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Abstract. Weconsider  apredator -prey  systemin theform of a coupled system 
of reaction-diffusion equations with an integral term representing a weighted 
average of the values of the prey density function, both in past time and space. 
In a limiting case the system reduces to the Lotka Volterra diffusion system 
with logistic growth of the prey. We investigate the linear stability of the 
coexistence steady state and bifurcations occurring from it, and expressions 
for some of the bifurcating solutions are constructed. None of these bifurca- 
tions can occur in the degenerate case when the nonlocal term is in fact local. 
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1 Introduction 

This paper  is devoted to a study of the predator prey system 

ut = u[1 + ~ u -  (1 + ~)G**u]  - uv  + D A u  

v, = av (u  - -  b) + A v ,  (1.1) 

for (x, t) ~ R" × (0, ~ ) ,  with G ** u defined by 

In this system u and v are, respectively, prey and predator population densities 
and the quantities a, b and D are positive constants. We give a description of 
the various terms in this model below, but note that a special case of our 
model (with v - O) is the scalar equation 

ut = u[1 + ~u- - (1  + ~)G**u]  + D A u  (1.3) 
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introduced and studied by Britton (1990) as a model for a single diffusing 
animal species. Under certain assumptions on G(x, t) (stated below), equation 
(1.3) has a uniform steady state solution u = 1, and Britton (1990) studied the 
linear stability of this solution and bifurcations occurring from it. It was found 
that the presence of the nonlocal term G ** u brings about a variety of solution 
behaviour which it is impossible to obtain from a scalar local reaction 
diffusion equation, at least via bifurcation from a uniform state. Generally 
both the terms ~u and - (1 + ~)G ** u are required to destabilise the uniform 
state, but by suitable choice of G instability is possible with e = 0 and the 
bifurcations are brought about by the nonlocal term G ** u alone. 

It is the object of the present paper to extend Britton's equation (1.3) to 
a predator prey system of two equations. We propose system (1.1) as the 
simplest reasonable such extension in the sense that all terms involving the 
predator density v are of classical Lotka Volterra type. The other terms in the 
model are also present in the single species case (1.3). The term 
- ( 1  + ~)G**u, with ~ > - 1 ,  represents intraspecific competition for re- 

sources. This term involves a temporal convolution and therefore introduces 
delay effects into the system, because of the need to consider the regeneration 
time of resources. The convolution in space then arises because of the fact that 
the animals are moving (by diffusion), and have therefore not been at the same 
point in space at previous times. Thus intraspecific competition for resources 
depends not simply on population density at one point in space and time, but 
on a weighted average involving values at all previous times and at all points 
in space. 

Population models with delay have been considered before, e.g., by 
Cushing (1977), MacDonald (1978) and Gopalsamy (1992). Delays can arise 
for many reasons. For example, changes in a prey population will only result 
in a change in the predator population some time later, due to the predator's 
gestation time. Similarly, whilst the availability of food for a population of 
insects may immediately result in the laying of eggs, a larval stage will also 
result in a delay. But whatever the reason for introducing a delay into any 
population model in which the individuals are moving, the corresponding 
term in the model must be nonlocal in space as well as time. It would be 
realistic to incorporate delay effects in the interaction terms avu and possibly 

- uv as well, but we will for the present paper restrict attention to (1.1), owing 
to the complexity of the analysis. In his study of the corresponding spatially 
uniform system, May (1973) gives examples of predator prey interactions in 
which the predator does have a fast response to numerical changes in the prey. 

There has now been a great deal of research on purely time dependent 
systems with delay, and on reaction-diffusion systems containing terms which 
involve time delays. Some authors have proved results on global convergence 
in some rather general settings (e.g. Pozio 1983; Yamada 1984). There are 
comparison theorems for systems with delays which are often applicable 
(Ding 1989; Gourley and Britton 1993) and there has also been some work on 
permanence in systems with delay (Lu and Takeuchi 1994). Two recent papers 
by Choudhury (1994a, b) have considered competition and predator-prey 
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reaction-diffusion systems with temporal convolution terms, and obtained 
results on the size of the Turing-unstable parameter spaces for the systems. 
However, even in this work the terms involving delay remain local in space. 
The emphasis of the present paper is that whenever delay is present in a 
model with diffusion, the term or terms involving delay must be nonlocal 
in space. There may be situations where on biological grounds it is reasonable 
to neglect spatial averaging, but this will be the exception rather than the 
rule. 

The term au in (1.1), when a > 0, represents an advantage to the prey 
species in local aggregation. In a long paper, Okubo (1986) has described in 
detail some of the reasons for animal aggregation in nature, and the behaviour 
of the animals within the groups they have formed. Examples of aggregation 
fall into many categories, including the swarming of insects such as midges 
and locusts, the swarming of marine life forms such as zooplankton, the 
schooling of fish, the flocking of birds and the herding of mammals. A com- 
mon interpretation of aggregation is as a defence against predators, especially 
in grassland herds and flocks of birds. Aggregations reduce the per-capita 
amount of time that has to be spent on predator detection, thereby increasing 
time available for other activities such as foraging. When threatened by 
predators, an individual prey will try to position itself as near to the centre of 
an aggregation as possible, so the aggregation can become very tight. Another 
reason for aggregation can be to optimise feeding efficiency, either by reducing 
per-capita foraging time, or it may be that large numbers can together kill 
a larger prey than a single individual could kill by itself, so in this sense 
a greater variety of food resources are being made available. 

On biological grounds the quantity a clearly should be positive. However 
the mathematical analysis does not require such an assumption so we will in 
fact make no constraint on the sign of a at this stage. 

Our assumptions on G(x, t) are as follows: 

(H1) G ~ LI(R" x (0, oo)) and tG ~ LI(R" x (0, ~)). The former implies that the 
convolution G ** u is spatio-temporal, but we also consider (in self 
contained sections) situation s where (1.2) degenerates to a purely spatial 
or a purely temporal convolution. The integrability assumption on 
tG(x, t) is needed for technical reasons. 

(H2) G satisfies the normalisation condition G** 1 = 1, i.e., 

f~fo~G(x,t) d t d x = l ' .  
This implies that the uniform steady state solutions of the model are the 
same as those of the corresponding purely local system, which is system 
(1.5) below. 

(H3) G = G(r, t) where r = ]x]. The kernel G quantifies the effect that u(y, s) 
has on u(x, t) (s < t) and the form here assumes that the nonlocal effect 
depends only on the distance, and not the direction, ofy from x. Strictly 
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speaking, we should use a different notation for G(x, t) and G(r, t), but no 
confusion should arise. 

(H4) G > 0, since G is a weighting function. 

To make further progress it is sometimes appropriate to assume that G(r, t) is 
differentiable as a function oft ,  with OG/Or < 0 for r > 0, but the mathematical 
conclusions of the paper do not require this. 

On the basis of a random walk argument, Britton (1990) derived the kernel 

w ore G(x, t) = ~ exp - 4Dt J 

Here w(s) represents the weight given at time t to time t - s. In this paper we 
allow other forms for G, and some of the results are for general G satisfying 
only hypotheses (H1)-(H4). Note that the double convolution G ** u can be 
reduced to a purely temporal or to a purely spatial convolution, i.e.: 

G(t - s)u(x,s)ds or (~(x - y)u(y, t )dy 
- - o 0  n 

by taking G(x, t) = 6 ( x ) ~ t )  or 6(t)G(x) respectively. The most degenerate case, 
discussed below, is to take G(x, t) = 6(x)6(t) when G ** u = u. Kernels giving 
rise to purely temporal or purely spatial convolutions are referred to as purely 
temporal and purely spatial kernels. These degenerate cases do not satisfy (H 1) 
and are considered in separate, self contained sections. When G(x, t) = 6 (x)6(0 
we recover the classical Lotka Volterra diffusion system with logistic growth 
of the prey 

u t = u ( 1 - - u - - v ) + D A u  , 
(1.5) 

vt = av(u - b) + Av . 

