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Abstract. It is now documented that childhood diseases such as measles, 
mumps, and chickenpox exhibit a wide range of recurrent behavior (periodic as 
well as chaotic) in large population centers in the first world. Mathematical 
models used in the past (such as the SEIR model with seasonal forcing) 
have been able to predict the onset of both periodic and chaotic sustained epi- 
demics using parameters of childhood diseases. Although these models possess 
stable solutions which appear to have the correct frequency content, the corre- 
sponding outbreaks require extremely large populations to support the epi- 
demic. This paper shows that by relaxing the assumption of uniformity in the 
supply of susceptibles, simple models predict stable long period oscillatory 
epidemics having small amplitude. Both coupled and single population models 
are considered. 
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1 Introduction 

It is now well documented that childhood diseases which incur permanent 
immunity oscillate periodically, as well as exhibit chaotic behavior (Hethcote 
1983; London and Yorke 1973; Yorke and London 1973; Schaeffer 1985; 
Yorke et al. 1979). Examples of such diseases are chickenpox, measles, and 
mumps. Another example of a disease which exhibits strong oscillations but 
does not fit exactly into the framework of the other childhood diseases is 
rubella, which exhibits outbreaks with periods as long as seven years. One 
common feature each of the abovementioned diseases has is that they have a 
maximum peak in their respective power spectrum of 1 year, which is reflected 
in the fact that peak-to-peak outbreaks have local maxima separated by one 
year. This annual behavior in childhood disease has been linked to the opening 
and closing of schools in the various cities (London and Yorke 1973; Fine and 
Clarkson 1980). 

Given that the childhood diseases all have an annual seasonal component, 
spectral analysis reveals that their outbreaks can exhibit a widely varying range 
of longer interepidemic periods. In measles, periods on the order of 2-3 years 
have been observed. Mumps exhibits periods from 3-4 years, while rubella has 
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been observed to have interepidemic outbreaks of 5-7 years. Chickenpox is the 
only disease which seems to exhibit a unique annual peak in its power spectrum 
corresponding to interepidemic outbreaks of 1 year (Olsen et al. 1990). 

When the diseases are examined with respect to their incidence data as a time 
series, further analysis may be done to see what kind of recurrent behavior the 
populations produce. For example, measles in New York City in the pre-vaccine 
years has been observed as a biennial cycle, with two year interepidemic peaks 
separated by what appears to be noise (London and Yorke 1983). In Baltimore, 
where the population is much smaller than that of New York City, measles 
appears to have peak cases separated by either 2 or 3 years, where the large 
peak-to-peak years appear as a random sequence. S o  depending upon the 
population size and structure, measles can exhibit periodic or aperiodic behavior. 
Further analysis, using embedding techniques by Olsen et al. (1990) and 
Schaeffer and Kot (1985), reveals that measles can exhibit chaotic outbreaks 
based on a fundamental frequency. Their analysis suggests that the noise 
appearing between peaks in the outbreaks may be dominated by a deterministic 
process. Sugihara and May (1990) have further analyzed the data by computing 
decorrelation times for diseases such as measles and chickenpox by employing 
embedding techniques as well, and find that the data appear to be generated by 
a deterministic process. That is, the data have correlation times longer than that 
of randomly generated data. Other diseases, such as mumps, also have character- 
istics of chaotic behavior, whereas chickenpox appears to be periodic with 
additive noise (Olsen et al. 1990). 

In summary, several important but common features can be distinguished for 
the childhood disease data: 

1. There is always an annual component in the power spectrum. This means that 
there must be a seasonal driving force. 

2. Most childhood diseases contain several periods. 

3. These diseases (with the exception of rubella) induce lifelong immunity. There 
is no feedback mechanism from the recovered individuals to the susceptibles. 

4. Subharmonic spectral peaks are observed in both large and small populations 
in the Western world. The behavior may be periodic with additive noise or 
chaotic with fundamental spectral peak. 

Modelling periodic outbreaks in epidemics has been a central point of 
research in biomathematics. (For example, see Bailey 1975; Hethcote 1983, 1991; 
Hethcote et al. 1981; Anderson and May 1979, 1982; Dietz 1976.) From a 
modelling point of view, much of the observed phenomena can be qualitatively 
seen in very simple models. One model we have studied in great detail is called 
the SEIR model (Schwartz and Smith 1983; Schwartz 1985; Schwartz 1989). For 
many childhood diseases, the epidemiology is well known. Latent and infectious 
periods are known to very good accuracy. Other population dependent parame- 
ters, such as contact rates, birth rates, and death rates, are measured indirectly 
or are not known explicitly as functions of population size or time. However, 
given such a simple model SEIR model, many types of subharmonic and chaotic 
behavior may be observed for reasonable choices of parameters. 

