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Abstract. We discuss a competition-diffusion system to study coexistence prob- 
lems of two competing species in a homogeneous environment. In particular, by 
using invariant manifold theory, effects of domain-shape are considered on this 
problem. 
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1. Introduction 

One of the fundamental problems in population ecology is how and why a large 
number of competing species are able to coexist in a basically homogeneous 
environment. In studying this problem, numerous mathematical models have 
been proposed so far. One of the simplest models for the interaction of n 
competing species is the well-known Gause-Lotka-Volterra system: 

- '~=  Ri - -a ix i - -  bi:x: xi ( i = 1 , 2  . . . . .  n), (1.1) 
jv~i 

where x i ( t )  is the population density of species i at time t, R; is the intrinsic 
growth rate, a i is the intraspecific competition rate and bij (i # j )  is the interspe- 
cific competition rate for i, j = 1, 2 , . . . ,  n. All of the parameters are positive 
constants. Especially, when n = 2, (1.1) is reduced to 

I dX l = ( R  1 - al x I - bl X2)Xl , 
dt (1.2) 

d x  ~ = ( R :  - b ~ x l  - a ~ x 2 ) x ~ ,  
t , t t  

where we simply write blz = bl and b21 = b2. The asymptotic behavior of solu- 
tions (x] (t), x2(t)) of (1.2) is completely classified into the following cases when 
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(X 1(0) ,  X2(0) )  is  positive: 

when b~_ al --,R1 l im(xl( t ) ,x2( t ) )  (R~ 1 ) 
a2'-~2<R2 t~m = ,0 ; 

when bl al R1 l im(xl( t ) ,x2( t ) )  = ( 0 ,  R2); 
a 2 ' ~ > R 2 t--, ~ a 2 ] 

bl R1 al l im(xl(t  ), x2(t)) = (x*, x*);  (1.3) when ~ < R--2 < a2' ,-~ 

where 

when al R1 bl (x*, x*) is unstable and (Xl(t), x2(t)) 
bE < R--2 < a--2' 

generically appr°aches t° either (R1 ' O) °r  (0 '  aff-~) as time g°es °n'  \ o  1 

aZR1 - bl R2 aiR2 - b2R1 
x * -  and x * -  

al a2 - bl b2 al a2 - bib2 " 

That is, two species coexist only for the case when bl/a2 < R1/R2 < al/b2 holds. 
Horn and MacArthur [11] and Levin [15] consider the situation where the 

habitat is subdivided into two patches and propose the following model: 

T = (Ra - a l x ~i) _ b l x ~°)x ~i) + D, (x ]J) - x ~0), 

dx(2i) ( i , j  -- 1, 2;i  # j )  (1.4) 
---~- = (R 2 - bzx~O - a2x(zO)X~O + D2(x(z j) - x~)), 

where (x~ o, x~ °) are the population densities of two species in patch i (i = 1, 2), 
and D1, O2 a re  the species-specific migration rates between patch 1 and patch 2. 
When D1 = D2 = 0, that is, each species can never migrate between two patches, 
(x(1) .~(1~ and (x~ 2~, x(2 2)) independently satisfy (1.2). On the other hand, if D1 1 ~'~2 1 
and O 2 a re  both very large, one could expect that x~ 1~ - x} 2~ (i = 1, 2) tend to 
zero and as the result, the behavior of solutions of (1.4) is qualitatively the same 
as that of (1.2). If D1 and D2 are not necessarily large, Levin [15] showed that 
(1.4) admits stable positive equilibria for the case when al/b2 < RI/R2 < bl/a2, 
that is, two competing species can coexist by suitably migrating from one patch 
to the other even if the interspecific competition is stronger than the intraspecific 
one. This implies that coexistence of competing species is possible in a patchy 
environment. The discussion above can be extended to n-competing systems of 
the form (1.4). 

The situation can be also considered where two competing species move by 
diffusion in a bounded domain. It is described by the usual reaction-diffusion 
system which is the continuum version of (1.4): 

f OUl = d l A u  I + (R1 - -  alu 1 - b lUz)Ul ,  

Ot (t, x) ~ (0, oo) x t~ (1.5) 

OU2 = d:Au2 + (R2 -- b2ul -- a2uz)u2, 
t. ~t 
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with the zero-flux boundary conditions 

au  1 Ou 2 
an = 0, t3---n- = 0, (t, x) ~ (0, oo) × Of 2. (1.6) 

Here u I (t, x) and u2(t, x) are the population densities at time t > 0 and position 
x e f2, f2 is a bounded domain in R" with smooth boundary af2, A is the 
Laplacian, d~ and d2 are the diffusion coefficients, and alan is the outward 
normal derivative at aO. 

For the study of the coexistence problem of two competing species which 
move by diffusion, there has been much work which deals with existence or 
non-existence of stable spatially inhomogeneous positive equilibrium solutions of  
the problem (1.5), (1.6). First of  all, we should note that if the diffusion 
coefficients d 1 and d2 are both very large, any nonnegative solutions of  (1.5), 
(1.6) with an arbitrarily fixed domain f2 tend to be spatially homogeneous as 
t -o  oo (Conway et al. [4], S.-I. Ei [5]). This result implies that the asymptotic 
behavior of  solutions of (1.5), (1.6) is qualitatively the same as that of  (1.2). 
Moreover, even if dl and d2 are not necessarily large, the assertions in (1.3) also 
hold for (1.5), (1.6) except for the case a~/b2 < R1/R2 < bl/a2, when u;(0, x) ~> 0 
and u~(O,x)~0 ( i =  1,2) (Ahmad and Lazer [1], for instance). For the case 
a~/b2 < R~/R2 < bl/a2, the situation is not so simple. When I2 is convex, Kishi- 
moto and Weinberger [14] proved that for any d~ and d2, spatially inhomoge- 
neous equilibrium solutions of  (1.5), (1.6) are not stable even if these solutions 
exist. On the other hand, Matano and Mimura [16] and also Jimbo [13] showed 
that there is a nonconvex domain f2 c R 2 such that (1.5), (1.6) has stable 
spatially inhomogeneous nonnegative equilibrium solutions. We can thus under- 
stand that existence and stability of  spatially inhomogeneous equilibrium solu- 
tions of (1.5), (1.6) crucially depend on the shape of  O as well as the magnitude 
of dl and d2. In ecological terms, coexistence of  two competing species depends 
upon the shape of  habitat-domain as well as the diffusion rates. 