In this system, and hence in (1.1), there are three spatially uniform steady state 
solutions (u, v) = (0, 0), (1, 0) and (b, 1 - b). The latter is biologically relevant 
only if 0 < b < 1 and in that case it represents coexistence of both species. The 
coexistence steady state is the one with which we shall be principally con- 
cerned, and it is important  to point out at this stage that (when 0 < b < 1) this 
steady state is linearly stable as a solution of (1.5); in other words it does not 
exhibit the phenomenon of diffusion-driven instability (Turing 1952). Thus if it 
becomes unstable as a solution of (1.1) for some kernel G, then the instability is 
not caused by diffusion alone. 

Returning to (1.1), the plan of the paper is as follows. We carry out a linear 
stability analysis for each of the three steady states of (1.1), with particular 
attention on the coexistence steady state. We construct a stability diagram for 
this steady state and consider some of the bifurcations that occur from it, with 

as bifurcation parameter. Specifically, we consider (i) bifurcation to steady 
spatially periodic and symmetric solutions, (ii) Hopf  bifurcation to spatially 
and temporally periodic standing wave solutions and (iii) bifurcation to 
periodic travelling wave solutions. Our problem is of course on an infinite 
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domain, but by restricting attention to plane periodic solutions we are able to 
effectively reduce the problem to a finite one dimensional domain with 
appropriate boundary conditions, extending the solution to the full domain 
only to ensure G ** u is well defined, since this term involves integration over 
all of R". The actual construction of the bifurcating solutions for the general 
case is deferred to §4. We also consider certain special cases, including 
a purely temporal convolution and a purely spatial convolution. For our 
purely temporal convolution bifurcations (ii) and (iii) occur and for our purely 
spatial convolution all three bifurcations occur (in contrast to the situation for 
equation (1.3)). 

2 Linear  s tabi l i ty  o f  the un i form steady s tates  

We present the linear stability analysis of our system (1.1) for its uniform 
steady state solutions, which are (0, 0), (1, 0) and (b, 1 - b) (if 0 < b < 1). We 
are mainly interested in the coexistence steady state but first we consider the 
linear stability of (0, 0) and (1, 0). 

Linear stability of (0, 0) is determined by the (uncoupled) system 

fit = (t + D A ~  

~t = - a b e +  A ~  . 

It follows that this steady state is linearly unstable to general perturbations, 
although perturbations involving no prey die out as expected. 

To investigate the linear stability of (1, 0) we set u = 1 + a, v = 6, substitute 
into (1.1) and retain only linear terms to obtain 

~ = o~--(1 + ~) fR" I ~- o~ G ( x -  y , t  - s ) ~ ( y , s ) d s d y -  ~ + DA(~ , 

gt = a(1 - b)~ + A g .  

The convolution term in (1.1) involves values ofu at all times previous to t and 
so for a properly posed problem in R" x (0, ~ )  we need to provide initial data 
for all t < 0. We impose the conditions u - 1 for t < 0 (so that ~ = 0 for t < 0) 
and u(x, 0) = Uo(X), v(x, O) = Vo(X). The time integral is then effectively from 
0 to t only and so the Laplace convolution theorem applies. Taking Laplace 
transforms, 

- t~o(X) = a ~  - (1 + ~) s~(x, s) d(x I y~ s~ ~ s~ dy ~+ DA~ , 
JR n 

s~(x, s) - fo(X) = a(1 - b)~ + AT, 

where bar denotes Laplace transform and s the transform variable. To test 
linear stability to plane perturbations of wave vector k, we take as initial 
conditions 

Uo(X) = 1 + eu' eik'`, Vo(X) = ev' e ik'~ 
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so that  ao(X) = eu'e i~'x and Go(X) = ev'd k'x. Seeking solutions of the trans- 
formed system of the form 

we obtain 

where k z = k.k and 

The  singularities of (t~, ~ are therefore the roots  of 

and if all these roots  are in the left half complex plane then (~, 0 ~ (0, 0) and 
the steady state is l inearly stable. Before proceeding further we list certain 
propert ies of H(s, k2). 

(i) When  s is real, _H(s, k z) is a real valued function of s and k 2. 
(ii) / 1 ( 0 , 0 ) =  1. 

(iii) If Res  > 0 then [H(s, kZ)[ < 1. 
(iv) If s is real and non-negat ive t h e n / t ( s ,  k 2) < 1. 
(v) If s is real and non-negat ive and (s, k z) + (0, 0) then H(s, k 2) < 1. 

(vi) If (co, k z) ~= (0, 0) then/7(ico,  k 2) ~= 1. 

The  proofs of these propert ies  are all s t raightforward and with the excep- 
t ion of (vi) may  be found in Bri t ton (1990). P roper ty  (i), for example, is 
a consequence of hypothesis  (H3) of G. Proper ty  (vi) is proved in Gour ley  
(1993). 

Returning to (2.2), we first consider the case b > 1 (i.e. there is no coexis- 
tence steady state). Then  one root  of (2.2) is s = a(1 - b) - k z < 0 and its 
other  roots  are the zero's of the first factor. However  the first factor of (2.2) is 
the eigenvalue function studied by Bri t ton (1990) and from the results proved 
in tha t  paper  it follows that  if ~ < - ½ then for every k 2 > 0 the roots  of (2.2) 
all lie in the left half complex plane and the steady state (1, 0) is linearly stable. 
If, however,  0 < b < 1 (the criterion for the coexistence steady state (b, 1 - b) 
to be biologically relevant), then the roo t  s = a(1 - b) - k 2 is positive for 
sufficiently small k z and it follows that  the steady state (1, 0) is unstable to 
per turbat ions  including such wave numbers.  

We now investigate the linear stability of the steady state (u, v) = (b, 1 - b), 
and we will assume that  0 < b < 1 th roughout  the remainder  of this paper. 
Setting u = b + ~, v = 1 - b + ~ in (1.1), neglecting higher order  terms in 
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and ff and following the Laplace transform method just described, the 
eigenvalue equation this time turns out to be 

f ( s ; a , k  2) - (s - ab + (1 + ct)baq(s,k 2) + Dk2)(s + k 2) 

+ ab(1 - b) = 0 .  (2.3) 

The roots of this equation occur in complex conjugate pairs. This fact is easily 
proved, in view of hypothesis (H3) of G. We present two theorems concerning 
the linear stability of (b, 1 - b) for general kernels G(x, t). It is convenient to 
introduce the quantity 

T=fRffitG(x,t)dt&. (2.4) 

which measures the strength of the response delay described by the kernel G. 
The proof of the following theorem uses a method which is a modified version 
of one used by Cushing (1977) to investigate the eigenvalue equations arising 
from the linearisation of spatially uniform systems. 

Theorem 2.1. For any given k 2 the steady state (b, 1 - b) of(l.1) is linearly 
stable when 

1 Dk 2 

< --i  + 2--g 
In particular it is linearly stable to perturbations of  arbitrary wave number if  
c~ < - 1/2. 

Proof  Let k 2 __> 0 be fixed. We wish to show that the eigenvalue equation (2.3) 
has no roots with Re s > 0. First note that ~q(s, k z) is analytic for Re s > 0. We 
denote by a(R) the boundary of the semicircle Re z > 0, Izl = e and let Ol(R) 
be the circular part Rez > 0 and c~2(R) = {z = iy, - R  < y < R} so that 
0(R) = 01(R)u 02(R). The Argument Principle implies, provided 

f (z ;  ~,k 2) q= 0 when Rez = 0 (2.5) 

that the number of roots off(z;  e, k 2) inside O(R) is 

1 ~ f'(z;c~,k 2). 
= --_.-7.......-~_2, az = I I(R) + I2(R) v(R) ~ i  JO(R) f(z;  o~, k ) 

where prime denotes differentiation with respect to z and 

I j (R)=  1 ( f'(z;ct, kZ)d z 
2rc--~ J0'(R)f(z; ~--~, k2---) ' j = 1, 2 .  