For models based upon the SEIR model, it has been proven that attracting 
subharmonic outbreaks of all periods may be found (Schwartz and Smith 1983). 
However, these subharmonics possess a very large peak outbreak in infectives and 
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require a very large population to prevent all of the infective individuals from 
disappearing, causing the outbreak to disappear. This is unsatisfactory, since 
many of the characteristic subharmonics are observed in populations having sizes 
orders of magnitude smaller than those predicted by the models. The main 
question addressed in this paper is the following: Can small population centers 
support long period based outbreaks? 

Since the most of the epidemiological parameters are well known, one 
method of modelling the epidemic is to examine the population structure. By 
assuming that populations can be grouped such that a large population center is 
connected with smaller population centers, models can be constructed which 
weakly couple several SEIR models together, each possessing different types of 
subharmonics. One main result of this paper is the following. Assume there are 
two population centers, one supporting a small annual cycle and the other 
supporting a large subharmonic cycle. Then weakly coupling the populations 
yields recurrent outbreaks which are small amplitude subharmonic outbreaks. By 
using the coupled population model as a paradigm, an immediate corollary 
follows which shows that a single population model can produce small ampli- 
tude/long period based behavior. This results from allowing the rate of input of 
susceptibles to be nonuniform in time, which is a more realistic assumption than 
having a constant input stream of susceptibles. 

The layout of the rest of the paper is as follows. Section 2 describes and 
quickly reviews the basic properties of the SEIR epidemic model. The kinds of 
subharmonic behavior which can be sustained by the model will be given, and a 
perturbation analysis of the size of peaks will show how large a population is 
needed to sustain the epidemic. Section 3 describes the coupling of the SEIR 
models, and Sect. 4 illustrates numerically that small amplitude long period 
subharmonic behavior exists due to the weak coupling of the population centers. 
Section 5 will describe a simple modification to the single population model 
which demonstrates how small amplitude/long period based outbreaks can be 
achieved. Section 6 will discuss the qualitative aspects of the data for a few select 
cases, and compare them with the model. Section 7 summarizes the results, and 
reviews future work which needs to be done. 

2 The SEIR model 

2a Model derivation 

We follow the assumptions and notation of Schwartz and Smith (1983). The 
reader should consult that paper for further details. Suppose the population is 
divided into four groups, each a function of time, t: Suseeptibles S(t), Exposed 
E(t), Infeetives l(t), Recovered R(t). For a disease which incurs permanent 
immunity, a unique path through each stage of the disease may be described. At 
birth, after an infant sheds its natural immunity, that individual becomes 
susceptible to the disease. Once that individual becomes susceptible, there is a 
probability of coming in contact with a member of the infective class. Since 
childhood diseases are easily transmitted, we suppose one contact is sufficient for 
the virus to spread, and the individual becomes exposed. After a period of latency, 
the exposed individual becomes infectious, and is now a member of the infective 
class. The infective member in turn enters the recovered class after a mean 
infectious period has lapsed, and remains in the recovered section until death. 
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The SEIR model describing the rate of change of each of the classes can now 
be written down: 

S" = ~( 1 -- S)  - [~(OXS 

F~" = ~( 0 I S  - (~ + ~)E 
(2.1) 

I '  = ~tE - (# + y)I 

R '  = 7I -- #R 

In Eq. (2.1) we have made the assumptions that the population is uniformly 
mixing and of constant size. In particular, we assume the population is normalized 
to unity. The birth and death rates, #, are equal, and 1/0~ (l/y) is mean latent 
(infectious) period. The birth and death rates are also assumed to be constants, 
which will be relaxed later. The contact rate, t ,  is defined as the average number 
of effective contacts with other individuals per infective per unit time. By effective 
contact we mean contact between a susceptible and an infective in which the 
disease is transmitted. Seasonality is incorporated by allowing fl to fluctuate 
periodically as a function of time; i.e., we assume fl(t) = to( 1 + 6 cos 2rot), where 
0 ~< 6 < 1. This is the mechanism which simulates the annual behavior of the 
outbreaks which appear so regularly in the data (London and Yorke 1973; Yorke 
and London 1973; Fine and Clarkson 1980), as well as in the spectral analysis. 

