2.4) we choose the further transform 

u = ~  - t /  

v = t/ (7.9) 

and obtain 

f i = f ( u + v + s * ) [ F y ( u + v + s * ) - v - s * ] - O l + S * ) O  u + v + s * J  

( ) i~=(r l +s*)O u + v + s * } "  (7.10) 

We expand all functions in Taylor series, making especially use of assump- 
tion (7.5) and get as a third order approximation of the system near (s*, s* ) 

1 ,( -sTU2 u3 u2v X F~(s*) 
= 

'fl(s i ) ~lt, , , _ ,  -, 
"]- T (bI3"]- "2U - - IgU2- -  vg) "4--P Y tS ?" ) (bl Af- V) 3 

- 6 

f'(s* ) I;;(s* )f'(s* ) 
T (,,/2 -- V2) ..} 2 (u + U) 3 

l (  .2 .3 .2 U 

This expression is now in standard form. This means that we can apply the Hopf  
bifurcation stability formula to this expression. We get 

1 
(F~(si )) + s*ff(s*) e=l__~sy[4g;(s.)+4s. , .  2 

~[~ tit * * tl * + 2s, Fy ( s , )  + 2ff(s*) + 6s, g;(si )if(s*)]. (7.11) 

The sign of c~ determines the stability of (s*, s*). 
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The formula (7.11) is quite complicated and we start by choosing s* = 1, 
r = K and al - 0. When a 1 ~_ 0 both derivatives o f f ( s )  in the expression vanish 
and we have 

~- ~[2Fy(1) + 2(F~(1)) 2 + Fy'(1)] (7.12) 

S 2 

Fy(s )  ~- s ( K  - s)  - y s2 + b2 .  (7.13) 

The first term of the Taylor expansion of Fy(s )  must equal one and according 
to the assumptions x = 1 and s* = 1 and we have 

Y - 1  + K - ~ =  1. (7.14) 
1 +b2 

We may solve K from this equation. According to the assumption (7.4) we also 
know the coefficient of the second term in the Taylor expansion of by. We solve 
y from the obtained equation and get 

I (I +b2)  2 
Y - 2  1 - b  z (7.15) 

Now the Taylor expansion of Fy looks like 

- 2  + 3b2 + b 2 
Fy(s )  = 1 + ½(s - 1) + 2 -  2b~ (s - 1) 2 

2b2 
(1 + b2) 2 (s - 1) 3 + O((s  - 1)4). (7.16) 

In order to make 7 positive, choose b 2 = 3/4 and we have ~ _ 47/49 > 0. This 
choice will not lead to several interior equilibria because Fy(s) - s  = 0 i f f  

(1 - s)s(27 - 28s + 8s 2) = 0. (7.17) 

Now if a~ is slightly greater than zero the corresponding system will undergo a 
Hopf  bifurcation so that all equilibria are unstable for this choice of parameters. 
Because the system was dissipative the system has at least one externally stable 
(from the outside stable cf. [28]) limit cycle. If  we perturb the system so that the 
stability of the equilibrium changes one unstable limit cycle appears due to the 
Hopf  bifurcation theorem. This perturbed system possesses at least two limit 
cycles. The situation is depicted in Fig. 4 for the system (1.3) in the case 

j . S  y 

f ................... 0.5 / . . /  

0 
0 0.5 1 l.S 2 2,5 

Fig. 4 Mul t ip le  l imi t  cycles for the 
sys tem (1.3) in the case r = 5½, 
K = 5½, c = 1, y = 1, y = 49/8, 

a 1 = 1/100, b2 = 3/4, q = 5/8 
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r = 5½, K = 5½, c = 1, 7 = 1, y = 49/8, a I = 1/100, b2 = 3/4 ,  q = 5/8. The interior 
limit cycle is unstable and calculated by integrating the system backwards. 

8 Construction of  complicated global  bifurcations 

The construction in Sect. 7 enables us to construct a complicated global 
bifurcation in a related system. Consider the system z( 

= r s ( 1  - s / K )  - c x  y - arctan( - w ( s  - So)) + 
s + al  s 2 + b 2 ~r 

2 = q x ( 1  - -  x / y s ) .  (8.1) 

This system may be written in the usual form (2.4). We shall choose the 
parameters r = 5½, K = 51, 7 = 1, c = 1, y = 49/8, al = 1/100, b2 = 3/4, w = 1500, 
So = 0.99, z = 0.01 to construct complicated bifurcations with respect to the 
parameter q _~ 0.682. First consider the rough view of  the system (Fig. 5) where 
we have sketched the isoclines and the unstable manifold of  the saddle point 
(K1,0). 