The number of roots with Rez > 0 is v(oo) = limR-,~ov(R) and we wish of 
course to show that this is zero. The fact that (2.5) is satisfied will become clear 
later in the proof. We first prove that limR-+ J d R )  = 1 and to do this we need 
some estimates. We introduce the function 

2 + (1 + ,)bH'(z,  k 2) 
h(z) = 

Z 
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If we write ~b(z) = - ab + (1 + e)bH(z, k 2) + Dk 2, a calculation yields that  

f '  (z; a, k 2) 
- -  - -  h ( z )  = 

f (z; o~, k 2) 

z[  -- ~(z) -- k 2 - ~(z)(1 + a)bH'(z, k2)] - [(2 + (1 + oObtT(z, k2))(dp(z)k 2 + ab(1 - b))] 
z(z 2 + E~b(z) + kZ]z + E4~(z)k 2 + ab(1 - b)]) 

(2.6) 

Next  no te  tha t  

H ' ( z , k  2) = - -  t G ( x , t )  e - Z t e - i k ' x d t d x  
n 

so it follows that  I/-7'(z, k2)l < r when Rez  > 0. This and proper ty  (iii) of 
/ t  imply that  the square bracketed quantities in expression (2.6) are all 
bounded  for Re z => 0; let M > 0 be sufficiently large as to serve as an upper  
bound  for the absolute values of all these quantities. Then for z ~ 01(R), 

f ' ( z ; s k 2 )  h(z) (R + 1)M 
f (z;  o~, k 2) < R(R  2 -- R M  -- M) 

Next  we need another  estimate. No te  that  

'flV(Re'°'k2)' <= f .  f ;  tG(x,t) e-(Rc°s°)t 

and therefore 

f.;o fo [H'(Rei°,k2)[ dO ~ 2 tG(x,t)  e-(Rc°s°)tdOdtdx 
U-  ~r/2 " - ~/2 

f.;o 'ji <= 2 tG(x, t) e-2Rt°/"dOdtdx 
R 

 ;,fo g = ~  , G(x,t)(1-e-R')dtdx<= . 

Here  we have used Jordans  inequali ty s in0 _>__ 20/Ir, valid for 0 e  [0,½n]. 
Having obta ined  these estimates we now have 

I I , ( R ) - 1 1  = 2-~i r ft(z;o~'k2) l fo 2 - - -7_-_-~dz -- - -  - dz 
ja,(R)f(z;a,k ) 21ri I(R) Z 

= ~ _ ~  [- ( f_ , (z ;o~,k  2) - ,  2 
J 0 , ( R ) \ f - ~ - ~  h(z ) )dz  + ( l  fo, .)I-I ) dz 
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r ) = 2 x \ R 2 _ R M _  M t- 11 + ~[b d-n/2 [-O'(Rei°'k2)ldO 

< 1 (  r c ( R + l ) M _ _  [ l + ~ [ b r c )  
= 2 ~ , R ~ - - - R - - ~ - - T U +  - -  - , 0  a s R - ~  oo . 

This shows that  11(oo) = 1. 
Next we look at I2(R) for large R. We have 

1 ~-Rf'(iy;e, k2). ,  0 
Butf( iR;a,k 2) = f (  -- iR;a,k 2) so, using the principal branch largzl < rc of 
the logarithm, 

I2(R) = ~ (a rg f (  - JR; a, k 2) - argf (iR; a, k2)) 

= - 1/~ argf(ie; c~, k 2) 

so we need to know what  argf(iR;a,k 2) tends to as R ~ 00. Note that  
H(iR, k 2) = C(R) - iS(R) where 

C ( R ) =  fro f ;  G(x, t )cosRtcosk.xdtdx,  

S ( R ) =  fw f o  G(x,t)sinRtcos k . x  dtdx . 

Clearly IC(R)I _-< 1 and IS(R)I _-< 1 for all R > 0. Now 

Re f(iR; ~, k 2) = - R 2 + (1 + ~)bRS(R) 

+ k2( - ctb + (1 + ~) bC(R) + Dk 2) + ab(1-b) 

Imf(ig; ~, k 2) = gb( - ~ + (1 + ~)C(R)) + k2((D + 1)g - (1 + ~)bS(g)) 

so it is clear that  when R is large, 

Ref(iR; a, k 2) ,-~ - R 2 , 
(2.7) 

I lmf(iR; ~, k2)l < const. R . 

The second of (2.7) in fact holds for all R because, using the inequality 
Isinxl < Ixl, it is easily seen that  IS(R)I < RT for all R. Now, the assumption 

< - ½ + Dk2/2b may be written 

I1 +c~l < - c t + - -  

and consequently f(0;  c~, k 2) > 0 since 

Dk 2 

b 

f(O; ct, k 2) = k2( - ab + (1 + a)bC(O) + Dk 2) + ab(1 - b) 

> k 2 b ( - - c ~ - , l  +c~ I + - ~ ) +  a b ( 1 - b ) >  0 .  
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This fact, together with the asymptotic behaviour of f ( iR;~,k  2) given 
by (2.7), imply that as R ~ oo, argf(iR;a,k 2) tends to an odd multiple 
of 7r, say argf(ioo;~,k 2) = (1 - 2m)lr for some rneZ. Then 12(o0) = 2m - 1 
and the number of roots in the right half complex plane is 
v(oo) = 11(o0) + 12(oo) = 2m so m > 0 and we must show that in fact m = 0, 
i.e., that  argf(ioo; ~, k 2) = re. Geometrically, m > 2 would correspond to a situ- 
ation where as R ranges from 0 to oo the graph off(JR; ~, k 2) "winds around" 
the origin (in the clockwise sense) before permanently entering the left half of 
the complex plane, and m = 1 simply means that the graph passes underneath 
the origin rather than over it. Therefore a sufficient condition to ensure that 
argf(ioo; ~, k 2) = / Z  is that Imf(iR; ~, k 2) > 0 when Ref(iR; a, k 2) = 0 (or, geo- 
metrically, that the graph of f(iR;ct, k 2) does not cross over the negative 
imaginary axis). Now when Ref(iR;ct, k 2) = 0, 

R(R - (1 + a)bS(R)) = k2( - ab + (1 + cObC(R ) + Dk 2) + ab(1 - b) . 

Also R > 0 at such points, since f(0; a, k 2) > 0. Hence when Ref(iR; a, k z) = 0 
we have 

Im f(iR; a,k 2) = Rb( - ~ + (1 + a)C(R)) + k2DR 

k 2 
+ -~ (k2( - ab + (1 + a)bC(R) + DK z) + ab(1 - b)) 

>= (Rb  + ~ ) (  - cc + (l + a)C(R) + - ~ - )  

> ( R b + ~ ) ( - c c - , l + a l + - D ~ )  

> 0  since - a - l l + a l + D k 2 / b > 0  

as desired. It is also clear now that (2.5) is verified. The proof of the theorem is 
complete. Next, we have the following instability result: 

Theorem 2.2 The steady state (b, 1 -  b) of (1.1) is linearly unstable for a 
sufficiently large and positive. 

