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Abstract. Oscillators coupled strongly are capable of complicated behavior 
which may be pathological for biological control systems. Nevertheless, strong 
coupling may be needed to prevent asynchrony. We discuss how some neural 
networks may be designed to achieve only simple locking behavior when the 
coupling is strong. The design is based on the fact that the method of averaging 
produces equations that are capable only of locking or drift, not pathological 
complexity. Furthermore, it is shown that oscillators that interact by means of 
multiple pulses per cycle, dispersed around the cycle, behave like averaged 
equations, even if the number of pulses is small. We discuss the biological 
intuition behind this scheme, and show numerically that it works when the 
oscillators are taken to be composites, each unit of which is governed by a 
well-known model of a neural oscillator. Finally, we describe numerical methods 
for computing from equations for coupled limit cycle oscillators the averaged 
coupling functions of our theory. 
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1. Introduction 

Many physiological control systems are governed by coupled neural oscillators 
[ 1-4]. In these systems, it is important to maintain some degree of synchroniza- 
tion. In order to maintain synchrony, coupling between the oscillating units must 
be sufficiently strong; weak coupling can synchronize only oscillators that are 
very close in natural frequency. If  the difference between units is too great and 
coupling is weak, desynchronous behavior can arise, such as phase drift [5]. On 
the other hand, if the coupling is too strong various pathological situations arise. 
For example, in [6] it is shown that strong diffusive coupling between chemical 
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oscillators can lead to chaos. Similarly, we have found that strong inhibitorily 
coupled neural oscillators can sometimes lead to complex dynamical behavior 
[unpublished]. In a previous paper [7], we showed that mutual excitatory 
coupling of sufficient strength between a pair of limit cycle oscillators can act to 
stop the oscillation ("oscillator death"). The mechanism described in [7] can 
occur in models of neural interactions that involve chemical synapses even if the 
neural oscillators are identical. We are thus faced with the following problem: 
How can we maintain synchrony between possibly disparate oscillators without 
strengthening the coupling so much as to cause loss of oscillation or other 
dynamic pathologies? 

We show in [7] that oscillator death cannot occur if the oscillators are weakly 
coupled. When coupling is weak, invariant manifold theory may be used to 
reduce the system of nonlinear oscillators to a set of equations on a torus. 
Averaging theory may then be used to obtain equations that depend only on the 
differences of the phases of the oscillators. For a pair of oscillators the averaged 
equations have only two possible behaviors: synchronization or quasiperiodic 
oscillations (phase drift). The latter occurs if the uncoupled frequencies of the 
oscillators are not sufficiently close to one another. 

In this paper we show that, even with strong interactions, the system may 
behave as if averaged, and we describe some neural networks that can accom- 
plish this. The fundamental idea is that, if interactions are dispersed around the 
cycle of the oscillators, the system can behave as though the coupling were 
averaged over a cycle, and thus all of the above pathological behavior is 
prevented. For such a system, the coupling can be strong enough to overcome 
many frequency inhomogeneities that could otherwise lead to phase drift. 

The paper is organized as follows: in Sect. 2, we review the derivation of 
phase models from the full system of oscillators. We then discuss how phase 
equations modelling a pair of coupled oscillators may be formally averaged, and 
when this averaging method is valid. In Sect. 3 we show that, if the coupling 
consists of a sum of terms each corresponding to a pulse, and if these pulses are 
sufficiently dispersed around the cycle, then the averaging method is valid for a 
sufficiently large number of pulses. We also discuss the biological intuition 
behind the multiple pulse coupling, and how such coupling is naturally obtained 
when the oscillator is a composite of neurons, possibly with different cell types. 
Numerical calculations are done in Sect. 4 to show that even a small number of 
pulses (e.g. 3 or 4) may be enough to radically change the behavior of the 
coupled system, from one that undergoes "oscillator death" if the interaction is 
only by a single pulse to one that phase-locks like a system whose coupling 
depends only on the differences on the phases. 

The composite oscillators of the networks of  Sect. 3 have elements that are 
very tightly coupled compared to the inter-oscillator coupling. In Sect. 5, we 
show numerically the requirement for tight intra-oscillator coupling can be 
relaxed and still have the system behave without pathology. This is done both for 
phase models (reduced from full equations describing amplitudes as well as 
phases) as well as the full equations, and allows the construction of "averaging 
networks" that are more physically realistic and more general. 

In the appendix, we consider numerical methods for computing an approxi- 
mation to the averaged coupling functions H (which depend only on the phase 
difference ~b = 02 - 01). H(t~) is computed under two alternative hypotheses. In 
the first, the limit cycle has "infinite" attraction but the coupling need not be 
weak; in the second, the rate of attraction to the limit cycle is finite, but the 
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coupling is weak, In the first case, one uses the numerical techniques to first reduce 
to a phase model and then to average. In this situation, when the attraction is 
extremely strong, the dependence of  the local frequency on the amplitudes Yi is 
not very important. In the second case, in which the attraction need not be extremely 
strong, the dependence of dOi/dt on the amplitudes may not be ignored. This is 
a more subtle calculation, which is done in two ways. We apply our method to 
a class of  neural equations that include the Lecar-Morris  system [8] and the 
Wilson-Cowan equations [9]. 

2. Reduction to phase models and averaging 

2.1. Reduction to phase models 

For completeness, we briefly review the reduction of  a pair of  coupled oscillators 
to a system of equations on the toms. Consider the coupled system of nonlinear 
oscillators: 

dXl/dt = FI(X,)  + flG,(Xi,  X2), 
dX2/dt = F2(X2) + flG2(X:, X,). (2.1) 

Here Xj ~ R", fl is a parameter determining the strength of  coupling between the 
two oscillators, Gj is the coupling function, and it is assumed that dXfldt = Fj(Xj) 
has as a solution an orbitally asymptotically stable periodic solution with frequency 
coj. In [10] it is shown that there is a change of  coordinates in the neighborhood 
of the limit cycle such that, if fl is not too large, (2.1) can be written as 

ogf I dOs/dt = 1 + qJ(Ys, Oj) + flej(yj, Yk, Oj, Ok, fl), (2.2) 
dyJdt = aj(yj, Oj) + #4 (YJ, Yk, Oj, Ok, #), 

j, k = 1, 2 , j  # k  (see also the appendix). Here qj(0, 0 ) =  aj(0, 0 ) = 0 ,  and all 
functions are periodic in their 0 arguments. The coordinates Yi ~ Rn-1 are 
transverse to the periodic orbits and 0j ~ S t lies along the limit cycle of the j th  
oscillator. In absence of  coupling (/3 = 0) each oscillator traverses its cycle with 
a period of  2rr/c0j. There are two situations in which we can reduce (2.2) from a 
2n-dimensional system to a flow on a two-dimensional torus. I f / / a n d  IFI -F21 
are sufficiently small, we can use invariant manifold theory [ 11] to construct a torus 
yj(Oj, Ok) which is invariant for (2.2). On that torus, the equations have the form 

o)f ' dOj/dt = 1 -t- //hj(Oj, Ok,//), (2.3) 

j, k = 1, 2 , j  ~ k. If  ](oj - o)k[ = 0(//), then averaging theory [12] implies that there 
is an almost identity change of coordinates such that, in the new variables, (2.3) 
has the form 