2b A transformed model 

In order to show how large the populations must be to support and epidemic 
modelled by Eq. (2.1), we need to transform the model and introduce a small 
parameter. When 6 = 0, Eq. (2.1) has two steady states given by (1, 0, 0, 0,) and 
(So, Ec, Ic, Re) = (I/Q, (1~ + ~')L/~, I~(Q - 1)/to, 1 - S~ - Ec - L). (See 
Schwartz, 1985 for details.) The reproductive rate of infection, Q, is a measure 
of the number of new cases generated by introducing one infective in a pool of 
susceptibles in one infectious period. The epidemic is sustained only if Q > 1. If  
Q < 1, the epidemic dies out and the number of infectives asymptotes to zero. 

We indroduce a small parameter called the force of infection, e, by setting 
e = # ( Q -  1 )>  0. Following the transformations used in Schwartz and Smith 
(1983), Eq. (2.1) now becomes the following system: 

i f ' =  --v)7 + efl(~, )7, Z, t ,e, 8) 

A2 + A3vA3~ ( a3~ _ p '  = wz(1 + f i )  -~ ~-v26cos21rz I + f i + A z + A 3 ]  (2.2) 

+f2(ff, fi, e, t, e, 8) 

e~' = --(A 2 + A3)2 + ef3(Y, Y, ~, t, e, 6), 

where thef~ are periodic in t with period 1, and f ( 0 ,  0, 0, t, 0, 0) -- 0, i = 1, 2, 3. 
Notice that when 6 = 0, the endemic steady state is at the origin. 

2e Multiple recurrent epidemics and subharmonic behavior 

When 6 is small, it is known that both small amplitude and large amplitude 
subharrnonic solutions may exist. The small amplitude solutions bifurcate from 



Seasonally driven epidemics 477 

the steady endemic state when the forcing 6 is turned on. These are small 
amplitude solutions of period 1 which bifurcate to period 2 when 6 is increased. 
If  6 is increased far enough, a period doubling cascade to chaos is observed. 
Since all the periods of the harmonics in this cascade are of the form 2", stable 
periods such 3 or 5 will not be observed in the pre-chaotic regime. Therefore, 
subharmonics such as periods 3 or greater must be found elsewhere. 

Large amplitude oscillations occur as bifurcations from periodic orbits of a 
conservative system in the plane. When 6 = e = 0 in Eq. (2.2), we have the 
following conservative system: 

y ' =  vY(1 + y )  (2.3) 

,~=0. 

The origin is a center surrounded by periodic orbits with periods ranging 
between 2n/v and ~ .  Equation (2.3) admits the first integral, 

C = y - log(1 + y) + x2/2, (2.4) 

where C is a constant. Notice that y = - 1 is an invariant set of the conservative 
system, and therefore, as the periods of the orbits get larger, the orbits tend to 
spread out near this set. Now suppose (Xn(t), yn(t), 0) is a solution of Eq. (2.3) 
that is periodic with period n. Then it can be shown, for e and 6 sufficiently small, 
that there exists a periodic solution of period n to the original problem, Eq. (2.1), 
which is e close to the period n solution of the conservative system. (See Schwartz 
and Smith (1983) for a proof.) These subharmonics can also be shown to appear 
as saddle-node pairs; i.e., just past the point of bifurcation, there exist two period 
n solutions, one asymptotically stable and the other a saddle. 

Simulations for measles parameters have been carried out in Schwartz (1985) 
for the SEIR model to illustrate the relative sizes of the orbits. Since 2n/w (2, 3) 
for measles, large amplitude outbreaks are observed for periods 3, 4, 5 . . . .  The 
size of these subharmonics, which are O(1), are well above the period 1 branch 
of orbits, which are O(e). A more complete picture of these branches is seen by 
computing only the attractors of Eq. (2.1), which has been done in Schwartz 
(1989). It is seen that for the period 3 oscillation, a population size on the order 
of  106 is needed to sustain the epidemic, while for period 4 a population on the 
order of 108 is required. Compare this to the size of the population required to 
sustain the period 1 branch, which is on the order of 104. Therefore, population 
sizes which are required to sustain outbreaks having periods 3 and greater need 
to be several orders of magnitudes greater than that to sustain a simple period 
1 cycle. 