The proof of this result is given in Gourley (1993) and will not be reproduced 
in detail here, except to note certain points. The c a s e s  k 2 :]: 0 and k 2 = 0 are 
actually considered separately. When k 2 4= 0 we have that for a sufficiently 
large there are an odd number of real positive roots (counting multiplicity) of 
f = 0. Since the roots are either real or in complex conjugate pairs it follows 
that there are an odd number of roots of positive real part, and therefore that 
as a is increased at least one of these roots must have crossed the imaginary 
axis through the origin. When k 2 = 0, s = 0 cannot be a root of the eigenvalue 
equation, but when a is increased to a value sufficiently large there are at least 
two roots of positive real part.  These must have crossed the imaginary axis as 
a pair of complex conjugates. 
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From Theorems 2.1 and 2.2 we know that as a increases from any value 
less than - ½  to a value sufficiently large, certain roots of the eigenvalue 
equation f =  0 cross the imaginary axis. Crossings may occur either through 
the origin or as pairs of complex conjugate roots, and we indicate how to 
sketch a stability diagram in the (cq k z) plane for the steady state (b, 1 - b). We 
can explicitly calculate the locus of points in this plane such that f = 0 has 
a root s = 0. From (2.3), this locus is given by 

ab(1 - b) + bk2H(O,k  2) + Dk" 

a = bk2(1 -/- /(0,  k2)) 

This expression tends to infinity as k 2 ~  0 and asymptotes to Dk2/b as 
k 2 ~ ~ .  It is not in general possible to find an explicit expression for the locus 
Re s = 0, that is, the set of points in the (a, k 2) plane such t h a t f  = 0 has purely 
imaginary roots. Explicit expressions for this locus are obtainable in certain 
special cases, but for the general case all we can do is attempt a rough sketch of 
the locus by considering limiting cases. We know that when k 2 = 0, s = 0 is 
never a root o f f  = 0 and so as a increases roots cross the imaginary axis as 
pairs of complex conjugates. Hence the locus Re s = 0 meets the a-axis (at 
a value a*, say). As k 2 ~ ~ some information can be gained by carrying out 
a rather heavy piece of asymptotic analysis, the full details of which are given 
in Gourley (1993). From Britton (1990) we have that as k 2 ~  o% in n 
dimensions, 

~(s, k s ) -  r(n/E)k~ Gn(s) + o -~ (2.8) 

where 
Gn(s)= lim G,(r,s)r  n-1 (2.9) 

r ~ 0 +  

and the bar denotes Laplace transform. Note that Gn(0) < 0 and G'n(0) > 0. 
We may approximate the eigenvaluc equation (2.3) by an equation of poly- 
nomial type if we approximate Gn(s) using a Pad6 approximant. If the simplest 
approximation of this type: 

Gn(0) 
Gn(s) ~ 1 - ( G'n(O)/Gn(O) )s (2.10) 

is used, then with (2.8) and (2.10) the eigenvalue equation (2.3) may be 
approximated by the cubic equation 

an(o)  + 1 + G - - - ~ t a o  - (D + 1)k 2) s 2 + k 2 1 + G - - - ~ t a o  - Dk 2) 

-- ab + Dk  2 2(1 + a)b~ n/2 G.(0) -- ab(1 - bl G'(O)l s 
r (n/2) 1, 2 " Gn (0)J 

+ a b ( l _ b ) + k 2 ( _ a b + D k  2 2(lr(n/2)k 2+a)bnn/2Gn(O))=O . (2.11) 
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k 2 

0 

(i) 

S=0 

stable e 

* 
t 

R - i t e s  

k 2¸ 
(ii) ~ = o  

stable unstable 

Re s l / i ~ , ~  
u~stable 

Fig. 1. Stability diagrams for the steady state solution (u, v) = (b, 1 - b). Diagram (i) occurs 
when 2Dn"/2G,/(O)/F(n/2) < 1 and diagram (ii) occurs otherwise 

We can then apply the standard conditions for a cubic equation to have 
purely imaginary roots. The analysis is particularly awkward, but the con- 
clusion is that if 2Dg n/2 G'n(O)/F(n/2) > 1 then for k 2 sufficiently large the root  
locus Re s = 0 exists and is to the left of the locus s = 0 (in the (cq k 2) plane). If 
2Dn n/2 G'n(O)/F(n/2) < 1 then the root  locus Re s = 0 does not exist when k 2 is 
large. However, we know it exists for k 2 sufficiently small, so we can only 
conclude that it must meet the locus s = 0 and then cease to exist. Let e** be 
the value of e at which the locus Re s = 0 ceases to exist. The stability 
diagrams for the two cases are shown in Fig. 1 and are qualitatively similar to 
those in Britton (1990). 

Our analysis suggests that if we focus attention on a certain particular 
wave number k (i.e. if we fix a wave vector k and only consider stability to 
perturbations of that particular wave vector) then, regarding e as bifurcation 
parameter, we should get a bifurcation at a simple eigenvalue to steady 
spatially periodic solutions, and a Hopf  bifurcation to solutions which are 
spatially and temporally periodic. We will return to the general case in § 4 to 
confirm that these bifurcations occur and construct the bifurcating solutions 
using perturbation methods. 

3 Some special kernels 

We consider the system (1.1) with certain particular kernel functions G. In 
each case we examine in detail the linear stability of (b, 1 - b) and some of the 
bifurcations that occur from this steady state, with c~ as bifurcation parameter. 
Some of the kernels are such that the integro-differential system (1.1) can be 
re-written as a system which is purely differential but of higher order. In these 
cases the eigenvalue equations may be re-written as polynomial equations, 
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which may then be analysed using the Routh-Hurwitz criterion, yielding both 
necessary and sufficient conditions for stability. 

Some of the kernels do not satisfy hypothesis (H1), but the analysis of this 
section is self contained. In § 4, when we consider bifurcations for general 
kernels G, we will always assume that the kernels are genuinely spatio- 
temporal, i.e., that they satisfy (HI). 

3.1 A limiting case 

By taking G(x, t) = 6(x)6(t) we eliminate nonlocal effects from (1.1) and the 
system reduces to (1.5). In this case H(s, k 2) = 1 and the eigenvalue equation 
(2.3) becomes 

f(s; ~, k 2) =- (s + b + Dk2)(s + k 2) + ab(1 - b) = O. 

For every k 2 > 0 the roots of this equation both have negative real part so the 
steady state (u, v) = (b, 1 - b) is stable. That is, in the purely local case our 
model does not exhibit diffusion-driven (Turing) instability. Hence the spa- 
tially structured solutions which exist in other cases are brought about by the 
nonlocal term G ** u or by the interaction of this term with the aggregation 
term ~u, but certainly not by diffusion alone. 

3.2 A purely temporal kernel 

A purely temporal kernel is one of the form G(x , t )=6(x )g ( t )  where 
9 e L l ( O ,  oo) and ~og(s)ds = 1. For such a kernel G**u  degenerates to the 
purely temporal convolution ~t_o~g(t-s)u(x ,s)ds .  We consider the case 
which is simplest to deal with mathematically: 

G(x, t) = 6(x) Oe -°' (3.1) 

where 0 >0 .  Then H(s,k z) = 0/(0 + s )  and the eigenvalue equation 
f(s;  ~, k z) = 0 determining stability of (b, 1 - b) can be rewritten as a cubic 
equation 

f*(s;o~,k 2) = s 3 + [0 -- ~b + (D + 1)k2]s 2 

+ [Ob + ab(1 - b) + k2((D + 1)0 - ~b + Dk2)]s 

+ [Oab(1 - b) + Ok2(b + Dk2)] = 0 .  (3.2) 

Using the Routh Hurwitz criterion, we can show (Gourley 1993) that if 

02 
< (3.3) 

b(O + a(1 - b)) 

then for every k 2 ~ 0 the roots of (3.2) all lie in the left half complex plane. 
Thus if (3.3) holds the steady state (b, 1 - b) is linearly stable. 