If  we magnify the small rectangle in Fig. 5 we note that the system (8.1) has 
a saddle point and a couple of limit cycles surrounding it (Fig. 6). If  we increase 
the value of  q the limit cycles will coalesce into each other at some value q*. 

However, the bifurcation which appears as the limit cycles coalesce is not 
only a limit cycle bifurcation, because the stable manifolds of (s2, x2 ) (Notat ion 
3.2) and the unstable manifold of  (/(1,0) (Notation 3.1) are involved in the 
bifurcation. This is illustrated in Fig. 7 where we have plotted successive 
Poincar6 plots of  the stable and unstable manifolds in the cross-section s = 0.998 
for four different values of  q (horizontal axis). The x-values are plotted against 
the vertical axis. 

When the limit cycles coalesce infinitely many saddle connection bifurcations 
will occur in some interval [q*, q* + e]. That is, the limit cycle bifurcation-value 
q* is, in fact, an accumulation point of  other bifurcations. The phenomenon is 
described in more detail in [3]. Hence the related system (8.1) undergoes a 
complicated global bifurcation scheme in the interval [q*, q* + el. We note that 
nothing excludes this phenomenon in the predator-prey model (1.3), and that the 
numerical evidence presented here does not establish the phenomenon for the 
used parameter values. 

2.1 
1.1 
o.i 

. j .  

/, 

o15 i ,15 215 ; 315 

Fig.  5 R o u g h  v i e w  o f  t he  s y s t e m  

(8 .29)  in t he  ca se  r = 5½, K = 5½, 

c = i ,  ~ = 1, y = 4 9 / 8 ,  a~ = 1/100, 

b 2 = 3/4, q = 1/1.465,  s o = 0 .99,  

w = 1500, z = 0.01 
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Fig. 6 Multiple limit cycles outside a 
saddle point in the system (8.29) in 
the case r =5½, K =  5½, c = 1, y = 1, 
y = 49/8, a I = 1/100, b 2 = 3/4, 
q = 1/1.465, s o = 0.99, w = 1500, 
z = 0.01 
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Fig. 7 Successive Poincar6-plots of 
the stable manifolds of (s~, x~) and 
the unstable manifold of (K 1 , 0) in 
the cross-section s = 0.998 against 
the parameter value of q (horizontal 
axis) and the value of x (vertical 
axis) for the system (8.29) in the 
caser=5½,  K=5½, c = l ,  7 = l ,  
y = 49/8, a I = 1/100, b 2 = 3/4, 
s o = 0.99, w = 1500, z = 0.01 

0.6835 

9 Remarks about a related predator-prey model 

H u a n g  [10, 11, 12], H u a n g  a n d  M e r i l l  [13], K u a n g  [18, 20], K u a n g  a n d  F r e e d -  
m a n  [19] h a v e  i n v e s t i g a t e d  a s y s t e m  w h i c h  is q u i t e  s i m i l a r  to  our s .  W e  r ev i ew 
s o m e  r e su l t s  c o n c e r n i n g  t h e s e  s y s t e m s  a n d  p r e s e n t  s o m e  c o m p a r i s o n  resu l t s .  

9.1 De f in i t ion  and  f u n d a m e n t a l  p roper t i e s  

G a u s e - t y p e  p r e d a t o r - p r e y  m o d e l s  o f  t ype  

= f ( s ) ( F y ( s )  - ~ (x ) )  

2 = ~(x)~b(s). (9 .1)  

a re  ( e spec i a l l y  w h e n  O ' ( s )  > 0) m o r e  w e l l - k n o w n  t h a n  o u r  s y s t e m  (2.7) .  T h e y  are  
m o r e  c lose  to  o u r  s y s t e m  t h a n  t he  s e p a r a b l e  s y s t e m  

= f ( s ) ( F y ( s *  ) - x)  

2 = x O ( x * / s )  (9 .2)  
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corresponding to the Lyapunov-function defined in (4.1) and hence it may be 
possible to get some results about (4.2) comparing it to the system (9.1). We 
shall assume that the Gause-type predator-prey model satisfies the following 
general conditions: 

(G-I) All the functions f ,  re, 0 and ~ are continuously differentiable of any 
required order (At least C1). The function Fy is continuously differentiable of 
any required order at all other points except possibly at the origin, but 
lims~of(s)Fy(S) -- 0 and lims~o Fy(s) > O. 