To see how such large amplitude outbreaks occur in the model, consider Eq. 
(2.3) having first integral given by Eq. (2.4). As the constant C approaches 
infinity, the periodic orbit becomes more triangular and is characterized by two 
different time scales. The periodic orbit appears as a slow evolution near 
y = - 1  + O(exp( -  C)), where x ranges from -(2C)1/2 to (2C)1/2 during a time 
interval of O(Cm). This is followed by a large pulse in y which is on the order 
of O(C), where x goes from (2C) m to - ( 2 C )  a/2, and during an O(C -1/2) time 
interval. The maximum value of y occurs at x = 0  and is given by 
y = C + O(ln(C)) (Erneux and Schwartz 1990). The important point here is that 
when the oscillation is near the slow manifold y = - 1, the population needed to 
sustain the epidemic needs to be of order exp(C). 
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The asymptotic analysis of Eq. (2.3) reveals the mechanism by which an ideal 
epidemic is generated. Just after a large peak in the infective population occurs, 
both susceptibles and infectives are reduced to low levels. If the number of 
infectives is very small, y is close to - 1 ,  and the infectives remain close to a 
steady level while the susceptible population builds up at a slow rate. It will take 
a long time before a sufficient supply of susceptibles is generated before a large 
infective peak occurs. The conservative model and analysis above shows that this 
buildup time is equal to 0(C1/2), which for large C, can be considerable. Just 
after the buildup of susceptibles, enough contacts are made in the population so 
the new susceptibles become infected, and the large peak again occurs, but on a 
much shorter time scale, O(C-I/2). 

In terms of the original epidemic variables, for a given period n orbit 
(~n(t),)7n(t), 0), the bifurcated period n orbit is given by 

) s(t) = s~ 1 +-~ ~°(t) + o(~ ~) 

E(t) = Ec(1 + fin(t) + O(e)) (2.5) 

I(0 = L(1  + ~n(t) + 0(5)). 

Since the minimum value of y for large period n solutions is on the order of 
- 1  + O(exp(-C)) ,  the infective, as well as the exposed classes are both 
O(exp( -  C)), where C is large for long period solutions. 

Since these large outbreaks appear as perturbations to solution of the 
conservative system, and they appear as saddle-node pairs from a particular 
bifurcation point, we say that these large amplitude subharmonics appear as 
primary saddle-node bifurcations (Schwartz 1988). They are primary because they 
are the first period n bifurcations appearing as perturbations from a known 
periodic orbit of a conservative system. Furthermore, since these subharmonics 
require large populations of order e c, we say the outbreak is a population limited 
outbreak, since the outbreaks which can be described are limited by the popula- 
tion considered. We now summarize the results of this section with a theorem 
which characterizes the long period outbreaks of the SEIR model. 

Theorem. Suppose e and 6 satisfy the hypotheses above and in Schwartz and Smith 
(1983). Then for e and 6 sufficiently small: 
1. The SEIR model has subharmonic outbreaks of  period n, where n > 2rt /v. 
2. The subharmonic outbreaks appear as primary saddle-node bifurcations. 
3. The subharmonic outbreaks are population limited. 

An excellent example of the theorem is the case of the SEIR model using 
measles parameters. Here, primary saddle-node bifurcations having periods 
3, 4, 5 . . .  are population limited outbreaks. Although these outbreaks have the 
correct frequency content, they do not model small populations having the same 
period 3 information. The troughs of the outbreaks are quit e steep, which means 
large populations would be needed to model the outbreaks without the epidemics 
dying out. In addition, the peaks are quite large. 

The SEIR model in its current form can model outbreaks corresponding to 
long periods, but they are population limited outbreaks, and will not be 
sustained by populations which support only small amplitude period 1 out- 
breaks. We now consider one way to modify the problem allowing different 
populations supporting different types of behavior to interact. 
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3 Interacting populations - A model 

Current models such as the SEIR model described above make the assumption 
that the populations are constant in size and uniformly mixing. Moreover, much 
of the city data contains the core city and its suburbs. This is true for both the 
New York City data and the Baltimore data. Based on this observation, the 
population may be considered to be composed of two groups: One population 
which is central and dominant, coupled to the other smaller populations. 

We suppose, for simplicity in this paper, that there exist two populations 
which are coupled together. We define X 0. to be the exposure rate between group 
i and group j. Specifically, X U has the form 

X e ( t )  = flij(t)Ii (t)Sj (t), (3.1) 

where the coupling contact rate is given by 

flo.(t) = to(t)(1 + fll cos 2m), (3.2) 

and the subscripts refer to the particular subgroup of the population. 
Implicit in the assumption that subgroups come in contact with one another 

is that the susceptibles are not required to be stationary. That is, susceptibles of 
one group may move to come in contact with infectious individuals from another 
group. This assumption implies that the rates of change of the susceptible groups 
include losses due to self infection and secondary group infection. That is, there 
is a small probability that some fraction of the susceptible population comes in 
contact with infectives from another group. For the 2 group model, the rates of 
change are given by the following sets of equations: 