An obvious interpretation of condition (3.3) is that if the tendency of the 
prey species to aggregate is insufficiently great then aggregation cannot occur. 
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However an alternative way to view this condition would be to note that for 
any fixed ~ it holds when 0 is sufficiently large. Now as 0 increases, values of 
u in the past become progressively less important  in their contribution to the 
average G ** u at time t (see the expression (3.4) below) so that large 0 implies 
a "weak" delay. Thus for the kernel of the present section if the delay effect is 
weak the steady state (b, 1 - b) remains 'stable. This is consistent with the 
usual observation, in spatially uniform systems, that delays are not destabilis- 
ing unless they are in some sense significant (Cushing 1977). Note also that if 

= 0 then the steady state is stable for all 0 > 0. 
We investigate two bifurcations which can occur from (b, 1 - b) as ct is 

increased beyond the value in (3.3). Note that s = 0 is never a root of (3.2) (it 
cannot be a root  of the eigenvalue equation corresponding to any  purely 
temporal kernel), so we do not have bifurcation to periodic s teady  solutions. 
With the kernel (3.1) we let w denote the term G** u in (1.1) so that 

w(x,t) = f_= Oe-°( t -S)u(x ,s )ds .  (3.4) 

Differentiating (3.4) shows that wt = O(u - w). The integro-differential system 
may therefore be replaced by the system 

ut = u(1 + ~u - (1 + ~)w) - uv + DAu  

v~ = av(u --  b) + Av  (3.5) 

w, = O(u - w). 

It is not clear at this stage that the two systems are entirely equivalent since, in 
general, the third equation of (3.5) will, for a given u, have other solutions 
besides (3.4). However, in the classes of functions within which we work there 
is no such difficulty and the only solution of the third equation of (3.5) is given 
by the expression (3.4), as will be explained later. 

We start by seeking periodic standing wave solutions of (3.5), by fixing 
k and looking for solutions which are 27r-periodic in ~ = k. x and periodic in t. 
We write 

u(x ,  t) = a ( k . x ,  t) = a (  ~, t) 

and similarly for v and w. After dropping the hats the system becomes 

ut = u(1 + 0~u - (1 + ~)w) - uv + Dk2u¢¢ 

vt = av(u --  b) + k2v¢¢ (3.6) 

w, = O(u - w) 

for ~ ~ (0, 270 with periodic boundary conditions at 4 = 0 and 4 = 2re. Note 
that this problem is invariant under the transformation 4 ~ - 4; this means 
the eigenvalue of the linearised problem has multiplicity two (c.f. Britton 
(1990)). However we may overcome this problem as Britton did by restricting 
attention to solutions which are 2zt-periodic and symmetr ic  in 4; this is 
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equivalent to looking for solutions on (0, n) which satisfy the homogeneous 
Neumann boundary conditions 

u d 0 ,  t) = re(0, t) = w d 0 ,  t) = 0 
(3.7) 

u~(~, t) = v d ~ ,  t) = w d ~ ,  t) = 0 . 

Solutions satisfying (3.7) may be extended to an even function on ( - n, re) and 
then periodically over all of R (although for purely temporal kernels G** u 
involves values of u only at the point ~ itself so here we can actually consider 
the system for ~ ~ (0, n) only). 

The boundary conditions (3.7) ensure periodicity in space, and we antici- 
pate time periodicity arising via a Hopf bifurcation in an appropriate space of 
functions satisfying (3.7). Linearising the system about (u, v, w) = (b, 1 - b, b) 
by setting u = b + a, v = 1 - b + f and w = b + ~, the linearised system has 
solutions of the form (a, f, ~) = e~X(~) when 

d2 - b - (1 + c0b / 
~zb + Dk2-d~ d 2 

LX = a(1 : b) k 2 X = s X  (3.8) 

with boundary conditions X¢(0) = Xe(n) = 0. Setting X(0 = c cos 4, with 
c a constant vector, we find that the eigenvalues s of the linear operator 
L satisfy f * ( s ;~ , k  2) = 0 where f *  is .the eigenvalue function (3.2). Purely 
imaginary roots of this equation occur only when 

= ~o(k  ~) 

= 1 [.2k2( 0 + Dk2) + k4 + O(b + Dk 2) + ab(1 - b) - ~ ]  (3.9) 
2bk 2 

where 

A(k 2) = 02(b + Dk2) 2 + (k'* - ab(1 - b)) 2 + 20(b + Dk2)(ab(1 - b) 

+ k 4) + 4k2Oab(1 - b).  (3.10) 

Expression (3.9) therefore gives the locus Re s = 0 in the (~, k 2) plane. The 
corresponding stability diagram for the steady state (b, 1 - b )  is shown in 
Fig. 2. 

It is shown in Gourley (1993) that the value ~ = ~o(k 2) given by (3.9) is 
indeed a Hopf bifurcation point. The calculations are of a fairly standard 
nature but involve a great deal of algebra. We conclude that the system (3.6) 
admits solutions periodic in space and time (i.e. standing waves) and we now 
confirm that, as far as these solutions are concerned, the systems (3.6) and (1.1) 
(with this G) are equivalent. In other words, we show that if (u*, v*, w*) is 
a periodic (in time) solution of (3.6) then w* is necessarily equal to 
S t_ ~0e-0(t-~)u*(~, s) ds. Now the third equation of (3.6) is linear, and this means 
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••• ~hl e s=0 

e, 
02fo(0 +a(1-b)) o~ 

Fig. 2. Stability diagram for the steady state solution (b, 1 - b) for the system of § 3.2 

we may write down its general solution as the sum of the particular integral 
(3.4) and a complementary function: 

= ~t Oe-°'t-~'u*(~,s) ds + A(O e - ° ' .  (3.11) w*(~ t) 
j -  o o  

However if u* and w* are periodic in time, with period T, say, then it is 
straightforward to see that the first term in the RHS of(3.11) is also periodic in 
time with period T. The last term, however, will be non-periodic unless 
A(~) = 0. Thus the systems (3.6) and (1.1) are indeed equivalent. 

In § 4 we show how to construct asymptotic expressions for standing wave 
solutions of (1.1) with general G. 

Another bifurcation that occurs in system (3.5) is a Hopf bifurcation to 
periodic travelling wave solutions. Letting z = k . x  + ct where k is a unit 
vector the equations in travelling wave form are 

cu' = u(1 + au -- (1 + ~)w) - uv + Du"  

cv' = av(u -- b) + v" (3.12) 

cw'  = O(u - w) 

where prime denotes differentiation with respect to z. This is a system of 
ordinary differential equations of order five. It is again easy to show that if 
(u, v, w) is a periodic solution of (3.12) then it follows that 

w(z) = f o  Oe-°Su(z cs) ds , 

the desired solution (expressed as a function of z) of the third equa- 
tion of (3.12). So, as far as periodic travelling waves are concerned, the 
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0 0~/b( 0 +a(1-b)) 

Fig. 3. Bifurcation curve in (a, c) parameter space for periodic travelling wave solutions for 
the system of § 3.2 

integro-differential system and (3.12) are equivalent. If the system (3.12) is 
linearised about  (u, v, w) = (b, 1 - b, b), the linearised system has non-trivial 
solutions propor t iona l  to e ~z if and only if 

Dcs  5 + (DO -- (D + 1 ) c 2 ) s  4 -I- (c  3 - -  (D + 1) Oc + otbc)s 3 

+ (c2(0 -- eb) - bO)s z + (cbO + cab(1 - b))s + Oab(1 - b) = O. (3.13) 

Purely  imaginary roots  s = i0) of (3.13) cannot  occur if c = 0 (as expec- 
ted, since otherwise this would suggest bifurcation to a spatially periodic 
steady solution, and we know this cannot  happen for a purely temporal  
kernel), but  for c 4= 0 they occur for values of e and c on the curve given 
parametr ical ly by 

o~(0)2) = 2_~O 2 [20)2(0 + D0)2) + 0)4 + O(b + Do) 2) 

+ ab(1 - b) - V/~coz)] , (3.14) 

(3.15) 

for 0) 2 > 0, where A is the function defined by (3.10). This curve is shown in 
Fig. 3. 