(G-II) There exists a point K such that Fy(S) < 0 if s > K. 

(G-III) The functions f ,  re, ~ are increasing and have unique zeros at zero. 

Theorem 9.1 Assume (G-I ) - (G-I I I ) .  I f  s(O) > 0 and x(O) > 0 the solutions s(t) 
and x(t) of  (9.1) remain positive, i f  moreover O(s) < 0 for s < s, Fy(s) > 0 and 

--l(Fy(S)) ~(X) -- (30. (9.3) 

then the system (9.1) is dissipative. 

Remark 9.2 The condition (9.3) seems to be important only for the proof  
presented here, so there may be some possibilities to improve the theorem. 
However, we shall mainly work with O(x) = x, and hence the theorem is enough 
for our purposes. We also remark that the condition 0 ( s ) <  0 for small s is 
essential for dissipativity and cannot be removed. 

Proof. The axes consist of different trajectories of  the system, and hence, the 
solutions remain positive by uniqueness of  solutions. To prove dissipativity, first 
note that all solutions will enter the infinite rectangular region 
0 < s < Sma ~, Smax > K. Now introduce the Lyapunov level curves 

V ( s , x ) =  ~S ds f f  dx (9.4) 
f(s)  + -~(ry(,)) O(x) 

in the infinite quadratic region s > s, x > rc -~(Fy(s)). Now choose 

= max ( sup ~ l(Fy(S) + t~(s)), zt-l(Fy(s)) (9.5) 
~s  < 8 < s max 

and we have that I ~ < 0 for x > 2. Put 

~ ds f ;  dx (9.6) 
Vo = L + 

and by (9.3) we may choose 

Xmax = X l -'(F,(~)) O(X) -- Vo . (9.7) 

By the implicit function theorem the level curve V(s, x) = Vo defines a function 
x = v(s), which by positivity of ~(x) and f(s),  is unique and strictly decreasing, 
for s < s < Smax. NOW all trajectories will enter the region 

= {(S, X) [ O < s  < S ,  O < X  < Xmax} k..){(S , X) IS < S  < S  . . . .  O < x  < V(S)}. 
[] 
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The similarities between the system (9.1) and generalized Li6nard equations: 

= ~o(y) - r ( x )  

f~ = - g ( x )  (9.8) 

have been used to apply a theorem by Zhang [29] in order to prove a uniqueness 
of limit cycles result for the Gause-type predator-prey model (9.1). 

Theorem 9.3 (Huang [10], Kuang and Freedman [19]) Assume (G-I)-(G-III). 
Suppose that 

(i) The function ~ is strictly increasing and has a unique zero at s; 
l i m ~  ~ ~(x) = ~ ;  the function Fy(s) has a unique zero at K s > s such that 

(ii) The function 

(s - K , )Fy  (s) < 0, s ~ K1. 

- F ' A s ) f  (s) 

¢ ( s )  

is non-decreasing for s ~ s. 

Then the system (9.1) has at most one limit cycle, and i f  it exists it is stable. 

The fact that the system (9.1) has so well-known dynamics under the above 
conditions will be used in Sect. 9.2. Note that the first condition is a condition 
which is expected to be valid for usual predator-prey systems of type (9.1), the 
last one is needed for the proof of the uniqueness of the limit cycle. 

9.2 Comparison of  our predator-prey system with a system of Gause-type 

Suppose that 8(t) is a decreasing function defined on the entire real line. The 
system 

= f ( s ) ( F y  (s) - x )  

= xO(Fy (s) /s )  

is a rotation of the vector field (2.4) because 

(9.9) 

S(9.9) "~(9.9) 

where s(z4>, 2(2.4>, S(9.9) and "~(9.9) are defined by (2.4) and (9.9), respectively. The 
theory of general rotated vector fields (cf. [28]) gives: 

Lemma 9.4 Assume (A-I)-(A-V)for  (2.4), (G-I)- (G-III ) for  (9.9) and that O(t) 
is a decreasing function defined on the entire real line. Closed trajectories of  the 
system (2.4) and the system (9.9) do not intersect. Moreover, equilibria of(2.4) and 
(9.9) have the same indexes. 

The systems (2.4) and (9.9) are dissipative according to Theorem 2.3 and 
Theorem 9.1, respectively. When we combine dissipativity of the systems (2.4) 
and (9.9) with the theory of general rotated vector fields we get: 
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Theorem 9.5 Assume (A-I)- (A-V)for  (2.4), (G-I)-(G-III),  (9.3)for (9.9) and 
that O(t) is a decreasing function defined on the entire real line. I f l ims~ o Fy(s) > O, 
the vector field (2.4) has no limit cycles surrounding all limit cycles and interior 
equilibria o f  (9.9). 