More general n-competing species models 

) + R i - a ~ u i - ~  b~juj ui ( i = 1 , 2 , . .  n) (1.7) 
j ~ i  

have been investigated. In fact, it is shown in Mimura and Fife [ 19] and Mimura 
[17] that even if the domain f2 is convex, coexistence of n-competing species 
(n ~> 3) is possible for suitable values of  dl, Ri, a~ and b~j (i, j = 1, 2 , . . . ,  n). 

In this paper, we will discuss the possibility of  coexistence of  two competing 
species in two-dimensional habitat domains. Mathematically, we consider the 
dependency of  domain-shape on existence and stability of  equilibrium solutions 
of (1.5), (1.6). To do it, we impose the following two assumptions on our 
problem: 

(A-l)  f2 is a symmetric and connecting dumbbell-shaped domain with a small 
parameter e, say O,, which consists of three disjoint unions f2, = f2~u OoR W R,. 
Here f2o z and f2g are convex domains and R,, which is a handle connecting ~2o L 
and Oo R, is given by R~ = {(x~, x=)IIx l ~< 1, Ix=l <<.r(xl, e)}, where r(xl,  8) is a 
smooth and positive function with Ir(x~, e)] = O(e) as e ~ 0 .  Moreover, as shown 
in Fig. 1, R~ and Rff are respectively symmetric domains of R, with respect to 
the axes xl = - 1 and xl = 1, satisfying R~ c f2~ and Rff c 12g. 
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Fig. 1. The shape of  domain t2,, 

where f2~ = I2oLOt2oRuR, 

(A-2) d,- takes the form d; = ~./e0 with positive constants 0 and aT/(i = 1, 2) 

To study a domain-shape problem for (1.5), (1.6), we introduce a parameter 
~' = la l/(la l + lao l) which controls the shape of t2~. In fact, the limiting case 
when 0~ ~ 0 (resp. 0t 1" 1) corresponds to the situation that f2~ is close to the 
convex domain t2~ (resp. f20 R) for sufficiently small 5. Our main aim is to study 
the dependency of • ~ (0, 1) on equilibrium solutions of (1.5), (1.6) when e is 
sufficiently small. 

The approach we will use here is the theory of invariant manifolds (for 
instance, Carr [2] and Morita [20]). When s is sufficiently small, we are able to 
reduce the PDE problem (1.5), (1.6) to the associated ODE problem, which is 
described by the essentially same type as (1.4) including additional parameters 
aT1, d2, 0 and cc Thus, its analysis enables us to study the problem (1.5), (1.6). In 
Sect. 4, we consider the simple case when a71 =/~2 = d, R 1 = R 2 = R, al = a2-----a, 
bl = b2 = b and a < b (this inequality indicates that two competing species never 
coexist if fl is convex, as already mentioned), and draw the picture of  global 
bifurcation of  equilibrium solutions with respect to d and ~ for suitably fixed a, 
b, R and 0 (Figs. 2-5).  Here let us briefly explain the case when 0 = 1. When d 
is large, there are only four solution branches (I, I) (II, II), (III, III) and (IV, IV) 
for ct e (0, 1), which correspond to the spatially homogeneous equilibrium solu- 
tions (0, 0), (R/a, 0), (0, R/a) and (R/(a + b), R/(a + b)), respectively (Fig. 5a). 
This situation corresponds to the one mentioned by Conway et al. [4]. When d 
is intermediate, there appear two new branches bifurcating from the (IV, IV)- 
branch which exist for 0~ ~ (~, ,  1 - 0t,), where 0e, is some critical value depend- 
ing on d (Fig. 5b). These are unstable spatially inhomogeneous nonnegative 
equilibrium solutions, that is, coexistence of  two competing species cannot 
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be maintained. Finally, when d is small, each of these bifurcating branches folds 
over at ~ = 0~* and 1 - ~*, where ~* is some critical value depending on d (Fig. 
5c). As the result, stable spatially inhomogeneous nonnegative equilibrium 
solutions exist for 0~ e (0~*, 1-0~*). These solutions correspond to the ones 
shown by Matano and Mimura [16] and also by Jimbo [13]. In summary, one 
could dearly understand the dependency of shape of domains as well as diffusion 
rates on coexistence of two competing species. The precise discussions will be 
stated in Sects. 3 and 4. 

2. Setting of the problem 

We consider the following e-family of reaction-diffusion systems in (L2(Qs)) 2 
which is more general than (1.5): 

~Ul dl Au I +fl(Ul,  u2), 
Ot - ~ o  f ~u2 d2 
-~ -- -~ Au2 --{-f2(ul, u2), 

(t, x) e (0, oo) × ~ (2.1L 

with the zero-flux boundary and initial conditions: 

0u__!1 = c9u2 
~3n 0, 0---n- = 0, (t, x) e (0, oo) x df2~ (2.2) 

and 

Ul(0 , X) = ~(X), U2(0 , X) = ~/(X), X 6 ~r~8, (2.3) 

where ul, u2 e ~+_= [0, 00) and ~b, ~ e R+ and ~b ~ 0, ~k ~ 0 and f l , f2  : R2 ~ R 
are smooth, all, d2 are positive constants, O/& denotes the outward normal 
derivative on dr2,. As was stated in (A-I), the domain 12, ( c  R 2) is symmetric 
with respect to the xl-axis with smooth boundary 0f2, (see Fig. 1). 

From an ecological viewpoint, we impose two assumptions on fl  and f2. 

(A-3) ~d~fu~2 ~< 0, ~ f 2 ~ 0  an 1 for any ut >i 0, u2 >/0. 

(A-4) 

1(0'0)  ~-f2(0 '0)  = 0 '  f l (0 'U2)  ~ 0 '  f2(Ul,O) ~ 0 ,  

l (ul, u2) ~< 0 for large u, > 0 and any u2/> O, 

(Ul, u2) < 0 for large u2 > 0 and any ul 1> O, 

We call (2.1), a competition-diffusion system when it satisfies (A-3) and 
(A-4). Obviously, the Gause-Lotka-Vol ter ra  population dynamics in (1.5) 
satisfies these assumptions. 