A Hopf  bifurcation to periodic solutions occurs as this curve is crossed in 
the (cq c) plane. This is a H o p f  bifurcation in R 5, but  the condit ions can all be 
checked analytically and they hold everywhere on the curve. It follows that  
there are periodic travelling wave solutions of the system (3.12), and hence of 
the original integro-differential system. 
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3.3 A purely spatial kernel 

A purely spatial kernel is one of the form G(x,t)= g(x)f(t) where 
geLI(R ") and SR.g(x)dx= 1. For  such a kernel G**u degenerates to 
SR, g(x - y)u(y, t) dy. We will work in one space dimension and consider the 
particular case 

1 G(x, t) = ~ 2e-~lxlh(t) (3.16) 

where 2 > 0. For  this kernel H(s, k 2) = 22/(22 + k 2) and the eigenvalue equa- 
tion determining stability of (b, ! - b) can be put in the form 

( b22-°:bk2"~ J , -22--b-~ ) 
s 2+  ( D + l ) k 2 +  i s + k !  +Dk 2 

+ ab(1 - b) = 0 .  (3.17) 

This has a root  s = 0 when 

Dk 2 D22 2 2 + a ( 1 - b )  2 2 a ( 1 - b )  
= --b-- + --if- + k 2 + k" (3.18) 

and purely imaginary roots when 

(D + 1)k 2 (D + 1)22 22 
a -- b + b + ~-~ (3.19) 

provided that 

2 fb22_f2~__~-- °~bk2 ) k ~- +Dk 2~+ab(1-b)>O 

i.e., provided that 

k 2 < x/ab(1 - b). (3.20) 

Hence non-stationary solutions can only bifurcate from (b, 1 - b) for suffi- 
ciently small wave numbers satisfying (3.20). The stability diagram is shown in 
Fig. 4. We have illustrated the situation when 2 2 ~ (O + 1)a(1 - b); if this is 
not the case it simply means that the locus Re s = 0 is everywhere to the right 
of the line ~ -- ~**. 

Note that purely imaginary eigenvalues cannot occur when k 2 = 0. In- 
deed, for a purely spatial kernel, spatially uniform oscillations would have to 
be governed by the nondelay system of § 3.1, which does not exhibit bifurca- 
tions from the steady state (b, 1 - b). There is thus a significant qualitative 
difference between this particular case and the general spatio-temporal case of 
Fig. 1. Clearly there is a number ac > 0 such that when a < ~c the steady state 
is linearly stable. It is easy to see that the number 

~c 22 ~ D22 (3.21) 
= ~ / v  + - - b -  
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k z 

stable ~ ~  

1 

Fig. 4. Stability diagram for the steady state solution (b, 1 - b) for the system of§3.3 when 
22 < (D + 1)a(1 - b) 

will do, and although it is not the best possible such number it is adequate 
to illustrate certain points. For  example, aggregation is not possible if 
the tendency to aggregate is too insignificant. But note also that for any 
fixed value of e we can have e < ctc by taking 2 sufficiently large. For  the kernel 
of this section the parameter 2 is a measure of how localised the average G ** u 
of u is, and for large 2 this average (at a point (x, t)) is strongly weighted 
towards values of u near to the point x itself. In fact as 2 -o o% G tends 
to a product  of delta functions and the system reduces to that of § 3.1. Thus 
aggregation will not occur if the average is too localised; that is if the inhibitive 
effect of crowding of the prey species is sufficiently short-range (cf. Britton 
(1989)). The integro-differential equation (1.1) with this G can be analysed by 
defining 

w(x , t )  = f~_ ~ ½ 2 e - ~ l x - y l u ( y , t ) d y .  (3.22) 

Then, differentiating twice, wxx = - 2 2 ( u -  w) and the equation may be 
replaced by the system 

ut = u(1 + au - (1 + a)w) - uv + Duxx 

vz = av(u - b) + Vxx (3.23) 

0 = 2Z(u - w) + w ~ .  
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For  solutions periodic in x this system is equivalent to the original integro- 
differential system since the general solution of the third equation of (3.23) is 

w ( x , t ) =  ~ o  ½ 2e-a lx -Y lu (y , t )dy  + A ( t ) c o s h 2 x  + B( t ) s inh2x  
d - -  

so if u and w are periodic in x with the same period then the first term in the 
above is also periodic in x with this period and it follows that A(t) = B(t) = O. 

We analyse (3.23) using similar ideas to those of the previous section. We 
fix k and seek solutions of the form u(x, t) = ~(kx, t) = ~(~, t) (similarly for 
v and w) which are 2zr-periodic and symmetric in 4, i.e., which satisfy homo- 
geneous Neumann boundary conditions at ~ = 0 and ~ = n. In this set-up, 
bifurcation at a zero eigenvalue (i.e. s = 0) occurs at the value a = ao(k 2) given 
by (3.18), and a Hopf  bifurcation occurs at (3.19). The detailed calculations are 
all given in Gourley (1993). Thus, with this kernel, the integro-differential 
equation admits stationary spatially periodic solutions and periodic standing 
wave solutions. 

It also admits periodic travelling wave solutions, arising via Hopf bifurca- 
tion. In travelling wave form, with z = x + ct, the system reads 

cu' = u(1 + c~u - (1 + cow ) -- uv + Du" 

cv' = av(u -- b) + v" (3.24) 

0 = 22(u - w) + w", 

a system of order six. The Hopf  bifurcation occurs as we cross the curve 

a (092)_(D+1)09  2 ( D + 1 ) 2  2 2 2 

b + b +~-~ 
for 092 ~ [0, (ab(1 - -  b))  1 /2]  (3.25) 

C(092) = ~/ab(1 -092b) - o9 4 

which is sketched in Fig. 5. 

~** 
0 a 

Fig. 5. Bifurcation curve in (a, c) parameter space for periodic travelling wave solutions for 
the system of § 3.3 
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It is worth noting that when Britton used a purely spatial kernel 
in his single species model, bifurcations to standing wave and travelling 
wave solutions did not occur. The eigenvalue equation there was linear 
so could not have purely imaginary roots, whereas here the equation is 
quadratic. 

3 . 4  T h e  g e n e r a l  e x p o n e n t i a l  c a s e  

Again we work in one spatial dimension and take 

G ( x ,  t) = ½ 2e - Xlxl 0e -° ' .  (3.26) 

This kernel tends to the purely temporal kernel of § 3.2 when 2 --* oo, and to 
the purely spatial kernel of§ 3.3 when 0 ~ oo. For finite (positive) 2 and 0 this 
kernel satisfies all the hypotheses on G of § 1. 

The s = 0 root locus in the (e, k 2) plane for this kernel is given by 

D k  2 D22 22 + a(1  - b) 22a(1  - b) 
c~ = T + --if- -~ k 2 + k '  (3.27) 

as in the case of the purely spatial kernel of§ 3.3. Regarding the locus Re s = 0, 
we can show (Gourley 1993) that if 0 < D22 then this locus exists for all 
k 2 > 0, whereas if 0 > D22 then the locus exists only as long as k 2 < k~ where 
k 2 is the positive root of the quadratic equation 

Q ( x )  - (0  - D22)x 2 - b 2 2 x  - (22 + O)ab(1  - b) = O . 

It may be shown analytically that although the Re s = 0 root locus meets 
the c~-axis at the same value as for the purely temporal kernel of § 3.2, when 
2 is very small its qualitative behaviour is different (see Fig. 6), showing 
that instability sets in earlier when there is a significant (i.e. 2 small) amount 
of spatial averaging. On the other hand as 2--. oe, so the spatial averaging 
becomes more and more localised, the locus s = 0 goes to + oo and the 
locus Re s = 0 tends to the corresponding one for the purely temporal 
case (Fig. 2) so that for all 2 sufficiently large the condition 
ct < 02/b(O q- a(1 - b)) is once again a necessary and sufficient condition for 
stability of (b, 1 - b). 