S l  : #1 - -  X l l ( t )  - -  X21 (t) - -  ]~ta S1 

E ]  = X l l ( t )  --[- X21(/)  - (#1 + 1/y)E1 

I~ = E1 /~  - 0 , ,  + 1 / ~ ) i ,  
(3.3) 

s ;  = ~2  - x 2 ~ ( t )  - x , ~ ( t )  - . ~ s ~  

E~ = X22(t) + X,2(t ) - (/~2 + 1/7)E2 

I'2 = E2/~ - (~2 + 1/~)I2- 

The equations modelling the recovered populations are obvious, and they are 
omitted. The birth and death rates, #;, i = 1, 2, for each subgroup are assumed 
to be equal. The latent and infectious periods are defined as in the original SEIR 
model. 

4 Generation of small amplitude]long period based subharmonics 

As discussed above, individual small populations modelled by the SEIR model 
can only sustain period 1 oscillations. The question addressed in this section is, 
Can small centers support long period behavior? The mechanism which we use 
to answer this question is the hypothesis that the small population centers are 
coupled weakly to a large population center which is capable of sustaining 
population limited outbreaks. We consider first the following uncoupled oscilla- 
tor initialization for the model governed by Eq. (3.3). 
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Table 1 

#1 0.02 (year)  - 1 
/t 2 0.02 (year)  - 1 

1/0.0279 (year)  - 1 
y 1/0.01 (year)  - l 
t o  1202 (year)  -1  

fl]i 0.098 (year)  -1  

I. B. Schwartz 

The two groups are split into large and small amplitude oscillations of the 
following types. Group 1 is the small population, and group 2 is the large 
population. Since the sizes of the population are solely based upon the sizes of 
the simulated epidemics, group 1 will support a period 1 epidemic, and group 2 
will support a period 3 epidemic. The parameters used in the simulations are 
listed in Table 1. The first part of the simulation considers the groups uncoupled. 
Figures la and lb show the results for the small and large populations. The 
logarithm (base 10) of the infective classes are shown for each population, 
illustrating that the large population needs to be two orders of magnitude greater 
than the small population if the period 3 outbreak is to be sustained. 

Given the initialized uncoupled oscillations, we now couple them weakly, and 
the coupling is assumed to be symmetric. The coupling strengths are given by 
to  = 1.0. Relative to the self contact rate, to,  the cross contact rate, or coupling 
strength, is 1 part in 1200. Figure 2a shows the large polSulation in a period 3 
based chaotic oscillation. The time series here is sampled at period 1 (or annual) 
intervals. The corresponding small amplitude oscillation is shown in Fig. 2b, and 
it is also chaotic. However, although it is primarily period 3 based, there are also 
peaks which are separated by 4 years, rather than 3 years. So coupling these two 

F 2 - G R O U P  

b e t G l = O . 0 9 8  
-3.55 S m a l l  S i n g l e  P o p u l e t i o n  

- 3  . 60  

- 3 . 6 5  

• - 3 . 7 0  

- 5  , 75  II 

c 
--o - , 3 . 8 0  

._1 
- 3 . 8 5  

- 3 . 9 0  

- 3 . 9 5  

# . 0 0  

5 0  5 5  6 0  6 5  7 0  7 5  8 0  8 5  9 0  9 5  1 0 0  
t ime  

Fig. la.  Small amplitude period 1 oscillation in the uncoupled system 
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F2-GROUP 
I B e t a ~  

33.05' Large Single P ° p u l a t i ° n '  

i o 4 0 

j 
50 55  60  65  70  75  80  85  90  9 5  100  

t ime 

Fig. lb. Large amplitude period 3 oscillation in the uncoupled system 

F2 - GROUP 
-3.o Lorge Populotion Coupled 
- 3 . 2  

- 3 . 4  

- 3 5  

-3.8 

4.0 

~ 4 . 2  

~ 4 . 4  

~ - 4 . 5  
o 

~ - 4 . 8  

5 . 0  

5 . 2  

- 5 . 4  

5 . 5  

50 60  70  80  90  100  110 120  130  140  150  
t ime 

Fig. 2a. Chaotic large amplitude period 3 based time series of in~ctives in the coupled system. 
Points plotted anually 

distinct forms of  oscillations demonstrates numerically the existence o f  long 
period outbreaks. Furthermore, it is possible to simulate outbreaks which are not 
population limited in the small population component,  and which have a mixture 
of  several subharmonic frequencies. In this simulation, both period 3 and period 
4 outbreaks occur. 
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50  60  70  80  9 0  100  110  1 2 0  1 3 0  1 4 0  150  
t [ m e  