For the competition-diffusion system (2.1)~, it is shown in Hirsch [10] and 
Matano and Mimura [16] that stable attractors consist only of equilibrium 
solutions. For this reason, we focus our attention on equilibrium solutions of 
(2.1)~, (2.2) only. 
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We simply write (2.1), ,-, (2.3) as 

~U 
~---~ =Dle° .LPU+F(U) ,  (t,x) ~(0, ~ )  x ~2~, (2.1), 

OU 
0--~- = O, (t, x)  e (0, oo) x Of 2,, (2.2)  

U(0, x) = ~(x), x e f]~, (2.3) 

where U = (u, ,  u2), L#U = (AUl, z~u2) , (~ = (~,  ~),  F(U) = ( f I (U) ,  f2(U)), and D 
is the diagonal matrix with elements ~ (i --- 1, 2). We note that the local existence 
of solutions of (2.1), ~ (2.3) can be shown in a standard manner because L# with 
the zero-flux boundary conditions is a generator of analytic semigroup in 
(L2(~2~)) 2 (see Henry [9], for instance). 

Let ~ and 27 be Y, =[0 ,  K] x[0,  K] and Z={Ue(HI( f2 , ) )2c~(L°~( f2 , ) )  2 
[U e ~, IlUli(~(a,))2- K'} for some K > 0 and K ' >  0. Then we note that for 
large K, ~ is an invariant region of the system (2.1),, (2.2) and that if ~(x) is in 
~, any solution U(t; 4)  of (2.1)~ ~ (2.3) eventually enters/7 for large K' (Chueh 
et al. [3], Fang [7]). Therefore, we may restrict our discussion to equilibrium 
solutions in the interior of 27. 

Let 2~ 1), 2~ 2) be the first two eigenvalues of - A  in t2~ with the zero-flux 
boundary conditions and co~l), co~2) be the corresponding normalized eigenfunc- 
tions. Note that 0 = 2~ ~) < ~,~2) holds. It is known in Hale and Vegas [8] and 
Vegas [21] that co~')= ISQs[ -1/2 and 

~'~R ~'~ L 1/2 
lira o4 2) = o9(2) - J ' - ( I  o I/(I 01 [f2o I)) in f20 L 

o - }.(lOo l/(iC ol Io&l))l/: i n  12~ 

in H2(ao)-topology. For ~ = I gl/(l o l + LOo l), define ~(1) and ~b~ 2) by 

~ ' )  = la~ 11/2(( 1 - ~)co~') - (~(1 - ~)),t2co~a)) 

and 

= 1'/2( co  ' '  + - 

respectively. It is easy to see that 

Let Q~ and P~ be projections from (L2(f~,)) 2 into 
P~ = Id - Q", respectively, where Id is the identity operator. Here we show three 
theorems without proofs, which is shown in Fang [7]. 

Theorem 2.1. There exists e , > 0  such that for any e s (O,e , ) ,  X , =  
{ Y 1 ~  1) + Y2t~ 2) +h~(Yl, Y2) [ YI, ]12 e ~2}(.~2; is a four-dimensional Lipschitz 
continuous manifold for some h,(Y1, Y2)e C(R 4, P~((HI(f2,))2)) and it is in- 
variant under the semiflow S ( t ) ( ~ ) =  U( t ; e ,~ )  o f  (2.1), ,,,(2.3) for q~ e2;. 
h~ satisfies liih~li]~,~=O(e(2°+')t2) and h,(Yi ,  Y , ) = O ,  where IllhLIlo,~= 
sup{lib(Y,, Y2 ~ R2} for h e C(~ 4, P~((H'(~,))2)). 

(span{co!,), co(2)})2 and 
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Let us consider the following four-dimensional ODEs: 

t dY1 = F ( Y , )  2~2)~D(Y2- Yi) +R~(Y1 Y21, 
dt + ~-W 

dY2 = F(Y2) 2~2) (2.5)~ 
t .  dt + - - T (  1 - o 0 D ( Y 1 -  Yz)+R~(Y, ,  Y2), 

where R~ and R~ are defined by 

ff ( ¢~(1) \ 
~'~ _\ F r y  R~(Y1, Y2)= F(Ylc~ l) + Yz~b~ 2) +h~(Y1, Y2)), ( 1 - ~ ) [ Q , I / -  ~ 1, (2.6) 

"l ( ,~(2) \ 
-r~ \ __JTly 

R~(YI, Y~) F(Y14/) ) + Y~4,~ 2~ + hAYI, YO), o~10, I/  - '  2J 

with 

(F, ~b~ i)) = ( ( f l ,  ,~(i),, _ ,z, /L~(a,), (f2, ffff~i) JL2(12e)) ( i  = 1, 2). 

It is known in [7] that there is some K~ > 0  such that IR~lK,oo=O(g 1/2) as 
g ,  0 and R~ (Y, Y) = 0 for Y e R = (i = 1, 2), where IR],,,,® = 
sup(lR(Y1, Y2)I ] I(Y1, I12)[ ~< K1) for R e C(U 4, U=). 

Theorem 2.2. There exist ~2 > 0 (g2 < g~), v > 0 and N > 0 such that for any 
e (0, e2), if U(t) e S is a solution of (2.1)~, (2.2), then there exist Y~l, Y~2 ~ R2 

such that 

[1U(t) - -  ( Y l ( t ' ~  ~)~1) ._]_ Y 2 ( t .  ~ ~)~!2) ...[_ h~(Yl(t; e), Y ~ ( t ;  ~)))[l(u,(a,))~ < Ne - ~ '  

for t > 0 ,  

where (Yl(t; ~), Y2(t; ~)) is the solution of  (2.5), with the initial value (yo, y~). 