Proof  First note that none of the equilibria along the s-axis of the system (9.9) 
are stable. If the system (2.4) does not have a limit cycle the theorem holds, i.e. 
assume the existence of at least one limit cycle in the system (2.4). The region 
between the boundary of N (definition in the proof of Theorem 9.1) and the 
outermost limit cycle of (2.4) forms a trapping region for the system (9.9), and 
hence the existence of a limit cycle or an interior equilibrium outside the 
outermost limit cycle of (2.4) is established by the Poincar6-Bendixson theorem. 

[] 

We can also apply Theorem 9.3 to 
the following conditions hold (s > 0): 

show uniqueness of limit cycles of (9.9) if 

F'y(s) < Fy(s)/s (9.11) 

Fy( s ) ( s -  K1)<O, s ¢ K1, (9.12) 

d C(s)f(s) 
~<0, s ¢s .  (9.13) 

The condition (9.11) implies that the function O(s) = O(Fy(s)/s) is strictly increas- 
ing. This case is the most investigated case, because this is ecologically the most 
interesting. There are, however, some works about other cases (cf. [26]). If the 
system satisfies the condition (9.11) we also have by Corollary 3.4 and Lemma 
9.4 that the systems (2.4) and (9.9) have a unique equilibrium which cannot be 
a saddle point. From the above uniqueness assumptions we get the following 
corollary. 

Corollary 9.6 Assume (A-I)-(A-V) for (2.4), (G-I)-(G-III) and (9.3) for (9.9) 
and that 9(t) is a decreasing function defined on the entire real line. I f  the 
conditions of  theorem 9.3 hoM for the system (9.9), then all limit cycles of(2.4) are 
contained in the unique limit cycle of  (9.9). 

As a final remark we also note that the motion of the limit cycles in the model 
(9.1) can be followed quite easily in certain situations. 

Two systems of type (9.1) with different F : s  are rotated with respect to each 
other if O(s) is a strictly increasing function with a unique zero at s = s* and 
(F1 (s) - Fz(s))(s - s*) >>. 0 because 

f(s)(F1 (s) -- re(x)) ~(x)~(s) 
f(s)(F2(s) -- ~(x)) ~(x)O(s ) = ~(x)f(s)O(s)(F1 (s) -- F2(s)) >/0. (9.14) 

Moreover, if these functions satisfy the uniqueness conditions in Theorem 9.3 for 
both systems, then we know by the theory of general rotated vector fields (cf. 
[28]), that the unique limit cycle of system corresponding to F2 will be contained 
in the unique limit cycle in the system corresponding to F1. 
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10 Summary 

We have analyzed the predator-prey model 

= h(s )  - x f ( s )  - y fg (S )  

:~ = xO(x /s ) .  ( lO.1) 

We have shown that predator-prey cycles described by this model are likely to be 
stabilized by generalist predation as observed in Fennoscandia (Sect. 1) if the 
half-saturation of the generalist predators is high compared to the number of 
small rodents. This result includes the following partial results: 

(i) We put up conditions guaranteeing that all the limit cycles of the system 
are inside a level curve of a Lyapunov function. 

(ii) We showed that if these conditions are fulfilled for some generalist predator 
density, then they are also satisfied for a higher generalist predator density. 

(iii) We prove that there exists an ideal case so that if suitable simultaneous 
changes do occur in the functions h(s) ,  f ( s ) ,  and f g ( s )  as the density of the 
generalist predator increases then the level curve containing the limit cycles at a 
higher generalist predator density can be moved so that it lies completely inside 
the corresponding level curve at lower generalist predator density. 

(iv) We show that if the generalist predator density is sufficiently high, then 
the system (10.1) has an equilibrium which is globally asymptotically stable. 

We give examples showing that if the half-saturation of the generalist 
predators is not high compared to the number of small rodents, then multiple 
equilibria and multiple limit cycles may occur as the density of generalist 
predators increases. Complicated global bifurcations may also be constructed in 
related systems. 

We compare our system to a more well-known class of predator-prey 
systems, the Gause-type predator-prey models (Sect. 9). The most important 
result of this comparison is that the outermost limit cycle of a special Gause-type 
predator-prey model will contain all the limit cycles of our model. 
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