For the kernel of this section the rough diagrams in Fig. 1 will 
apply (diagram (i) when 0 > D 2 2  and diagram (ii) when 0<D22) ,  
but when 2 is very small the situation is more accurately described by 
Fig. 6. 

Since the kernel of the present section satisfies all the hypotheses of § 1, the 
bifurcation analysis for general kernels presented in § 4 applies. The system 
(1.1) will have steady spatially periodic solutions, standing waves and periodic 
travelling wave solutions. 
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k 2 

0 

s=0 

stable e 
~ unstabl 

stable I 
"x,~e s=0 

02/b(O+a(1-b)) ct 

Fig. 6. Stability diagram for the steady state solution (b, 1 - b) for the system of § 3.4 when 
2 is sufficiently small 

3.5 The s imples t  kerne l  based  on a random walk  

The kernel given by (1.4), with w a simple exponential, reads 

1 
G(x,  t) = (4~Dt)n/2 exp -- ~-~ 0e -°' . 

For this kernel the eigenvalue equation f ( s ;  c~, k 2) = 0 can again be put into 
the form of a cubic equation in s. In the (c~, k a) plane the locus Re s = 0 exists 
when, and only when, k 2 is less than the (unique) positive root of the cubic 
equation 

D 2 1 
C(x)  = - -  x a - - - ( b O  + Da ab(1 - b ) ) x  - Oab(1 - b) = 0 .  

D + I  D + I  

Thus for this kernel the stability diagram for the steady state (b, 1 - b) is as in 
Fig. 1, diagram (i). Again the hypotheses on G of § 1 are all satisfied so the 
bifurcation analysis for general kernels in § 4 applies. There are steady spa- 
tially periodic solutions and, for k z sufficiently small, standing waves and 
periodic travelling waves. 

3.6 De lay  induced instabil i ty 

In all of the particular kernels considered so far, instability of the steady state 
(b, 1 - b) has set in for strictly posi t ive  values of c~, the steady state being 
linearly stable when e = 0. In this section we show that, by choosing the 
kernel G suitably, it is possible for instability to occur even when e = 0. We 
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consider the case 

1 ( Ixl2~a(t - T) (3.28) 
G(x, t) = (4nDt),/2 exp - 4Dt J 

where T > 0. With this kernel the nonlocal term in (1.1) becomes 

(G** u)(x, t) = , (4riD-T),/2 exp - 4 - ~  J u(y, t - T ) d y  

so the system (1.1) becomes one with a f ixed time delay T. For  this kernel, 
~q(s, k z) = e-Sre  -Dk2r and the eigenvalue equation determining stability of 
(b, 1 - b) is 
f(s;~, k 2, T) = (s -- ~b + (1 + ~)be-STe -ok2T q- Dk2)(s + k 2) -]- ab(1 - b) = O. 

As we are interested in instability with ~ = 0 we shall take c~ = 0 in the 
remainder of this section and think of the delay T as bifurcation parameter. 
Note  that  in this case s = 0 cannot  be a root of the eigenvalue equation, so 
instability can only set in (as T is varied) by two complex conjugate eigen- 
values crossing the imaginary axis. 

Let 11 be the positive root  of the quadratic equation 

QI(X) = x 2 - bx - ab(1 - b) = O . 

Then a direct calculation shows that 

f 11i;0,0, = 0 (3.29) 

so we expect that a bifurcation to spatially uniform temporally periodic 
solutions should occur at T = n/211. If a stability diagram were plotted in the 
(T, k 2) plane the point (n/211, 0) would be on the locus Re s = 0. It  is in fact 
very easy to show that the spatially uniform mode is linearly stable for all 
T < n/211, but rather less easy to analyse the eigenvalue equation when k 2 + 0. 
However, we have the following theorem which in particular concerns the 
k 2 ~e 0 case. 

Theorem 3.1 Let  
7~ 

T < - - .  
211 

Then the steady state (b, 1 - b) is linearly stable to perturbations of arbitrary 
wave number. 

Proof The method of proof  we employ is similar to the method used in the 
proof  of Theorem 2.1 (though the present theorem is not a special case of that 
theorem). We should point out that the kernel G of this section is, strictly 
speaking, not in L 1 (R" x (0, oo )) owing to the presence of a delta function. 
However  H(s, k 2) still satisfies properties (i)-(v) listed in § 2 and property (vi) of 
that section is not used in the proof  of Theorem 2.1. Referring back to the 
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proof of that theorem we have, for any fixed k 2, that the number of roots of 
f(s; 0, k 2, T) = 0 with Re s > 0 is 

l i m ( 1  larg  f(iR;O, k2, T ) )  

(The condition on c~ stated in the hypotheses of Theorem 2.1 is not used in this 
part of the proof). For  stability we want to prove that arg f(ioo; O, k 2, T) = ~. 
Now 

Re f(iR;O, k 2, T) = - -  R 2 + b R e - m 2 T s i n R T  

+ k2(be-m2TcosRT + Dk 2) + ab(1 - b) 

Im f(iR;O, k 2, T)  = Rbe-°k2TcosRT + k2((D + 1)R - be-Dk2rsinRT) 

SO that Ref(iR;O, k2, T)  ,.~ - R  2 as R ~  oe and Ilmf(iR;O, k2, T)l < 
const. R for all R. 

Moreover f(0;0, k 2, T) > ab(1 - b) > 0 for any k 2. Hence, by consider- 
ing the graph of f(iR;O, k 2, T) in the complex plane as R ranges from 0 to 
infinity it is clear that if we can show Imf( iR;O,k  2, T ) > 0  when 
Ref ( iR;O,k  2, T ) = 0  then it will follow that arg f ( iR;O,k  2, T ) ~ T z  as 
R--. 00. 

When Re f(iR;O, k 2, T) = 0 we have 

Im f ( iR;O,k  2, T) = R +- f f  (be-°k2TcosRr  + D k  2) +-~-ab(1 - b )  (3.30) 

(note that R cannot be zero when Re f ( iR;O,k  2, T ) = 0 ,  since 
f(0; 0, k 2, T) > 0). To show that expression (3.30) is positive it suffices to show 
that be-°k2TcosRT + Dk 2 > 0 when Re f(iR;O, k 2, T) = 0. Now when 
Re f(iR;O, k 2, T)  = O, 

k2(be-Dk2rcosRT + Dk 2) = R 2 -- b R e - m ~ r s i n R T  -- ab(1 - b) (3.31) 

so suppose for contradiction that be-Dk~TcosRT + Dk 2 <= 0. Then the right 
hand side of (3.31) is __< 0 and so it follows that 

R 2 - -  b R  - a b ( 1  - b )  < 0 .  

It follows (by considering the quadratic equation that defines/2) that R < #. 
However we also have T < 7z/2# so, multiplying these inequalities we obtain 
R T  < ½re. But in that case cos R T  > 0 which contradicts our assumption that 
be-Dk2rcos R T  + Dk 2 <= O. This completes the proof of the theorem. 

There are certain points worth mentioning that come to light in proving 
this theorem. Note that, whether T satisfies T < rc/2/~ or not, expression (3.30) 
is positive when Dk 2 > be -m2r. The latter is true for all k 2 sufficiently large, 
and for anyfixed k 2 it is true when T is sufficiently large. Thus large values of 
the delay are seen to have a stabilising effect, and bifurcations can only occur 
for k 2 sufficiently small. 
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4 Construction of the bifurcating solutions 

In this section we construct, using perturbation methods, some of the solu- 
tions which bifurcate from the coexistence steady state (b, 1 - b) of the system 
(1.1). We are now studying this system for general G(x, t) satisfying only 
hypotheses (H1)-(H4). Recall that the stability equation for perturbations of 
wave vector k is given by (2.3) and the stability boundaries in the (a, k 2) plane 
are as in Fig. 1. 