T h e o r e m  2.3. There exists a positive constant z independently of ~ and e such that 

lim - 
*~o ~ ~(1 --  00 " 

3. Equi l ibrium solut ions  o f  (2.1)8,  (2 .2 )  

In the previous section, we have shown that the dynamics of solutions to (2.1),, 
(2.2) is approximated by that of  (2.5), when e is sufficiently small. In this section, 
by using this result, we study the existence and stability of equilibrium solutions 
of (2.1)~, (2.2). We rewrite again the problem (2.1)~, (2.2) and (2.3) as 

0U 
- ~  = D/e°S~U + F(U), (t, (3.1), 

8U 
8--~- = O, (3.2) 

U(0, x) = ~(x), (3.3) 

respectively. 
First, we put 7(0) = lim (2~2)/e°). Then it is obvious from Theorem 2.3 that 

7(0) = oo i f  0 > 1, 7(0) ~z*~[e (1  - e ) ]  if 0 = 1 and 7(0) = 0 i f  0 < 0 < 1. Suppose 
0 > 1. Since the coefficients of  the second terms in the right-hand sides of (2.5), 

x) ~ (0, ~) × ~ 

(t, x) s (0, ~ )  × ,90~ 

x ~ Qe ,  
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diverge to ~ as e ~ 0, we easily find that the solution of (2.5),, (2.6) satisfies 

lira (Y~(t; ~) - Y2(t; e)) = 0. 
t--*~ 

By using this fact and Theorem 2.2, we have the following theorem which 
corresponds to that of  Conway et al. [4]: 

Theorem 3.1. Let U(t, x; e, O) be a solution of  (3.1), ~ (3.3) with 0 > 1. There 
exist e3 > O, M > 0 and x > 0 such that for any e e (0, e3). 

II U(t,.  ; ~, O) - W(t)11(L2(~0))2 ~< Me-~t ,  t >t 0 

holds. Here W(t) is the spatial average of  U(t, • ; e, O) which satisfies 

d W  
dt - F ( W )  + L(t), t > 0 ,  

where L(t) is some function satisfying 

IL(t) [ < Ma e -~,, 

for some constants M~ and x I . 

As an immediate consequence of this theorem, we see that any equilibrium 
solutions of (3.1),, (3.2) with 0 > 1 must be spatially homogeneous, that is, these 
are equilibria of 

d W  
dt = F ( W ) ,  t > 0 .  

For the other case 0 < 0 ~< 1, (2.5), can be written as 

I drl = F(Y1) '1- 7(O)o~D(r2 - El) 31- o(1) 
dt (3.4) 

dY2 
~ --~-- = F(Y2)?(O)( 1 - oOD(Y I - Yz) + o(1) 

as e ~ 0. Now define the limit equation of  (2.5),  with 0 < 0 <~ 1 by 

t dY1 = F(Y , )  + ?(O)~D(Y2 -- YI) 
dt (3.5) 

dY2 = t(Y2 ) + 7(0)(1 - ~t)D(Y~ - Y2). 

Theorem 3.2. Assume 0 < 0 <~ 1. Let (Y1, Y2) be a nondegenerate equilibrium of  
(3.5). Then there exists e4 > 0 such that the equilibrium solution G(e) of  (3.1),, 
(3.2) exists for 0 < e <<, e4, which satisfies 

lim, ~ 00(e) =(]?lyE inin I2~O R (3.6) 

with respect to the norm ]1 • [I(L2(Uo))2. 

Proof. By applying the Implicit Function Theorem to (2.5),, it is easy to 
show the existence of the equilibrium (Yl(e), Y2(e)) of  (2.5), with 0 < 0 ~< 1 
satisfying !imo (Y ~ (e), Y2(e)) = (r~, Y2). Therefore, Theorem 2.2 says that t~(e) = 
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Fl(e)~b~ ') + F2(0~b~ 2) + h,(Yl(e), Y2(0) is an equilibrium solution of  (3.1),, (3.2) 
for sufficiently small e >0 .  (3.6) can be easily shown by using (2.4) and 
I[Ih~ II1 : = o ( :  '2) as e ,~ O. [ ]  

Theorem 3.3. Assume 0 < 0 <~ 1. Let 21, 22, 23, 24 (Re 21 f> • • • i> Re 24) be the 
eigenvalues of the linearized matrix of  (3.5) at (FI Y2) and let 1~)," (2) 
(Re #o) >~ Re j~(2) ~. . . )  be the spectra of  the linearized operator of(3.1),,  (3.2) at 
0(0.  Then there exist positive constants e5 and c such that lira p~;)= 2g for 
1 <-% i <% 4 and Re/~i) (  _c/eO (i >f 5) for 0 < e <<, es. ~ ~ o 

Proof We write (3.1),, (3.2) as follows: 

0U 
0---~ = D/e°A, U + F(U), (3.7) 

where A, U = ~ U  with the boundary condition (3.2). The eigenvalue problem of 
the linearized equation of  (3.7) at t.?(e) is 

L~V = ((D/e°)A~ + F'(O(e)))V = #V, (3.8) 

where F '  denotes the Fr6chet derivative. By putting J~=e°L~=DA~ + 
e°F'(U(e)) and 2 = e°#, (3.8) is written as 

(21 - J g U  -- V for any V ~ (L2(f2~)) 2. (3.9) 

By an argument similar to Theorem 3.5 in Ei and Mimura [6], we find that for 
a sufficiently small e >0 ,  the spectral set of  J~ is contained in 
{2 ceil2[ <cleO}k,.J{2 ~ C[[Re2  < --c2} for some constants cl > 0  and C2>0. 
That is, the spectral set of L ~ consists of  al(e) and tr2(e), where 
a~(e) = {2 ~ c l ip [  ~< c1} and a2(e) ~ {# ~ C/Re/~  < - c : - ° } .  Let/l~ be the spec- 

- (2) trum in al(e). Substituting V = V~ ~) + V~ 2~ with V~ ~) = Q~V = V~¢o~ ~) + v2¢ % 
and V~ 2) = P~V into (3.8), we obtain 

--'~e'] (2):o,(2)/5 ] ' / ' t ~ , e  a J ,  2 "Jr - e°Q~F'(O(e))(V~ l) + V~ (2)) = e°/z~ V~ 1) (3.10a) 

and 

DB~ Vl 2) + F,°P~F"(O(~,))(Vl 1) .-~ V~ 2)) = ~,°~,1~ Vl 2), (3.10b) 

where B~ means A~ le~(L:(a~)): and 2~ (z) is the second eigenvalue of  - A  in t2~ with 
the zero-flux boundary condition. Since (3.10b) is solvable for V~ 2) for sufficiently 
small e > 0, we rewrite it as 

Vl :) =K~Vl l), (3.11) 

where K~ = e°(e°l~ - DB~ - a°P~F'(U(~))) -~P~F'(U(0).  Here we note that 
K~ ~ 0  in (LZ(12~)) a as e $ 0. Substituting (3.11) into (3.10a), we have 

(2) 0 (2) --(2. /e )¢0. DV2 + Q~F'(G(e))(I + K~)(Vlto~ I) + V2¢0! 2)) = #a(VI(D! I) + V20)!2)). 