Fig. 2b. Chaotic small amplitude period 3 based time series in the coupled system. Points plotted 
annually 
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Popul ta ion  

J 
-0 . 7 8  - 0  . 7 8  

L o g , . S u s c e p t  l b  I e T o t o l  

-0. 72 

Fig. 3a. Projection of the chaotic attractor of the infective total vs. the susceptible total in the 
coupled system 

It should be stated that when the population is taken together as a whole, the 
large amplitude outbreaks will dominate because the local maxima in the 
infectives is, in general, larger than those generated by the period 1 oscillations, 
as predicted by the theory in Sect. 2. To see the overall effect o f  the chaotic 
period 3 component ,  we plot a projection o f  the total number o f  infectives versus 
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F2-GROUP 

-3° / Coupled Popula~ion' 
- 3 . 1  

- 5 . 2  

_ ~3  .3 

~ - 3 . 4  

o 3-5  

o," - 3 . 6  

3 9 
50  60  70  80  90  100  110  120  150  140  150  

t i m e  

Fig. 3b. Chaotic time series of the period 3 based total infective population in the coupled system 

the total number of susceptibles in Fig. 3a. There are three distinct pieces of the 
resulting projection, corresponding to the dominating peaks of the large amplitude 
oscillation. The period 3 interpeak interval is also evident in a time series plot of 
the total infective population, shown in Fig. 3b. Notice that there are two distinct 
kinds of period 3 based behavior. There is a period 6 type of behavior, which implies 
the dynamics is near a period 6 unstable orbit. There is also a section of the time 
series which is period 3 type, implying the dynamics is near a period 3 unstable 
orbit. The intermittent intervals of different kinds of period 3 based behavior are 
due to the characteristic that chaotic attractors contain an infinite number of 
periodic orbits, all of which are unstable (Guckenheimer and Holmes 1983). 

5 Coupled populations as a paradigm to generate small amplitude/long 
period based behavior in single small populations 

In modelling long period behavior coupled populations, one can examine the 
cause of the small amplitude long period behavior in the small population directly. 
In any epidemic model, the driving force of a given epidemic is the rate at which 
susceptibles are supplied to the population. For the SEIR model, it is the birth 
rate which supplies a constant stream of susceptibles into the population. In other 
models which do not incorporate permanent immunity, it is a combination of the 
birth rate and the feedback rate of susceptibles from the recovered population. 
Without such a stream, the epidemic would not be able to sustain itself. 

5a Effective birth rates in small populations 

From the analysis of an ideal outbreak given in Sect. 2, one observes that for 
long period outbreaks, there are two distinct time scales, both governing the rate 
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Table 2 

Period Birth Rate 

1 0.101 
2 0.0254 
3 0.011 
4 0.006 
5 0.004 

of growth and depletion of susceptibles. If the period of the outbreak is very 
long, then susceptibles grow very slowly for a long period of time before they are 
reduced in a short interval. Since the rate of change of susceptibles is governed 
by the birth rate, we hypothesize that the birth rate, on average, needs to be 
reduced in order to generate longer period harmonics. Indeed, the theorem in 
Schwartz and Smith (1983), shows that there is a relationship between the birth 
rate and the other epidemiological parameters for the existence of primary 
saddle-node bifurcations of period n. Specifically, we require that the birth rate 
be bounded by the following inequality: 

(Q -- 1)n2 + < # + O(e2). (5.1) 

If the parameters for measles are plugged into the above inequality, then the 
birth rate # can be computed for which one expects a period n PSNB to occur. 
The numerical results are given in Table 2. Table 2 shows that if # is decreased, 
then higher order subharmonics are excited. This also explains why in the work 
of Aron (1990), when vaccination schemes are put into effect, long period, large 
amplitude behavior occurs. When vaccination schedules reduce the rate at which 
susceptibles are produced, the long period subharmonics are excited. 