(of I dOJdt = 1 +//Hj(0k --0j)  + 0(//2). (2.4) 

Here , / / j  is a 2n-periodic function of its arguments. If  q~ = 02 - 01, the functions 
//j  are determined from hj by 

n~(~ )  = (1/2~) //h1(01, O, + 4~,//) dOl, 
(2.5) 

g 2 ( -  4,) = (1/2r0 //h~(O~, O~ - ~, //) dO~. 
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The second situation in which (2.2) can be reduced to a flow on the toms is 
if the attraction to the limit cycle is strong (see [7]). Strong attraction implies 
that {yj} remain close to 0, so that (2.2) reduces to 

co) -1 dOj/dt = 1 + ~h:(Oj, Ok, ~), (2.6) 

where now hj(Oj, Ok, 8) is given explicitly by c0jej(0, 0, 0j, Ok, 8). 
In the absence of the O(/~ 2) terms, (2.4) is capable only of phase-locking or 

phase-drift. Equations of the form (2.6) are more general, and are capable of 
considerably more complex behavior, including a variety of locking patterns and 
oscillator death [7]. The latter is very easy to obtain, particularly when hi, h2 are 
derived from excitatory neural coupling (see [7]). If the coupling is sufficiently 
strong that the averaging theorem cannot be applied to produce (2.4), we are 
confronted by the problems discussed in the introduction. 

Remark 2.1. In [7], we show that for some models of excitatory neural coupling, 
the functions hj(Og, Ok, 8) have the form Pj(Ok)Rj(0i) where P(O) is a positive 
pulse-like function and R(O) is analogous to the phase-response curve for a 
forced oscillator. (See [7] and [1].) 

2.2. Averaging 

If/~ is small, averaging theory provides an almost identity change of coordinates 
such that, in the new coordinates, the coupling depends only on the difference ~b 
of the phases. Even if/~ is not small, one may rewrite (2.6) by formally averaging, 
leaving a remainder term: 

dO1/dt = (I)1 -'~ HI((~)  + F1(01, 02), (2 .7)  

dO2/dt = 0)2 + H2(-~b) + F2(02, 01) , 

where ~b = 0 2 -  01, HI , / /2  are as in (2.5) and 

F1(01, 02) = f lhl(01,  02, fl) - Hi(02  - 01) , 

F2(02, 01) = flh2(02, Or, fl) - H2(01 - 02). 

Let M = max [Fj (0j, Ok,/~) I, J, k = 1, 2; j ~ k. If M happens to be sufficiently small 
. 0 1 , 0 2  

(as is automatically true if/~ is small), the consequences of averaging theory for 
small/~ still hold. For example: 

Proposition 2.1. Suppose that 

dO 
= ~ 1  - ~ 2  + H , ( ~ )  - H 2 ( - ~ )  ( 2 . 8 )  

has a hyperbolic f ixed point, where c~ = 0 2 - 01 . Then for M sufficiently small, 
(2.7) has a hyperbolic limit cycle of  the same stability characteristics. 

Proof. A critical point of (2.8) corresponds to a periodic solution of 

dO1/dt =col + HI (~b), (2.9) 
d O 2 / a t  = o ~  + i-I2 ( - e~). 
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Consider a Poincar6 section through that periodic solution and take the same 
section for (2.7). Then for M sufficiently small, the Poincar6 map of (2.7) is still 
defined and is close to that of (2.9). Therefore, it has a hyperbolic fixed point 
with the same stability characteristics. [] 

Since M represents the deviation from being averaged, we refer to it as the 
"modulus of averageability". A system with a low modulus cannot undergo 
"oscillator death", i.e. (2.9) has no critical points. That is, by continuity we 
have 

Proposition 2.2. Suppose that ](dO1/dt, dO2/dt)] of  (2.9) is bounded away from 
zero. (This is true for generic 091 , co2. ) Then for M sufficiently small, (2.7) has no 
critical points. [] 

Remark 2.2. The above propositions also work for chains of N oscillators. The 
kth equation is averaged over Ok, with Ok+ l = q~k + Ok and Ok_ l = Ok -- (~k- 1. 
The averaged system is then a function of only the phase differences {q~k }. The 
main hypothesis, as in the above theorem, is that the maximum over the 
N-torus of the difference between the true R.H.S. of the equation and that of 
the averaged right-hand side (considered as a function of {Ok }) be sufficiently 
small. 

3. Multiple pulses and the reduction of the modulus of averageability 

In the last section, we noted that if the phase equations (2.7) are close enough 
to the averaged equations, then their behavior is also similar. Here we shall 
describe some networks of oscillators which exploit this fact. These networks 
are designed so as to distribute the impulses over the cycle of the oscillation, 
rather than concentrating them near one particular phase of the cycle. As we 
shall see, these networks behave like "averaged" equations, and hence avoid the 
problems described above. 

Consider a pair of oscillatory units and assume that these units are com- 
posed, not of a single pacemaker, but rather of m oscillating subunits. (These 
subunits need not be capable of oscillating in isolation.) For example, it is 
believed that the segmental oscillators of the leech central pattern generator 
consists of at least four subunits that oscillate. (See [3] for a 1978 version of 
the local oscillator; since then, other oscillating components have been discov- 
ered (M. Nussbaum, pers. comm.).) We assume further that these subunits 
have fixed phase relationships to one another and do not all oscillate in phase; 
this can be accomplished using some inhibitory coupling (see Sect. 5). The 
coupling within a single unit is assumed to be sufficiently strong so that, if one 
of the units is phase-shifted by a stimulus, then the other subunits follow 
almost immediately. 