(3.12) 

Taking the inner production of  (3.12) with ¢o~ 1) and tu~- (2), respectively, we know 
that p~ is an eigenvalue of  the matrix 

= s d' 
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where 

Six = fa° 

S]2 = - f ~  

Q*(F'(O(e))(I + K~ )co ~'))co ~1) dx; 

Q'(F'(O(e))(I + K~)co~2))co~ I) dx; 

f, 
S~2 = -(2~ z)/e°)D + [ Q~(F'(O(e))(I + K,)co~z))co~ z) dx. ,l~J 

Lemma 3.3. There is Co>0 such that S~ is continuous for e e[0,  eo) 
and J .  tS~ • j - t  converges to the linearized matrix of  (3.5) at (YI, Y2) as e J, O, 
where 

j = (1 - ~ - -  (0~( 1 -- 00) 1/2~ (3,1 3) 
1 - 

Proof. The continuity of S~ in e ~ (0, %) has been already shown by Hale and 
Vegas [8]. Therefore, it suffices to show the existence of lim S~. Here we only 

e,t0 
prove the continuity of S~2 on [0, Co), since the continuity of  other terms of 
S~ can be proved quite similarly. Since lim co~ 2) = co(o 2) and lira ~.~2)//~0 = ~(0), it 
turns out from (3.6) that ~ o  ~ o  

I - - (  -j'(O)dx''}'Cal C12 ) ~ 0  a s e + 0 .  
S~2 \ C21 -~(O)d2 -~- C22 

where 

c o  = • ( L )  + ( 1 - oui ~u (Y2) (i , j  = 1, 2), 

which shows the proof of this lemma. [] 

Thus, we know that the eigenspace corresponding to a,(e) is four dimen- 
sional and that the eigenvalues satisfy limp~;)=2~ for 1 ~<i~<4 and 

e~0 
Re #~0 < _c2/~o (i >>, 5) for sufficiently small e, because g~;) is in az(e) (i >/5). 
This gives the proof of Theorem 3.2. [] 

When 0 < 0 ~< 1, we could find the existence and stability of  equilibrium 
solutions of (3.1),, (3.2) which correspond to the nondegenerate equilibria of  
(3.5) for sufficiently small e > 0. Therefore, we may consider the limit equation 
(3.5) which is classified into two cases: 0 < 0 < 1 and 0 = 1. 

When 0 < 0 < 1, Theorem 2.3 implies that y(0) = lim ).(~2)/e° = 0 so that (3.5) 
becomes ~ ~ o 

I dY,  ~- = F(YO, 
<ldY2 t > 0. (3.14) 
I L--dt- = F(Y2), 
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On the other hand, when 0 = I, (3.5) becomes 

T r dY, =V(Y,) + - - D ( Y : -  Yl), 

( .  dt = F(Y2) + 2a D(Y1 -- Y2), 

(t > 0. (3.15) 

Integrating all the theorems stated in this section, we have two important 
facts. One is that if equilibria of  (3.14) or (3.15) are nondegenerate, their 
existence and stability completely correspond to equilibrium solutions of  (3.1),, 
(3.2). The other is that when 0 < 0  < 1 and 0 > 1, there is no bifurcation 
phenomenon when a and d are varied, so that the number of  equilibrium 
solutions does not change with respect to a and d, while when 0 = 1, it may 
depend on ~ as well as d. 

In the next section, we precisely discuss the dependency of  a and d on 
equilibrium solutions of (3.1),, (3.2) with the Gause-Lotka-Vol te r ra  dynamics 
for sufficiently small e, that is, we draw the global branch of  equilibrium 
solutions of  (3.1)~, (3.2) with respect to a and d. 

4. Coexistence problem of a two competing species model 

In this section we apply the results obtained in the previous sections to the 
competition-diffusion system (3.1),, (3.2) with the Gause-Lotka-Vol te r ra  
dynamics in (1.5) and study the dependency of  domain-shape on coexistence 
of  two competing species. For simplicity only, we consider a special case that 
the biological environment is completely the same for two competing species, 
that is, 

(A-5) ~ = d ,  R i = R ,  a i = a ,  b; = b (i = l, 2) a n d a < b .  

The last condition assures that two species can never coexist if the domain is 
convex. 

First we discuss the nonnegativity of  equilibrium solutions of  (3.1),, (3.2). 
We consider only the case 0 < 0  ~< 1. Let (Y1, Y2) with Yl=(fill,Yl2), 
F2=(3721,3722) be a nondegenerate equilibrium of (3.5) and let 
U(e) = (~(e), ff2(e)) be the corresponding equilibrium solution of  (3.1),, (3.2) 
constructed in Theorem 3.2. From Theorem 3.2 it immediately follows that if F~ 
and Y2 are positive, then U(e) is in the nonnegative quadrant for sufficiently 
small e > 0, and that if at least one of  the components of  (I71, Y2) is negative, 
then ~?(e) is not in the nonnegative quadrant. Therefore, we may consider that at 
least one of  the components of  (F1, Y2) is zero and the others are positive. To 
do it, we classify the forms of  (Y1, Y2) into the following five cases: 

Case 1. Only one component is positive and the others are zero. 
Case 2. Two components are positive and the others are zero, under which 
(Y1, Y2) can be further classified into the following: 
Case 2.1. ((0, R/a), (0, R/a)) or ((R/a, 0), (R/a, 0)). 
Case 2.2. ((0, R/a), (R/a, 0)) or ((R/a, 0), (0, R/a)). 
Case 2.3. ((0, 0), (R/(a + b), R/(a + b))) or ((R/(a + b), R/(a + b)), (0, 0)). 
Case 3. Three components are positive and the other is zero. 
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If (Ft,  Y2) is of the form of Case 2.1, it easily follows from Theorems 2.1 and 
2.2 that the corresponding equilibrium solution is spatially constant in f2,, so 
that its nonnegativity is obvious. We will consider the other four cases. 