In the 2 group population, one can ask what is the driving force of the small 
amplitude/long period based behavior by computing the effective birth rate as a 
function of time. Since the loss of susceptibles due to contact with infectives from 
the large population is small, we consider that loss as a time dependent perturbation 
of the birth rate, #. Therefore, we define an effective birth rate, #e, by 

#e(t) ~--- #1 -- ~21 (t), (5.2) 

where X21 is defined in Sect. 3. 
For the period 3 based coupled oscillations performed in Sect. 4, we compute 

the effective birth rate as a function of time for the small population. The results 
are plotted in Fig. 4. There are two distinct time scales of the effective birth rate 
for the time series shown. For 2 years, #e is approximately constant, oscillating 
near the constant value of #, which in this case is 0.02/year. During the third year, 
however, there is a rapid decrease followed by an increase in the birth rate. When 
the decrease in the birth rate occurs, the rate of introduction of susceptibles slows, 
hence slowing the growth rate of infectives. Then the birth rate increases, 
increasing the susceptible growth rate, with a resulting larger infective peak than 
previously. It is interesting to note that the overall change in the effective birth 
rate is approximately one per cent. However, even in the presence of such a small 
change, a completely qualitative change occurs in the solution. Namely, a period 
1 solution is now interspersed with period 3 peaks in the infectives. 

We close this section by making the following claim: 
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Fig. 4. The effective input rate of susceptibles as a function of time for the period 3 based chaotic 
attractor in the coupled system. The driving force is for the small population subgroup. The 
parameters were those used in Figs. 2 and 3 

Conjecture 5.1 Suppose that a small population supporting a period 1 cycle is weakly 
coupled to a large population supporting a period n cycle, where the period n 
outbreak is population limited. Then, for sufficiently small coupling coefficients, the 
small population supports a period n based outbreak, which is not population limited. 
Moreover, the effective birth rate exhibits small amplitude fluctuations which are 
period n based. 

W e  now discuss how this conjecture  m a y  be used to p roduce  small  ampl i tude  
osci l la t ions having any per iod,  and  are  stable.  

5b Small amplitude~long-periodic oscillations in single populations 

Conjec ture  5.1 makes  a dis t inct  connec t ion  between small  osci l la t ions in the b i r th  
rate,  and  result ing peaks  o f  the same per iod  in the infective popu la t ions .  To test 
fur ther  this hypothes is ,  we consider  a single popu l a t i on  mode l l ed  by  the S E I R  
model .  W e  make  the a s sumpt ion  tha t  the b i r th  rate  is no t  cons tant ,  bu t  is 
a l lowed to depend  on time. Fu r the rmore ,  we assume tha t  the b i r th  rate  is 
cons tan t  for a t ime interval  o f  n - 1. This is fol lowed by  a decrease to a local  
m i n i m u m  fol lowed by an increase to its or iginal  value in one per iod.  Specifically, 
we suppose  tha t  there exist a #o, constant ,  and  tha t  for  t e [0, n) 

#(t) = #o; t e [ 0 ,  n -  1) 

/~(t) = #o - 2A#0[t - (P --  1)]; t e In --  1, n - 1/2) (5.3) 

#(t) = #o + 2A/~0[t --  n]; t e In --  1/2, n), 

where  A is a posi t ive cons tan t  less than  unity.  
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sustain the outbreak is 0 (10  4 ) 
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Fig. 5b. Same as in Fig. 2a, but the periodic attractor is plotted as a projection as I vs. S 

We now consider the S E I R  model  with the addit ion o f  the time dependent  
periodic birth rate with period n = 3. The logar i thm o f  the infective popula t ion  
is shown in Fig. 5a, clearly showing an outbreak  which is periodic with period 3, 
and which is not  popula t ion  limited. As can be seen, there is a max imum peak 
in the infective class which occurs every three years. The projection o f  the period 
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Fig. 6. A period 4 attractor. Here the birth rate is periodic with period 4, and A = 0.1. Notice 
that the orbit is small amplitude and the population needed to sustain the outbreak is O(104). 
The attractor is plotted as a projection of I vs. S 

3 attractor is illustrated in Fig. 5b, clearly showing only one maximum value of 
infective• 

We now repeat the calculation with a period 4 birth rate. Again, as Fig. 6 shows, 
the resulting infective class is periodic with period 4, with only one maximum every 
four years. Thus the mechanism of using fluctuations in the birth rate to slow the 
growth of susceptibles appears to be a viable one in which small amplitude 
outbreaks can have long period behavior. We make the following claim which 
summarizes the main points of this section: 

C o n j e c t u r e  5.2 Suppose the SEIR model has birth rate periodic as defined by Eq. 
(5.3), having period n. Then for sufficiently small A, the SEIR model with periodic 
birth rate sustains small amplitude outbreaks which are periodic with period n, and 
which are not population limited. Furthermore, if the birth rate troughs appear 
randomly or chaotically, the resulting dynamics' will also appear as such, respectively. 