Consider the following special example, in which each subunit of an oscil- 
lating unit synapses only on its analogue in the other oscillatory system. These 
assumptions are illustrated in Fig. 1. Let 01 denote the phase of a fixed 
oscillating subunit in one system and 02 denote the phase of the analogous 
subunit in the other system. Since we assume that all subunits in each system 
have fixed phase relations, 01 determines the phases of the remaining subunits: 
01 "q- ~1 . . . .  , 01 "~ ~m- 1" We assume a similar relationship exists between 02 and 
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Fig. 1. A pair of oscillating networks, 
each consisting of four subunits. The 
phase relationships within a network are 
fixed, relative to G0 = 0 in each oscillator 

the other subunits in oscillator 2. The equations for this network are 
l m - I  

dOl/dt = o) 1 -~ m i E-Z-O h~(01 -[- ~i, 02 -~- ~1), 
(3.1) 

l m - I  
dO2/dt = o~2 + - -  Y.  h'dO~ + ~,, O, + ~,). 

m i = 0  

Here 40 = 0. The sums in (3.1) arise out of our assumptions that resetting one 
subunit instantaneously resets the other units by an identical amount. The factor 
1/m multiplying these sums is a normalization so that the total influence of one 
oscillating system on the other has magnitude independent of m. Note that if 
there is only a single unit or if all m units fire synchronously (i.e. ¢i = 0) (3.1) is 
the same as (2.6). Thus, we may view equations of the form (3.1) as generaliza- 
tions of  our original phase model for two coupled oscillators. Suppose m is large, 
h'~ is independent of i and the phases 4; have a density r/(~), i.e. the probability 
of ~i lying between ~ and ¢ + d~ is q(~) d~. Then the sums in (3.1) converge to 
integrals as m tends to infinity: 

1 m -  1 ~2n 
Sm~-m i~=o hl(Ol'J-~i'O2"J-¢i)"~Jo h~(x ' x+O2-Ol )q (X 'Ol )dX"  (3.2 

In particular, if q(~) is uniform, i.e., the phases are distributed equally around the 
circle, then q(~) = 1/2n and (3.2) becomes 

S, __, 1 £ ~ h~(x,x + O z - O O d x ,  (3.3) 

which is just the averaged right-hand side as defined in (2.5), (2.9). This 
calculation shows: 

Proposition 3.1. I f  h~ and h~2 are independent of  i, and the pulses are uniformly 
distributed around the cycle, then the modulus M tends to 0 as the number of pulses 
m tends to oo. Hence, the solutions to (3.1) are close to those of the averaged 
equations (2.9) as the number of subunits becomes large. [] 

Remark 3.1. Even a small number of  pulses (m = 3 or 4) causes a significant 
decrease in the modulus of  averageability, and a dramatic change in the behavior 
of the system. This is detailed numerically in Sect. 4. 

Remark 3.2. In order that M become small, it is not necessary that h~ and h~ be 
independent of i. It suffices that these functions be sufficiently similar for differ- 
ent values of i. Furthermore, it is easy to construct examples in which h~, h~ are 
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Fig. 2 a,b. Modulus of averageability for pulses of different strengths and phase shifts for the 
equation 01 = ~P(O2)R(01) + (1 - ct)P(02 + ¢1)R(01 + ~l); P(O) = (½ + ½ cos 0)4, R(O) = sin 0. a ~1 = n, 
ct varies between 0 and ½. Note that ct -- ½ is the case described in the proposition, ~ = 0 corresponds 
to a single pulse; bct = ½, ~ varies between 0 and ~. ~, = 0 corresponds to a single pulse and ~l = n 
in the case described in the proposition 

qu i t e  d i f fe ren t  fo r  d i f fe ren t  i, a n d  the pu lses  a re  n o t  u n i f o r m l y  d i s t r i bu t ed .  F o r  
e x a m p l e ,  c o n s i d e r  the  s imple  case  h~ = ~P(O2)R(01), h i  2 = (1 --  c0P(02 + ~1) 
R(01+ ~1), wi th  P(O) l 1 = ( ~ + s c o s  0) 4, R(O)= sin 0. A s  seen in  F ig .  2, M is 
s ign i f i can t ly  d e c r e a s e d  even i f  the  two  pulses  a re  qu i te  d i f fe ren t  in  size (~ # ½) o r  
n o t  u n i f o r m l y  d i s t r i b u t e d  (¢~ # lr). 

Remark 3.3. Fina l ly ,  i t  is n o t  neces sa ry  t h a t  each  s u b u n i t  o f  a n  o sc i l l a t o r  
synapse  o n l y  on  its a n a l o g u e .  I f  s u b u n i t  I(i) o f  o sc i l l a t o r  1 r e s p o n d s  to  a pu l se  
f r o m  s u b u n i t  i o f  o sc i l l a t o r  2, t hen  such  a pu lse  c o n t r i b u t e s  

el(02 "~ ~i)gi(o1 ~- ~i(i)) 

to  the  e q u a t i o n  fo r  dO~/dt. T h e  l a t t e r  e x p r e s s i o n  can  be  wr i t t en  as  
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i.e., a term of the form previously discussed, with a different response curve. It 
is now clear that the same principles allow one to construct "averaging net- 
works" from composite oscillators, without requiring that the connections 
between the oscillators link only analogous subunits. One does require that the 
effective response functions /~ have the property that averaging them lowers 
variation from the mean over 0, as in the previous example. 

4. Numerical results 

In this section, we compare Poincar6 maps for averaged systems of coupled 
oscillators to ones with multiple pulse, but unaveraged coupling. One of  our 
main conclusions is that, even for highly nonlinear and discontinuous models 
using coupling by f-functions, the number of  pulses required for good agreement 
between the Poincar6 maps is small (e.g., 3 or 4). We also compare the average 
phase difference over a cycle for some phase-locked unaveraged systems with the 
constant phase difference of the same systems when averaged. We find that there 
is little difference even if there is only one pulse per cycle, i.e., in the range where 
these oscillators do not undergo death, they behave very much like their averaged 
counterparts. 

We shall work with phase equations coupled by pusles, where the phase 
equations are derived by assuming that the attraction to the limit cycle is very 
large, as seems to be the case for the Wilson-Cowan equations [9]. (See [7], §2, 
Remark 2.1.) If  there are multiple pulses centered around phases 
¢;, i = 1 . . . . .  m, the equations are 

dOl/dt=COl + 1  ~ P(O2-¢i)R(01-¢i), 
i = 1  (4.1) 

dO2/dt=o92+ 1 ~ P(O,-¢i)R(02-¢i). 
i = 1  

We shall take 4,-= 2rci/m, and 

e(o) = (0.5 + 0.5 cos(0))" or 3(0), (4.2) 

R(O) = - ~[sin(0 + r/) - sin(r/)]. 