P r o p o s i t i o n  4.1. Assume 0 < 0 <<. 1 and (A3). 
(i) I f  (YI, Yz) is of Case 1 or Case 2.3, then 0(~) is not in the nonnegative 
quadrant for sufficiently small e > O. 
(ii) I f  (Fl, Y2) is of Case 2.2 or Case 3, then 0(~) is in the nonnegative quadrant 
for sufficiently small e > O. 

Proof. (i) We consider Case 1. Without loss of  generality, we may take the case 
that )711 =Y12 ~'~" )~22 = 0 and Y21 = R/a. Let ( Y l ( e ) ,  Y2(e))  be the equilibrium of 
(2.5)~ which tends to (Y~, Y2) as e ~ 0. The u2-component of (Y1, Y2) is zero, so 
that the second component of (Y1 (e), Y2(e)) is zero. Therefore, Proposition A in 
the Appendix shows that the second component of hA Yl(e), ~2(e)) is zero, which 
implies t72(e) = 0. We now consider the stationary problem for the first equation 
of  (3.1)~, (3.2) 

d Au +(R -aul)ul  = 0  in t2~, 

OUl = 0  (4.1) 
On on Or2, 

Applying the discussion in Sect. 3 again, we know that (4.1) has at least four 
equilibrium solutions: u~(e) =-0, u~(e) = R/a, a*(e) and fil**(e), which satisfy 

limtT*(e) {0 in f2~ {R/a i n f l ~  = lim ti**(e) = . 
~o R/a in f2o R' ~ 0  int2o R 

Here we note that (t~(e), 0) is the equilibrium solution of  (3.1)~, (3.2) which 
tends to (YI, Y2) as e ~ 0. If tT*(e) is nonnegative for sufficiently small e >0 ,  
the maximum principle shows that max t~*(e) ~< R/a and so we have A~*(e) <<. O. 

xeI2s 
Then, the strongly maximum principle says that either ~*(e) is constant in t2, 
or it attains its minimum at some point of Of 2~ at which 

- - < 0 .  
dn 

Since t~l*(a) is spatially inhomogeneous, we have the latter case. However it is 
impossible because the boundary condition is Neumann type. This shows that 
t7 ~' (e) should be negative at some points of ~2~ for sufficiently small ~ > 0. 

Next, we consider Case 2.3. Without loss of generality, we may assume that 
)7~ = y ~ 2 = 0  and Y2~ =Y22=R/(a +b). Since ~ l (e)=  ~2(~) holds (see the Ap- 
pendix), it suffices to study the stationary problem for the first equation of  (3.1)~, 
(3.2) 

d Au + ( R - ( a  +b)u)u = 0  in f2~, 
e 
du 
- -  = 0 o n  ~f2~. 
c~n 

A similar argument to the above shows that any spatially inhomogeneous 
equilibrium solution must be negative at some points of f2~ for sufficiently small 

> 0. Other cases can be discussed in a quite similar manner. So we omit the proof. 
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(ii) We consider Case 2.2. Without loss of generality, we may assume that 
)71~ =)722=R/a and )712 =)721 =0 .  Let (til(e), u2(e)) be the corresponding equi- 
librium solution of (3.1),, (3.2) which tends to (R/a, 0) in f2~ and (0, R/a) in I2ff 
as 5 ~ 0. Consider the stationary problem for ff:(e) 

d 
- Az72(e) + (R - bfq(e) - aff2(e))a2(e) = 0 in f2~. (4.2) 

If t72(5 ) attains its negative minimum at some point of t2~, the second term in the 
left-hand side of (4.2) is positive and Azi2(e) is also nonnegative at the minimum 
point. This is a contradiction to that ti2(e) is an equilibrium solution of (4.2), 
which implies that (~l(e),t~2(e)) is positive in t20 L. Similarly, we find that 
(tic(e), t72(5)) is also positive in t2ff. We will show that (Ul(e), ~2(e)) is positive in 
R,. To do it, we assume, in addition to the assumption (A-I), that r(xl, 5) is 
represented by r(xl, 5)=er(xl), where r(xl) is a smooth, positive and even 
function from [ - 1 ,  1] into R with r ( -  1) = r(1) > r(0) > 0. Then it is known in 
[8] and [21] that [[o)~ 2) 0@'/2), and, by the Sobolev imbedding theorem, 
that ]lc°~2) II L O~(Ro) ~< g l  for some constant M 1 > 0. By putting 
W,(xl, 0 = o9~2)(x~, ~0 for (x~, 0 ~ R~, it is shown that W, is relatively compact 
in C2(R~), and by using an argument similar to Jimbo [12, Theorem 3], that W~ 
tends to some W0 as e ~ 0 in C(R1) which is independent of (, where Wo(xl) 
satisfies 

{ a ~ W o ( x , ) l d x l  = 0 

Wo ( - 1) = - ( l a b  I /( lao I lao I)) (4 .3)  
W o ( 1 )  = (1  1/(1 ol I gl)) • 

As mentioned in the proof  of Theorem 3.2, (ff~(e), /~2(g)) is given by 

(/~1 (5), I/2 (/7)) ()711 (/3)~i~(1) 5 " , (2)  = + )7,2( J ~  , )721 (5)~ '~  + )722(5)@~ 2)) 

+ h~ ()711 (e),)712 (e),)721 (e),)722 (e)) 

so that (4.3) and ()7H,)7~2)=(Rla, O), ()721,)72z)=(O, Rla) imply that 
(til(e), u2(~)) is near ( R ( 1 - x i ) / 2 a ,  R(1 +Xl)/2a) in R, for sufficiently small 
e > 0. Therefore, we know that (til(e), a2(e)) is positive in R~. Since Case 3 can 
be also discussed in a similar way, the proof  is complete. [] 