The analysis of such a conjecture will appear elsewhere. We close this section 
by noting that although rubella exhibits childhood like dynamics, and sustains 
outbreaks as long as 7 years, no successful attempt to model this behavior has been 
made as far as we know. The difference in rubella is that due to assumed 
antibody shedding, there is a small probability that the recovered individuals 
re-enter the susceptible group after a period of time. So for rubella, at least, there 
may be an interplay between a decrease in the rate of introduction of susceptibles 
and an increase of the rate. If the re-introduction rate is much smaller than the 
decrease in the birth rate, then the SEIR model with time dependent birth rate 
can be applied, and we show that for period 7 introduction rates, Conjecture 5.2 
implies the existence of a period 7 outbreaks. Just such a computation shows the 
result of a period 7 which is not population limited in Fig. 7. Although the SI 
projection appears to be complicated, it is periodic with period 7. 
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Fig. 7. A period 7 attractor• Here the birth rate is periodic with period 7, and A = 0•2. The periodic 
attractor is plotted as a pr~ection of I vs. S 

6 A qualitative comparison with data 

Although the SEIR model still cannot fully predict the kind of outbreak one 
observes in detail, some qualitative features can be observed. In Olsen et al. 
(1990), a careful description of the kinds of period-based behavior was computed 
for various cities in both the US and Europe• It is clear that chickenpox is the 
most regular cycle in that it has only one spectral peak at I year. In some cases, 
it is reported that chickenpox has a positive Lyapunov exponent, a possible 
indication of period 1 based chaotic behavior• Other diseases, such as measles and 
mumps, show spectral peaks at the 2, 3, and 4 year cycles, and exhibit chaos as 
well. For both large and small populations, the chaotic behavior fluctuates with 
periods 2 through 4 years. 

The population sizes for measles vary from 1,000,000 in Copenhagen and 
Baltimore (Olsen et al.) to 8,000,000 in the New York Metropolitan area (London 
and Yorke 1983; Yorke and London 1983)• However, similar behavior can be 
observed in annual data for even smaller populations• Examples of oscillations 
occurring in mumps data for Connecticut and Wisconsin are shown in Figs. 8 and 
9, respectively. There are several period 3 based cycles in each set of data shown 
during the prevaccine years, and the infective population is on the order of 104• 
Therefore, subharmonic behavior can also be seen in small populations. 

One other interesting observation can be seen in the Wisconsin data. After 
vaccination is started, the peaks in the number of cases become smaller, as is 
expected• However, the period between the largest peaks gets longer• That is, 
period 3 interpeak outbreaks shift to period 4 outbreaks, before the case number 
becomes negligible• The frequency shift is in qualitative agreement with the 
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Fig. 8. Mumps Data for the state of Connecticut, reported cases 1953-1989. Annual cases are 
plotted for the years 1953-1989. Notice the prominent period 3 based peaks in the pre-vaccine 
years 
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Fig. 9. Mumps Data for the state of Wisconsin, reported cases 1953-1989. Annual cases are 
plotted for the years 1953-1989. Notice the prominent period 3 based peaks in the pre-vaccine 
years 

phenomenon predicted by Eq. (5.1) and Table 2, where a reduction in the rate 
at which susceptibles are introduced excites longer subharmonics. 

7 Summary 

We have explored two modelling techniques to generate small amplitude/long 
period based behavior in seasonally driven epidemics. In the first case, coupled 
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populations were considered in which each population size is determined by the 
kind of outbreak it generates. When a large population is weakly coupled to a 
small population, the small population supports long period outbreaks which are 
not population limited. However, due to the large amplitude peaks of the large 
population, the dynamics of the total population is dominated by the large 
amplitude population limited subharmonic outbreak. 

By using the coupled population model as a paradigm, a mechanism was 
discovered which generates small amplitude subharrnonic behavior in small 
populations. By relaxing the assumption that the population has a constant input 
of susceptibles, it can be shown that a single population can sustain long 
period-based outbreaks which are not population limited. The sizes of these 
outbreaks are the same order of magnitude as a small amplitude period 1 
outbreak. 

By adjusting the period of fluctuations in the input of susceptibles, one can 
create any type of time series outbreak which is of small amplitude. Periodic 
outbreaks are only demonstrated in this paper for the single population model, 
but chaotic, as well as stochastic outbreaks can be predicted as well. Thus we 
have a very simple mechanism to generate the correct amplitude and frequency 
content of an outbreak. 
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