Throughout these computations, we have set n = 4. Using repeated integration 
by parts, we find that the average function, as defined in Section 2, is 

H(~b) = I '~ I s in( -~b + r/) - n +---~1 sin(r/)] ' n  (4.3) 

where 

I .  = ~ P(O) dO - 
1 . 3 . 5 . . . . . 2 n - 1  

2 . 4 . 6 . . . . . 2 n  

In our first set of simulations, we fix all parameters (n = 4, r /=  - tan-~(0.5) ,  
= 2) except for m, the number of  pulses, and compare the Poincar6 maps of  

(4.1) with those of the averaged equations (2.9), with o91= 1, 092=0.8. 
H~ =/-/2 = H, with H given by (4.3). Figure 3a shows the Poincar6 map taken at 
the 0~ = 0 section for P(O) = 6(0) and m = 1, along with that of the averaged 
equation; the two are quite dissimilar. However, for as few as 4 pulses per cycle 
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Fig. 3 a,b. Poincar6 maps compared to the averaged analogues (dashed) for co 1 = 1, co 2 =0.8, 
P(O) = 6(0), R(O) = -2[sin(0 + ~/) -sin(~/)], ~/= -tan-l(½). a 1 Pulse per cycle; b 4 pulses per cycle 

(m = 4), there is a qualitative and quantitative similarity between the two, as can 
be seen in Fig. 3b. This result is typical. Figure 4 shows the Poincar6 maps of 
(4.1) for m = 1 and m = 4, with P(O) smooth as in (4.2) and R(O) as defined in 
(4.2) (a = 1, ~/= -0.5) ,  along with that of the averaged equations for compari- 
son. At m = 1, the map is quite different and phase shifted from that of  the 
average, but for m = 4, the maps are very close. For higher values of m, the 
Poincar6 map is indistinguishable from that of the averaged equations. 

Suppose that we choose ~ large enough so that there is oscillator-death for 
(4.1) when m = 1 (i.e. (01(t), 02(/))--I'(01, 02) , a steady state). If  we then add 
more pulses (increase m) it is possible to prevent oscillator death for the system 
of oscillators. A natural question is: How many pulses are required to prevent 
oscillator death for a given pair of oscillators? The answer to this question 
depends of course on the nature of the functions, P(O), R(O), the strength of 
coupling, ~t, and the frequencies e91 and 0~2. For purposes of illustration, we 

2~ 

I 

I 
I I 

, / I 

I I 
I I 
I / 

0 0 

a 0 2rr b 0 2rr 

Fig. 4 a,b. Same as Fig. 3a,b, bu t  P(O) = (½ + ½ cos 0) 4. a 1 Pulse per  cycle; b 4 pulses  per  cycle 
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Table 1. Maximum coupling 
strength and pulse number 

m 0t m 

1 2.43 
2 4.88 
3 8.20 
4 17.92 
5 38.08 

consider the case of two identical oscillators and fix r /=  -0 .5 ,  c01, (.D 2 ~--" 1.0, 
n = 4, and let 0t vary. Table 1 shows the values of ~t at which at least m pulses 
are required to prevent oscillator death. Thus, if 0t < 2.43, phase-death can never 
occur; for 2.43 < ~ < 4.88, at least two pulses are required to prevent death, etc. 
It is clear from the table that only a few pulses are required to prevent death, 
even with very strong coupling (strong relative to the size of the frequencies o91 
and 0)2). We note that when at is large, and in the locking regime, the Poincar6 
maps for both the averaged equations and Eqs. (4.1) are quite flat in the sense 
that no matter what the initial condition is, after one cycle, the two oscillators 
have almost a zero phase-difference (thus, if A(O) is the Poincar6 map, A(O) ,~ 0 
for all 0). 

In the next set of numerical calculations, we compare the average phase- 
difference between 02(0 and 01(0 with the phase-differences of the averaged 
equations when a stable phase-locked solution to (4.1) exists. We fix 0)2 = 1 and 
let 0)~ E (0, 1]. We use P(O), R(O) as in (4.2) (P(O) smooth, n = 4, r /=  0.5) and 
consider several different values for ~t. We will find the following behavior: for 
weak coupling, as the frequency 0)2 decreases there is a transition from locking 
to phase-drift; for strong coupling, the transition is from locking to oscillator- 
death. 

For any averaged system, the phase-difference is constant when locking 
occurs, and if the model is of the form (4.2) it is easily found that the 
phase-difference ~b = 0 2 -  01 between the two averaged oscillators satisfies 

sin(~b) =/£ (0 )  2 - 0)1), 

where x is a constant depending on all of the parameters. Thus, if sin(tk) is 
plotted as a function of 0)~ and 0)2 fixed at 1, a straight line is obtained. We 
define the average phase-difference between two phase-locked ociUators by 

'f[ ( 4  > -- ~ o2(0 - Ol(t) dr, 

where T is the period of the phase-locked system. If  02 and 01 satisfy averaged 
equations of the form (2.7), then (4~)= 4~ = 0 2 ( 0 -  01(t), a constant. In the 
following figures, we plot sin((4~)) versus 0)1 for m = 1 and 3 values of the 
coupling strength cc In Fig. 5a, e = 1; e is sufficiently small so that both the 
averaged and the unaveraged equations lose locking at a value of 0)~ in the 
interval [0.5, 1]. We have marked the critical value of the frequency at which 
locking is lost for the averaged and unaveraged systems. Because e is "small", it 
is not surprising that the average phase-differences between the two oscillators 
are similar for the averaged and unaveraged systems. 
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Fig. $ a-e. Sin(~b} vs. ~o I for different 
coupling strengths, where (~b} = 1/ 
T S~ 02(0 - O1 (t) dr. Dashed curve shows 
sin ~b for an averaged system, a Coupling 
strength = 1, arrows mark value of ~o, at 
which locking is lost for single pulse 
(~0.65) and averaged (~0.62) system; 
b coupling strength = 2; e coupling 
strength = 3 

Figure 5b has parameters  identical to Fig. 5a except that  the coupling is 
twice as strong (~ = 2). The coupling is still sufficiently weak so that  oscillator- 
death does not  occur for 0.5 ~< o91 ~< 1. Finally, in Fig. 5c we shall show the 
average phase-difference when ~ = 3. At  the critical value, oh ,,~ 0.75, oscillator 
death occurs for (4.1) so that  there are no periodic solutions for  smaller values 
o f  co 1 . 