We next draw the global pictures of nonnegative equilibrium solutions of the 
limit equations of (2.5)~, taking d as a bifurcation parameter and fixing other 
parameters. 
(i) 0 < 0 < 1  
Each of (3.14) has four equilibria (I): (0, 0), (II): (R/a, 0), (III): (0, R/a) and 
(IV): (R/(a + b), R/(a + b)), which are all nondegenerate. Therefore, (3.14) has 
16 equilibria, which are given by the combinations of (I), (II), (III) and (IV), 
that is, (I, I), (I, II) . . . .  , where (I, I) means P~ = (0, 0) in f2~ and Y2 = (0, 0) in 
f2o R. Other equilibria are similarly defined. By Proposition 4.1 we know that 6 
equilibrium solutions of (3.1)~, (3.2) corresponding to (I, II), (I, III), (I, IV), 
(II, I), (III, I) and (IV, I), are not in nonnegative quadrants. The global picture 
of the other 10 equilibria of (3.14) is shown in Fig. 2 when d is varied. For  the 
stability of these equilibria, we already know that (II, II), (III, III), (II, III) and 
(III, II) are stable, while (I, I), (IV, IV), (II, IV), (IV, II), (III, IV) and (IV, III) 
are unstable. 
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Fig. 2. The global diagram of equilibria of (3.14) with respect to d 

Fig. 3. The global diagram of equilibria of (2.5)~ with 0 > 1 with respect to d for suiflciently small 
g>0 

(ii) 0 > 1 
By Theorem 3.1, we immediately find that equilibria of (2.5), are (I, I), (II, II), 
(III, III) and (IV, IV). The global picture of  these equilibria is shown as in Fig. 
3. Obviously, (II, II) and (III, III) are stable, while (I, I) and (IV, IV) are 
unstable. 
(iii) 0 = 1 
For this case, existence and stability of  equilibria of  (3.15) depend on = and d. 
Here we note that the following 6 equilibria of (3.15) are not in nonnegative 
quadrants: 

(I, IV): (mF,m{-~'m+,mg), 

(III,  I): (0,  n~-; 0, n~-) ,  

(t, III): (O, nF;O,n+), 

where 

1 ( - 2~ d - ( 1 - a  m+=2(a+b~ } R + R 2 

m~=2(a+b~---- ~ R---d+_e R 2- 

(IV, I): (m + , m ( ;  m 2 ,  m~-), 

(II, I): (n +, O; n2 ,0 ) ,  

(I, II): (nF, O; n~, 0), 

4z2d2 ~1/2~ a + b 
/ '  

4T2 d 2 ~1/2~ 
~ - O Z ~ f  f '  n~=a+-----~bm~'a 

respectively, and mF, nF are negative for i = 1, 2. So, we are interested in the 
other 10 equilibria. 

When ct = ½, Mimura and Kawasaki [ 18] and Levin [15] already showed the 
global bifurcation diagram of equilibria of  (3.15) with respect to d as in Fig. 4a, 
in which there appear the primary and secondary bifurcations of  pitchfork type 
at d = d* and d**, respectively. On the other hand, when 0t # ½, there exists 
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Fig. 4. The  global  bifurcation diagrams of nonnegative equilibria of (3.15) with  respect to d when a 
ct = ½; b ~* < ct < ½; c 0 < ct < ~*, where the solid lines denote stable equilibria and the broken lines 
denote unstable ones. O, Bifurcation point 

a* e (0, ½) such that when ~* < • < ½, as drawn in Fig. 4b, the primary bifurca- 
tion still exists, while the secondary bifurcation is deformed as the imperfection 
of  the symmetry case a = ½ so that two knees appear. When a is decreasing from 
a*, these knees disappear as in Fig. 4c. Since the case when ½ < ~ < 1 is similar 
to the above, we omit the discussion. 

By Fig. 4a,b we can see that when a is not near 0 and 1, there are stable 
branches which tend to (II, III) or (III, II) as d ,t 0. This indicates the coexistence 
of  two competing species. 

On the other hand, when d is fixed, the global bifurcation diagrams of  
equilibria of  (3.15) with respect to a e (0, 1) can be also shown as in Fig. 5. 
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Fig. 5. The global  d iagrams of  equil ibria o f  (3.15) with  respect to ct when 0 = 1, and  a d i s  large, b 
d is intermediate, c d is small, respectively, where the solid lines denote stable equilibria and the 
broken lines denote unstable ones. O, Bifurcation point 
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Let us come back to the original problem (3.1),, (3.2), for which the 
following question naturally arises: Is the global picture of equilibrium 
branches of (3.14) or (3.15) qualitatively inherited to those of  (3.1), for suffi- 
ciently small e? One easily finds that this is true for the cases when 0 < 0 < 1 
and 0 > 1, because all of the branches are nondegenerate. However, for the 
case when 0 = 1, there are pitchfork bifurcation points and limiting points in 
the solution branches as in Fig. 4. Therefore, the behavior of solution branches 
of (3.1),, (3.2) in a vicinity of these degenerate points is not necessarily similar 
to those in Figs. 2 and 3. 

We now show that there are bifurcation points in the solution branch of 
(3.1),, (3.2), which correspond to those of  (3.15), when d is varied. Use the 
transformation from (YI ,  Y2) to (Z1, Z2) through (YI, Y 2 ) = ( Z 1 , Z 2 ) J  -~ for 
Z1, Z2 e R 2, where J is defined in (3.13), and rewrite (2.5)~ with 0 = 1 as 

t 
"dZ 1 

= G 1 ( Z l ,  Z2,  d, e), 

dZ2 
- - ~ -  = G2(ZI, Z2; d, e), 

where 

(4.4) 

GI(Zx, Z2; d, e) = (1 - ~)F(Y1) + ofF(Y2) + (1 - ~)R](YI, Y2) + ~R~(Y~, Y2), 

G1(Z1, Z2; d, 5) = ;t~2---~) DZ2 + (~(1 - ~) )1 /2( - - f ( r l )  + F(Y2) 
E 

--R~l(rl, Y2)+ R~(Y,, Y2)). 

Let us consider the equilibria of (4.4) instead of (2.5),. We note that 
(IV, IV) = (Z*, Z'~)K -~, where Z* = [R/(a + b), R/(a + b)], Z* = (0, 0), and 
that (Z*, Z*)  is an equilibrium of (4.4) independent of d and e. Then 
Gi(Z*, Z*;  d, e) = 0 (i = 1, 2) hold and 8GI(Z*, Z*; d*, 0)/#Zl is represented 
by 

[  112a+b b Oul Oul = a + ~  R - a  + b R 

Of~ Ofz b b R 2a + b 
~u2 Ou2 a+ a + ~ R  

which has no zero eigenvalue. Thus, it turns out by the Implicit Function 
Theorem that there exists a unique function ZI = ZI(Z2; d, 5) defined for suffi- 
ciently small e > 0 and for (Z2, d) in a neighborhood of (Z*, d*), which 
satisfies GI(ZI(Zz; d, e), Z2, d, 5) = 0 and Zl (Z*;  d*, 0) = Z*.  