In  the last simulation, we fix a = 6 so that  there is oscillator-death for any 
value o f  a h ~< 1 when m = 1. The coupling is now by 4 pulses (m = 4), which 
prevents the oscillator death, and we show three curves in Fig. 6 as o~1 varies 
f rom 1.0 down to 0.1. These curves are sin((~b)), sin(~bm,.), and sin(~bmi,), 
where ~bm,x (resp. ~ m i n ) =  max 0 2 ( 0 - 0 1 ( t )  (resp. min 0 2 ( 0 -  01(t)). We 

0<I~<T O < t < ~ T  

have omitted the curve sin(q~), since within the resolution o f  the graphical 
output ,  the curves sin(~b) and sin((~b}) are coincident. This figure shows that  
with as few as 4 pulses per cycle, Eq. (4.1) behaves almost  exactly like its 
averaged analogue; indeed, the max imum and the min imum phase-differences 
are almost  the same as the average phase-difference, so that  O z ( t ) - - 0 1 ( t  ) is 
close to a constant.  
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Fig,, 6. Same as Fig. 5 a - c  but coupling - 
strength = 6, 4 pulses per cycle showing 
sin ~ . . . .  sin ~b~n, sin(q~ ),  where 
~bmax = max 02 (0 -01 (0 ,  ~bmin= min 

O ~ t ~ T  O ~ t ~ T  

02( 0 -- 01 (t), ( ~ )  = I /T  S~ 02(0 -- 01 (t) dt. 
Small dashes are used for ffm~x, large for 
~bmi ~, solid for ( ~ )  

5. Realistic networks and stable distribution of phases 

In Sect. 3, we showed that if a network is able to stably distribute phases about 
its cycle, then it is possible to obtain 1 : 1 locking and nearly averaged behavior 
with strong interactions between oscillators. This averageability is shown to 
prevent oscillator-death and other complex dynamical behavior. Two assump- 
tions are implicit in the creation of these networks. First, we have assumed that 
we can arrange coupling within the network so that the cells within the network 
fire out of phase. Second, we have assumed that the interaction with another 
similar network does not disrupt this firing pattern. That such networks are 
realizable is not obvious. In this section, we show two examples, a phase model 
and a neural model, that exhibit the desired properties: (i) within the network, 
the oscillators are phase-shifted so that there is uniform dispersion of phases, and 
(ii) when two such networks are coupled, it is possible to obtain stable 1:1 
locking even though the two oscillations are far apart in frequency. 

5.1. Phase models 

The most obvious way to set up a pattern of phases is to arrange the units of the 
network in a geometric ring and attempt to form a travelling wave that cycles the 
ring. If the "wavelength" is m, where m is the number of units in the ring, then 
the phases must necessarily be a multiple of 2rr/m apart. A wavelength of 0 
corresponds to synchronous oscillations in the ring. Other wavelengths corre- 
spond to nearest neighbor phase-lags of 2rc/k where k is a divisor of m. In [13], 
it is shown that oscillators that are coupled in a ring with some "inhibition" have 
as stable solutions waves of the desired form. Furthermore, if the "inhibition" is 
strong enough, the synchronous solution of the ring is unstable--the phases 
necessarily separate. (A more explicit definition of such inhibition is given 
below.) The model analyzed in [13] has the form 

Oj = 09 + ~ H(Oi - Oj, i - j ) ,  j = 0 . . . . .  m. (5.1) 
i = O  
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Since we are showing that, even if the interactions are not via phase-differences, 
the networks can "average" to create similar behavior, we do not want to start 
with equations of the form (5.1). Instead we will keep the ring geometry and 
consider a generalization of (5.1): 

m - - 1  

Oj = co + ~ h(Oi, Oj, i - j ) ,  j = 0 . . . . .  m. (5.2) 
i = 0  

We have in mind the class of models derived in Sect. 2 under the assumptions of 
"infinite attraction" to the limit cycle. For this type of model, 

h(O,, Oj, i - j )  = P(O,)R(Oj)w(i - j ) ,  (5.3) 

where P(Oi) is the "impulse" of the oscillator i causing the response R(0i) on 
oscillator j with weight w ( i - j ) .  About R(Oj), we assume that R ' <  0 for a 
neighborhood of 0 = 0. Such an R is produced as discussed in Sect. 2 from 
neural models describing coupling via excitatory interactions, i.e., ones in which 
the voltage is increased in the target neuron. Inhibitory coupling leads to 
response functions R with R ' >  0 near 0 = 0. Thus, we can model excitatory 
(resp. inhibitory) coupling using a fixed response function R satisfying R'(0) < 0 
and letting the weights w be positive (resp. negative). 

Equation (5.3) is derived from a ring of identical neurons that have strongly 
attracting limit cycles as solutions. Preliminary work indicates for the network 
(5.3) that if the coupling is "excitatory", then the in-phase solution 
Oj(t) = Oe(t) Vi, j is a stable solution to (5.3). We must avoid this, for otherwise 
the oscillators in the ring all synchronize and the network is equivalent to a 
single oscillator. Thus, we assume that some of the coupling in the ring is 
inhibitory. 

We consider (5.2) and (5.3) coupled to another such ring with "excitatory" 
coupling between rings: 

ao~/at = Oil + R(o~) w(i - j )P (o~)  + ~P(o{) , 
; (5.4) 

] dOJz/dt = 092 + R(OJ2) w(i --j)P(Oi2) + o~P(O~) , 
i 

where 

P(u) = (0.5 + 0.5 cos(u)) 4, R(u) = - (s in(u  + 0.4) -- sin(0.4)). (5.5) 

Each oscillator ring 1 is coupled to neighbors in the ring and to its analogue 
oscillator in ring 2. In absence of coupling between rings (~ = 0), we choose w(k) 
so that there is a wave in each ring. In the numerical experiment with ring 
structure, we have chosen m = 6, w(0) = 0, w(1) = w( - 1) = 0.1, 
w(2) = w ( - 2 )  = -0 .6 ,  and w(3) = -0 .2 ,  col = 1, and co2 = 0.5. 

In the first numerical experiment we simply couple two oscillators without 
the ring structure (i.e., we let w-= 0). For 0~ small there is no locking, as is 
expected since the frequencies are quite different. As ~ increases there is a 
complicated sequence of n : m locking patterns for which m < n. That is, there 
are always more cycles of the fast oscillator 1 than there are of the slow oscillator 
2. At a particular value of ~ (~ ~ 1.65), oscillator 2 "stops"; that is, it no longer 
traverses a complete cycle. Oscillator 1 continues to traverse the cycle and this 
behavior persists for all higher values of ~. Thus oscillator 1 and 2 do not ever 
lock in a 1 : 1 manner. 
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Fig. 7. 0 ° vs. 0 ° for ~ = 2. N o t e  that  
trajectory is c lose  to straight  line, i.e. 
0 ° - 0 ° is a lmos t  independent  o f  t 

2~ 

0J(t)  

Fig. 8. 0 ° (t) vs. t. Note that the wave structure is maintained even if the coupling between rings is 
moderately strong 

In the second experiment we use the ring structure. For  ~ small, there is again 
no locking. As we increase ~ we find that 1 : 1 locking occurs. In Fig. 7, we show 
the phase-plane diagram of 0 ° vs 0 ° for ~ = 2. Note that the trajectory is nearly 
a straight line, indicating that the system is behaving as if it were averaged. In 
Fig. 8, we show the time-dependence of the trajectories for each of  the phases. 
This figure shows that even with "strong" coupling between the rings, the phase 
relationships within a ring are preserved. We further note that the intra-ring 
coupling is small compared to the coupling between rings; thus we do not need 
to assume that the coupling within the ring is much stronger. 

Finally, one might argue that it is the presence of inhibitory coupling within 
the ring rather than the existence of phase-shifts that is responsible for prevent- 
ing the "oscillator death" of the coupled system. To see if this is the case, we 
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consider the following variation of (5.4): 

dOi/dt =(3)  1 --~R(Ol)Im~o= w(i)P(01)+~P(02)], (5.6) 

] dO2/dt = o92 + R(02) w(i)P(02) + ~P(01) • 
i 

Equation (5.6) is just the symmetric form of (5.4), that is, 04 = 01 for all j and 
similarly for 0~. (Note that the symmetric solution is unstable as a solution to 
(5.4).) As in the first case, numerical experiments indicate that 1 : 1 locking is still 
impossible and a sequence of bifurcation similar to that without the ring 
structure occurs. For ~ large enough, oscillator 2 is stopped. 

We have done similar numerical experiments for different parameters and 
different numbers of  oscillators in the ring and find the same behavior within 
some limits. Obviously, if ~ becomes too large (well beyond the values that yield 
1 : 1 locking in the rings), then oscillator death can and does occur. 

5.2. Neural net models 

In this section, we study two coupled rings of  Wilson-Cowan neural equations: 

de~/dt = -e~ + f e ( f l l e E ~  - -  f l ieI~ + o~gJ2), 

( ,)  eie - iiI - w ( k - j ) I  , 
k=o (5.7) 

= + f e ( f l e e E 2  - -  f l ie[2  + 

dI { /d t  = +f, .  e ,E{ - 8,,1{ - w(k  - j ) I  , j = 0 , . . . ,  5 
k=0 

Here Ej and /j refer to populations of excitatory and inhibitory neurons. For 
m = 1 and coupling coefficients e = 0 the system of El, I1 (resp. E2, I2) forms an 
oscillator. The justification for the form of (5.7) can be found in other articles 
[9]. Coupling within the ring is soley through the inhibitory neurons/j .  Coupling 
across the two rings is through the excitatory neurons. Both rings are identical 
with the exception of  the parameter, flee, which is different in the two rings. This 
parameter has a large effect on the intrinsic frequency of  the oscillators, so it is 
varied in order that the uncoupled systems have different frequencies. The 
parameters used in our experiments are as in the caption to Fig. 9. There are 
three experiments as in the phase model. 

In the first experiment, we allow (5.7) to evolve from random initial 
conditions. We find a large range of  coupling strengths e that lead to 1:1 
entrainment with no distortion in the wave shapes. Figure 9 shows the excitatory 
variables E~(t) and E~(t). Note that the faster oscillator is slightly advanced. The 
other component oscillators have identical profiles but they are phase-shifted. In 
Fig. 9b, we show the complete set of  waves from network 1. Note that the phase 
relationships are not distorted by the coupling between the rings. 

In the next experiment, we try to entrain the two oscillators without 
exploiting the ring structure. For this experiment, w(k) -0 .  We find that for e 
small, there is no locking; rather the two oscillations undergo quasi-periodic 
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Fig. 9. a. Wilson-Cowan networks coupled together. E°(t) and E°(t) are plotted for one locked 
c y c l e ,  fl e~ = 12, fl eSe = 18, flig = 0,  file = 20 ,  flei : 18, W(O) = O, W(1) = W( -- 1 ) = O. 1, 
w(2) = w(-2) = 2, w(3) = 0.3; f~ (u) = ~(1 + tanh(u - ½)); f~ (u) = ~1 + tanh(u - 4)); ~ = 10. b E{ (t). 
Note that the waves persist after coupling 

behavior. As ~t increases, there are regimes of periodic n : m locking for n # m, 
separated by quasi-periodic and "chaotic" behavior. At ~ ,~ 10, the solutions 
appear to be "chaotic" and as ~ increases they become periodic and "burst-like" 
(several spikes repeated). At ct ~ 10.5 there is 1 : 1 locking but this persists only 
until 0t ~ 10.58 at which point all oscillations are stopped. The regime for 1 : 1 
locking is very small and depends a great deal on the parameters flele and fl~e. 

Finally, we perform the experiment analogous to the third experiment above 
in order to convince ourselves that it is in fact the intra-ring phase shifts, not the 
presence of inhibitory coupling, that are responsible for our ability to obtain 1 : 1 
locking. Thus, we consider the modified version of (5.7) where 
(E~, I~)=(E~, I~) and (E~, I ~ ) =  (E~, It) .  Here, we do find a slim range of  
coupling strengths for which 1:1 locking is possible but the wave forms are 
severely distorted; the faster oscillator has a small residual spike that appears to 
be a residue of a 2 : 1 locked state. 

These numerical results are only preliminary and by no means exhaustive; 
our goal here is to show that networks that can produce averaged interactions 
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are simply constructed. These interactions appear to make it much easier for the 
two oscillators to entrain over a large range of coupling strengths and intrinsic 
frequencies without significantly distorting the waveforms of the oscillations. In 
a later paper, we will systematically explore models that are variations of (5.4) 
and (5.7). 

Acknowledgement. We wish to thank L. Glass, whose resolute disbelief provoked us to back up some 
of our claims. 

Appendix: Computation of the averaged functions 

We describe in more detail the change of coordinates discussed in Sect. 2 in order 
to obtain explicit information about the functions in (2.2). We then use this 
information to derive numerical techniques for obtaining the averaged equations 
(2.4) when there is weak coupling and the functions hk(Ok, Oj) of (2.6) when the 
attraction to the limit cycle is very strong. We will see that the case of weak 
coupling is considerably more difficult, essentially because the properties of the 
equations off the limit cycles can affect the averaged equations, and we do that 
derivation in two ways. (See [10] and the appendix of [14] for related calcula- 
tions.) Finally, we apply the methods to a class of neural models. 

A 1. Oscillators with strongly attracting limit cycles 

Consider the pair of coupled oscillators (2.1). We assume as before the 
dXg/dt = Fk(Xk) has an asymptotically stable limit cycle solution which we shall 
call Uk(t/Ogk), where COk is the frequency of the limit cycle and Uk(O) is 
2n-periodic in its argument. Let Uk = Tk(Ok, Yk), Yk ~ Rn- l ,  be the coordinate 
transformations. These transformations can be chosen so that 

uk(t) = U~(Ok(t)) + Mk(Ok(t))yk(t) + O([y~ [), (ml) 

where Mk(O) is an n x (n -- 1) matrix and 

Mk(O)rMk(O) = 1(,_ ,) × (,_ 1), 
(A2) 

U'~(O) ~M~(O) = 01 × (n-1~. 