Putting Z~ (Z2; d, e) into the second equation of (4.4), we find that Zz = 0 is 
the equilibrium of (4.4). By cancelling Z2, the Implicit Function Theorem 
shows that there exists a unique function d = d(Z2; e) with d(Z*, O)= d* for 
sufficiently small e > 0 such that equilibrium solutions are exactly given by two 
pairs (Z*, Z*)  and (Z~ (Z2; d(Z2, e), e), Z2). A calculation by implicit differenti- 
ation shows that the Hessian of  d(Z2; ~) is positive definite at Z2 =- 0 and e = 0. 
This means that the pitchfork bifurcation of (3.15) is inherited to (3.1)~, (3.2) 
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for sufficiently small e > 0. A similar argument can be given to the bifurcation 
diagram around the bifurcating points with respect to a as in Fig. 5. 

The problem is whether or not limiting points appear in the solution 
branches of  (3.1),, (3.2). This situation is generically structurally stable so that 
it is inherited to the problem (3.1)~, (3.2) when e is sufficiently small. Although 
we need more rigorous discussions for this conclusion, we do not touch on it 
here. 

In summary, we can conclude as follows: for sufficiently small e > 0, Fig. 2 
shows that the case 0 < 0 < 1 corresponds to the result of Matano and Mimura 
[16], while Fig. 3 shows that the case 0 > 1 corresponds to the result of  
Conway et al. [4]. The case 0 = 1 is the critical value for which there is a 
connection of  the above two cases. Furthermore, the global pictures (including 
stability property) of  equilibrium solutions of  (3.1)~, (3.2) are almost similar to 
Figs. 4 and 5. 

The method which we used here can be also applied to other ecological 
models. For prey-predator equations, for instance, the solution structures, 
which include not only equilibrium solution but also periodic (and aperiodic, in 
some situations) ones, are more complex. This is also an interesting problem 
from the domain-shape viewpoint. 

Appendix 

To understand the construction of  the invariant manifold o~ff~, we show here 
two simple properties of  he which have been used in the proof  of  Proposition 
4.1. 

Let V" be a set defined by 

V 's = {h ~ C(~4; e~:((Hl(~t~s))2)) Illlh Ill ,  ~ Bo~ (=°+')/=, (ml) 

Ill h [II~,L <~ fl~e(2o + i)/2, h(V~, Y2) = 0 if Yt = r2, y~, I"2 ~ ~2}, 

where 

]lib I1[,,o~ = sup{l[h(Yi, Yz)]](,Vl(~,,)2 [ Ya, Y~ ~ R2}, 

[[]h [ll~'~ = s u p {  IIh(Y~'[(yl,Y2) Y2)~---~(Yl ' Y2) II(HI(~))2-(y1, Y2) (Y1; Y2) ~(Yl, Y2)}. 

Let ~ '  be an operator on V ~ defined by 

f_ (~h)(IQ~, yo) = exp{_eODA,s}P,F(gl ~1) ..~ Y2c)~2) + h(gl, Y2)) ds (A2) 
oo 

for h ~ V ' and (Y~, Y~2)~ R 4, where As = £P with the Neumann boundary 
condition and (Y~, I12) = (Yl(t; yo, Y~2, h), Y2(t; yo, yo, h)) is the solution of  
the following equation 

f dYl/dt = (2(,2)/e°)~D(Y2 - Y1) + F<')(YI, Y2), 
dY2/dt = (2~2)/e°)(1 - a)D(Y, - Y2) + F(2)(Y,, Y2), (A3) 

(Yl, Y2)(0) ~--(Y?, y0), 



236 M. Mimura et al. 

where 

= (F(YI   l) + r2 7 ) + h(r , r0 ) ,  
\ 

~1) \ 

(1 -- ~'la~ (/(L2(a~)) 2' 

) \ 
F(2)(YI, Y2) = F(Yl~b~ 1) '~ Y2q~ 2) "Jr- h(Yl, Y2)), ~--~ [)(L2(~.e))2. 

It is known in Fang [7] that for suitable positive constants fl0 and ill, ~e is 
a contraction in V ~ for sufficiently small e > 0 and h, is the unique fixed point of 
0~" in V ~. Note that in our case of Sect. 4 f l (ul ,  Ul) =fE(ul, ul), f l (0,  u2) = 0 and 
fE(ul, 0) = 0 hold for any ul, u2 ~ •. Writing Y1 = (Yn, Y12), Y2 = (Y21, Y22), we  
have the following: 

Proposition A. For the competition-diffusion system (3.1)~, (3.2) with the Gause- 
Lotka - Volterra dynamics as in (1.5) in which Ri = R, ai = a, b~ = b and ~ = d, 
the following hold: 
(i) Thefirst (resp. second) component o fh , (Y l ,  Y2) is z e ro / fY l l  = Y21 = 0 (resp. 
Y12 = Y22 = 0). 
(ii) The first and second components of  h~ are equal / fY l l  = Y12 and Y21 = Y22. 

Proof For the case (i) we confine :~* in the following function set 

l 7~ = {h = (h~, hE) e V~lh~ = 0 if Yll = Y21 = 0 and h2 = 0 if Y~2 = Y22 = 0}. (A4) 

It suffices to show that 0~ maps I 7~ into V*. In fact, by the uniqueness of 
solution of (A3) and f l ( u l , 0 ) = 0 ,  we find that if y ° l = y ° l = 0  then 
y n ( t ) = Y E l ( t ) = O .  So the first component of (~*h)(IQl, yo) is zero by 
f l (ul ,  0) -- 0. Similarly, if y° 1 = y ° 2 = 0  we see that the second component of 
(~,h)(y0,  y0) is zero, which completes the proof. Case (ii) can be shown in a 
similar way. [] 
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