In the appendix to [7] it was shown that Oh, Yk satisfy 

(Dk I dOk/dt = 1 + Offl(g'k)Z[(Dk + (Dk)r)Mkyk + Gk], 
(A3) 

o9; 1 dyk/dt = ((Mk)TDkMk + (M'k)TMk)Yk q- (Mk)TGk . 

(Here ~o; 1 arises from differentiation of Uk(Ok/~Ok) with respect to time.) We will 
use (A3) as the basis for the rest of the calculations in this appendix. 

In the limit of "infinite attraction" to the limit cycle, y k ~ 0 ,  and (A3) 
becomes (2.6) with 

hk(Ok, Oj) = o~O;1(O~)(V'~)~(O~)G~(~:~(O~), ~(0A). (A4) 
The significance of (A4) is that it allows us to compute an approximate phase 
model, which is more accurate the greater the strength of the attraction of  the 
limit cycle. Furthermore, the averages in (2.7), (2.9) can be quickly and easily 
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computed without first performing the reduction to a phase model: 

'f0" Hk((ff) = ~ 09kOkl(t)(U'k)T(t)Gk(Ua(t), Uj(t "4- cp~) dt, 

where q~ = 0 s - 0h. (See [7] for computation of the relevant phase model.) 
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(A5) 

A2. Weak coupling 

If the coupling is weak, Eqs. (2.1) may be directly averaged, instead of 
first reduced to a phase model and then averaged. It follows from invariant 
manifold theory that when the coupling is weak, there always exists an invari- 
ant torus [11]. However, unlike the first case, the invariant torus is not neces- 
sarily the product of the limit cycles, and so amplitude variations may affect 
the local frequencies. The "amplitude effects" make the calculation of the 
averaged functions H(¢) much more difficult, since we must deal with the 
complete n-dimensional system instead of restricting our averaging to the 
"phase" component. Our goal in the remainder of this section is to derive a 
general formula that will enable us to calculate the phase effects in weakly 
coupled oscillators. 

In order to study weak coupling, we must assume that Fk = F + O(e) where 
~ 1 and the O(e) terms contribute small frequency differences between the two 

oscillators. We replace Gk and eGg and absorb the frequency differnce terms 
into the eGk terms. We can assume with no loss in generality that, to lowest 
order, (o k = 1. 

Method I. We replace Yk by eSk, since Yk will be 0(8) on the invariant torus. 
Equation (A3) becomes 

dOk/dt = 1 + e[b(Ok)S k + Q-'(Ok)(u')T(Ok)Gk(U(Ok), U(0j))] + O(e2), 
(h6) 

dsk/dt = a(Ok)Sk + Mr(Ok)Gk(U(Ok), U(Ob)) + 0(8). 

where 

b(O) = q -I(U')T(D -~ DT)M, 

a(O) = M T D M  + (M')rM. 
(A7) 

Note that a(O) and b(O) depend only on the original limit cycle and do not 
depend on the form of the coupling. The solution to (A6) is Ok = t + (~k where (~k 
is constant to lowest order. From (A6), we obtain equations for (~k and Sk: 

d(~k/dt = e[b(t)sk(t; Zp) + Q -a(t)(U')r(t)Gk(U(t), U(t + ~))] + O(e2), (A8a) 

ds~/dt = a(t)sk(t; q~) + nr(t)Gk(U(t),  U(t + q~)) + O(e), (A8b) 

where q~ = ~ - Ok" On the invariant manifold Sk = Sk(Ok, Oj) = sk(t, t + 2p) + 
O(e), when, to lowest order in e, (~ is constant. We write Sk(t; ~ to make this 
dependence explicit. We solve (A8b) for Sk(t; dp) and substitute this into (A8a). 
We are then in a position to average equation (A8a), yielding 

/dt = - 
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where 

1 f f~  Hk(~) = ~ b(t)Sk(t; (~) + 0 -'(t)(U')r(t)Gk(U(t), U(t + q~-)) dt. 

The function/-Tk(q~) consists of two components, one corresponding to the effects 
of amplitude on the local frequencies. The second component is identical to 
(A5), so the difference between the coupling function Hk for strong limit cycles 
and the true coupling function/-7 k is the integral 

¢f'k(~) = ~ b(t)sk(t; 0~) dt. (A9) 

/-/k has the benefit that it does not depend on the coordinate matrix Mk, so that 
it is easily computed for arbitrary limit cycles. We now turn our attention to the 
computation of ~ k .  

From a numerical standpoint, it is very wasteful to solve for sk and substitute 
into (A9), since the value of sk changes each time the coupling functions are 
changed. Furthermore, it is impractical to maintain the array sk in memory since, 
for each of the n - 1 components of sk, one must store K 2 numbers if sk is to be 
evaluated at K times and K values of 4~- Instead, what is desired is a single vector 
function U*(t) that is independent of the coupling and is such that 

1 f0 2~ Hk(~) = ~ U*r(t)Gk(U(t), U(t + q~)) dt. (AIO) 

Besides requiring less computer storage, the other advantage of U* is that it need 
only be calculated once; /-t k can then be computed for arbitrary types of 
coupling. We will now show how such a function U*(t) can be computed. Let 
E(t) satisfy 

dE/dt = a(t)E, E(O) = I(, _ 1) × (, - 1), (A11) 

i.e., E(t) is the exponential of a(t). Let 

Q(t) = b(OE(~) d~. (A12) 

We rewrite (A9) as 

9~k(6) = ~ b(t)E(t)E-l(t)sk(t; q~) dt 

1 d/dt(Q(t))E-l(t)sk(t; ~) dt 
2~ 

= - -  1 f2~ d 
1 Q(2~r)E-x(2z0sk(2zr; 6) - ~ J0 Q(t) dt (E-l(t)s,(t; 47)) dt. (A13) 

2g 

Note that Q(t) does not depend on the coupling and is a function only of the 
normal coordinates and the limit cycle. To evaluate the last integral of (A13), we 
use the definition of E(t) and (A8b) to obtain 

d 1 dt [E- (t)sk(t; 6)] = E-l(t)Mr(t)Gk(U(t), U(t + 6)). (A14) 

Before substituting this into (A13), we need to find sk(21r; ~ .  We integrate (A14) 
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and use the fact that Sk(2rC; q~) = Sk(0;~. Thus, 

fo sk(2~;  ~ )  = [I - e ( E r 0 1 - 1 e ( 2 ~ )  e-a(t)M~(t)Gk(U(t), g(t + ~)  dt. ( A 1 5 )  

Finally, we substitute (A14) and (A15) into (A13) to obtain 

~(g) = ~ { a ( ; ~ ) [ I  - e ( 2 ~ ) ] - I  _ a(t)}e-~(t)M~(tl6~(V(t), V(t + ~)) dt 

lfo:~ =- 2~ t I r(t)Gk(U(t), U(t + q~)) dt. (A16) 

(Note that we have used the fact that E(t), E-~(t) and [ I -  E(t)]- ~ all commute 
in order to simplify (A16).) The vector function t/(t) is independent of the 
coupling as required. Our function U*(t) is 

U*( t) = [0 -~(t)U'(t)tl(t)]. (A17) 

Method 2. The above derivation of the functions /~k(~ has a rather geometric 
flavor. Another approach is to use the Fredholm alternative and formal pertur- 
bation expansions. We will sketch this method below and show that the results 
are equivalent. Consider the coupled equations: 

dXk /dt = F(Xk)  + eGk(z~k, ~ ). (A18) 

One seeks solutions of the form Xk(t) = U(t + Og(z)) + eWg(t, z, e), where z = et 
is a slow time scale and Wk(t, Z, 5) is a smooth function of its components. 
Substitution of this formula into (A18) yields at order e 

~ ( t  + Ok) =-- [d/dt -- D(t  + Og)lWk(t, z, O) 

= - - U ' ( t + O k )  c3Ok /aZ+ Gk(U( t+Ok) ,U( t+Oj )  ). (A19) 

Periodic solutions Wk are sought. The linear equation 

.~q~(t)((t) = f (t) 

has a periodic solution if and only if 

o 2~ Z*( t ) f  (t) dt = O, 

where z*(t)  is the unique periodic solution to the adjoint problem 

[d/dt - D T(t)]•*(t) -- ~q' *(t)z*(t) = 0, 

1 f£2~ (A20) 2--~ Z*(t)u'(t) dt = 1. 

Thus, (A19) has a solution if and only if 

1 fo~ dOk/t3Z = ffIk(Oj -- Ok) -- ~ Z*(t)Gk(U(t), U(t + Oj - Ok)) dt. (A21) 

Equation (A21) has the same form as (A10). We prove that U*r(t) = Z*(t) is the 
solution to (A20) and thus show uniqueness of U* by virtue of the uniqueness 



Multiple pulse interactions and averaging 215 

of ;(*. This also implies that H = ~.  We seek solutions x*(t) to (A20) of the form 

•*(t) = U'(t)((t) + M(t)z(t). (A22) 

Substitution of (A22) into (A20) leads to 

U"( + U'(" + M'z  + Mz" + DrU' (  + DrMz  = 0. (A23) 

We multiply (A23) by U 'r  and using (A2) we obtain 

U'rU"( + 5(" + (U "rM" + U'rDrM) z + U'rDrU'(  = 0. (A24) 

From , r , ( - Uk) Mk = (U'k)r(Dk)rMk and the fact that U" = DU', we see that (A24) 
simplifies to 

(U"rU" + u ' ru" ) (  + 5~" = O. 

Since (U"rU ' + U'rU ") = (u ' ru ' ) "  = 5', we have 5'( + 5(' = 0. Along with the 
normalization condition of (A20) this implies 

((t) = 5 - ' (0-  (A25) 

We now multiply (A23) by M r and, using (A2), obtain 

z' = - ( M r D  rM + MTM')z  - (MrU" + M rD ru')5 -1. (A26) 

Again using the fact that U"= DU" and also (A12), we see that (A26) is just 

z" = - a r ( t ) z  - b r(t). (A27) 

The fundamental matrix for z ' =  - a r ( t ) z  is E- l ( t )  r and z(t) is required to be 
2~r-periodic; thus 

z(t) = E-1(0  7-{[/_ E(2r 0 q - iQ(2r 0 r _ Q r(t ) }. (A28) 

Combining (A28) with (A25) and (A23), we see that Z*(t) = U*r(t) as required. 
[] 

A3. Averaged coupling for neural models 

We now wish to apply the results of Sects. A1 and A2 to two-dimensional neural 
models. The general results in Sects. A1 and A2 of this appendix provide 
machinery for determining the averaged function ~(~b) for arbitrary weakly 
coupled oscillators. This task is straightforward once we have chosen coordinates 
to transform the system of equations into equations of the form (A3). Thus, we 
must first provide a method for constructing the matrix M(O) which satisfies the 
conditions (A2). In the two-dimensional case, M(O) is just a two-dimensional 
column vector. 

Let the components of the limit-cycle for the two-dimensional system be 
U(O) - (ul (0), u2(0)). Then U'(O) = (u'l (0), u'2(O)). We let 

5 ( 0 )  = II u,(o)II 2 - + u 2(o) 
and choose 

M(O) = (u~(O), - u~ (0)) r / x / - ~ .  

Clearly, this choice satisfies (A2). 
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Fig. 10. H(O) for Wilson-Cowan equations, flee= 12, fl/,= 14, flei = 18, fl~i=0; fe (U)= 
2X(l+tanh(u--½)); f~ (u )=~ l+ tanh (u -6 ) ) ,  a excitatory-excitatory coupling; b inhibitory- 
inhibitory coupling 

We now use this M to construct H(~b). Equations (A11) and (A12) are scalar 
equations that are readily integrated using standard methods. This allows us to 
easily construct the functions U*(O) defined in (A17) and consequently determine 
the averaged function ~(~b) for any two-dimensional oscillator. 

We have written a computer program for numerical calculation of the 
function U*(O) which is then used to derive the averaged function for any system 
of weakly coupled two-dimensional oscillators. In Fig. 10, we plot the averaged 
functions for two coupled Wilson-Cowan models: 

dEj  /d t  = - Ej  d- f e ( f l eeg]  . - -  f l ieIj  Jr CreEk), 
(h29) 

dlj  /d t  = - Ij + f~(fle,Ej - f l , , I j  - Ct,Ik), 

for j,  k = 1, 2 j  ~ k. In Fig. 10a, we assume that 0ti = 0 and 0 < ~e ~ 1, i.e., weak 
excitatory-excitatory coupling. In Fig. 10b, we assume that c(e = 0 and 0q is small 
and positive, corresponding to weak inhibitory-inhibitory coupling. The slope at 
the origin determines the stability of  the in-phase solution for two coupled identical 
oscillators. From this, one sees that weak inhibitory-inhibitory coupling always 
results in unstable in-phase solutions; the stable phase-difference is half a cycle. 
Weak excitatory-excitatory coupling is more complicated; for identical oscillators, 
the in-phase solution is not stable, and the stable solution has a small phase-differ- 
ence. We have verified this by integrating the full equations (A29) for small *(e" 
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