We consider here two of the bifurcations, namely bifurcation to steady 
spatially periodic solutions, and Hopf bifurcation to periodic standing waves. 
There is also a Hopf bifurcation to periodic travelling wave solutions. The 
latter is described in Gourley (1993). 

4.1 Bifurcation at a zero eigenvalue 

We consider the bifurcation that occurs in (1.1) when as a is increased a root of 
the eigenvalue equation (2.3) crosses the imaginary axis through the origin. 
Such a crossing always occurs if k 2 ~ 0. When s = 0 is a root of (2.3) the 
linearised equations have solutions proportional to e ~''x, so this suggests that 
we should consider the possibility of a bifurcation of steady spatially periodic 
plane wave solutions from the steady state solution (b, 1 - b). Let k be any 
non-zero vector (which we consider fixed), then we define ~ = k. x and look 
for a solution which is 2n-periodic of the form u(x, t ) =  f f (k .x)= ~(~), 
v(x, t )= f ( k . x ) =  ~(Q. Dropping the hats, the system (1.1) becomes (prime 
denoting differentiation with respect to 4) 

O = u ( l + a u - ( l + ~ ) f R ~ G ( x - y , s ) u ( k ' y ) d s d y ) - u v + D k 2 u " ,  

0 = av(u - b) + k2v '' (4.1) 

with periodic boundary conditions at ~ = 0 and ~ = 2~. Again the system is 
invariant under the transformation ~ ~ - ~  but we may ensure that the 
eigenvalue of the linearised system is simple if we look for solutions symmetric 
in 4. Thus we look for solutions on (0, ~) which satisfy the conditions 

u ' ( 0 )  = u ' ( ~ )  = v'(O) = v ' (~ )  = 0 .  (4 .2 )  

For general kernels the term G** u requires u to be defined on the whole real 
line; a solution on (0, z0 satisfying (4.2) is therefore understood to be extended 
to an even function on ( - re, r0 and then periodically over all of R. 

We can check that an appropriate transversality condition holds as 
s passes through 0. Differentiating (2.3) with respect to a and setting s = 0 
yields 

Os bkZ(1 - H(O, kZ)) 
~-~ = - ab + (1 + a)bH(0, k 2) + kZ(D + 1 + (1 + a)b/~(0, k2)) 
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and since k 2 =1= 0, p roper ty  (v) of H(s, k 2) implies that  the above quant i ty  is 
nonzero  and therefore tha t  the transversality condit ion does indeed hold. We 
now const ruct  the first few terms in the bifurcating solution using a s tandard 
per turba t ion  procedure,  regarding k 2 as fixed and working in a suitable space 
of functions satisfying (4.2) with the inner p roduc t  

[(ul, uz), (vl, vz) ]  = f ~  (Ul(~)~l (0 + u2(~)~z(~)),l~ . 

We seek a solut ion of (4.1) with (4.2) of the form 

( : ) = (  b ) \/2i} \ v 2 }  (4.3, 

= ao + ectl + e2,2 + • • •,  (4.4) 

where 

u'(O) = u'n(rc) = V'n(O) = V'n(rC) = 0, n = 1, 2 , . . . .  (4.5) 

We substi tute (4.3) into (4.1) and equate  powers of ~ up to the third power. If 
we define the l inear opera to r  L by 

) ctob - (1 + ~o)bG** + Dk2d~-- ~ - b 

L= d2 
a(1 -- b) k2d-~5 

where the opera to r  G** is defined by (1.2), then the first three per turbat ion  
equat ions  are 

L(Ul~ = 0  (4.6) 
\ h /  

- elbU2 - ~2bui + elb G**uz + ~2b G**ul  - 2eoulu2 - cqu~' 

L(u3)= d-(l d-~o)u,G**u2 d-~iulG**ul d-(l +~o)u2G**ui 
~/23 -~- //1/22 "}- U2/21 

- a(huz + vzuO 

(4.8) 

Next,  a simple computa t ion  yields the useful formula 

G**cosn~  = H(0,  n2k2)cosn~, n = 0, 1, 2 . . . .  (4.9) 

which we will use in subsequent  calculations. The  non-trivial solution of (4.6) 
with (4.5) is of the form (am) = cos ~ (4.10) 

/)1 a2 
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as long as 

f(0;C(o, k 2) = ( - aob + (1 + C~o)b//(0, k 2) + Dk2)k 2 q- ab(1 - b) = 0 (4.11) 

and in this case either componen t  of (4.6) gives the ratio of al to a2; 
al  k z 

(4.12) 
a2 a(1 - b) 

This is the only solution (up to scalar multiples) of (4.6) provided that  

f(0;C~o, n2k 2) :t: 0 for all integers n > 2 (4.13) 

which we assume to be the case. Then  (4.11) defines eo as a function of k 2, 

eo = •o(k 2) - ab(1 - b) + bk21~(O, k 2) -I- Dk 4 
bk2(1 - / ~ ( 0 ,  k2)) (4.14) 

We claim that  the adjoint  L* of the linear opera tor  L is given by 

~ob - (1 + ao)b G** + Dk2~--~z~2 a(1 - b) 

L* = 
d 2 

- b k 2 ) - ~  

The  p roof  tha t  L*  satisfies the defining proper ty  [Lu, ~] = [u, L ' v ]  of ad- 
joints is fairly rout ine but  involves showing that  

f~ vG**ud~ = f~ uG, , vd~  

for all functions u, v such that  u'(0) = u'(n) = v'(O) = v'(n) = 0. This may  easily 
be seen by expanding u and v in their Four ier  cosine series, evaluating each 
integrand using formula  (4.9) and then using the or thogonal i ty  of the func- 
tions cos n¢ over  the interval (0, n). Now in subsequent calculations we shall 
need to use the Fredho lm Alternative so we need to know the solution 
(u*, v~') T of the adjoint  equat ion 

L * ( u ~  = 0 .  (4.15) 
\ v l /  

Since (4.11) holds, the solution is (u*, v*) T = (dl, d2) a" cos ~ where 

d I k 2 
d2 b (4.16) 

and this solut ion is again unique up to normalisation.  With ul = al  cos ~ and 
/91 = a2 C O S  4 ,  it follows from the Fredholm Alternative that  (4.7) has a solution 
if and only if the inner p roduc t  of its right hand side with (u*, v~') T is zero. 
Since the quadrat ic  terms u 2, UlVx and ulG**ul do not  involve first har- 
monics we are left with 

f ~ (  -- 0tlb -t- = a lb/-t (0, k2))aldl cos2~d~ 0 
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or aldlal(1 --/7(0, k2)) = 0. From property (v) of / / (s ,  k 2) and the fact that 
al and dl cannot be zero it follows that el = 0. Then (4.7) becomes 

COS 2 

V2 - -  a a l a 2  ] 

(ala2-a21(ab(1-b) +Dk*)/bk 2) 
= cos2( using (4.11) 

- -  a a l a  2 

= l ( - a l a 2 D k 4 / a b ( 1 - b ) )  ( l + c ° s 2 ' ) -  aa 1 a 2  using (4.12). 

This has solution 

= + cos 24 
v2 A2 B2 

where, after some algebra, 

ala2 ala2(ab 2 + Dk*) 
A1 = A2 = 

2(1 - b)'  2ab2(1 - b) 

ala2 ( 2Dk 6 1 ab~ 
B, - f ( 0 ; a o ,  4k 2)~ab-(1 =b) 2 J '  

ala2 (Dk 4 a ) 
B2 = f (0 ;  ao, 4k 2) \ - ~ -  + 8-~ (f(0; Cto, 4k 2) - ab(1 - b)) . 

Note that assumption (4.13) guarantees that B~ and B2 are well defined. Then 
(4.8) becomes, after a lengthy calculation, 

L(U3~ 
\v3J 

( 1 1 z 
aEb + a2b/7(0, k 2) + A1 + -~ B1 4 - ~  (f(0;Cto, 4k ) - ab(1 - b)) 

4bk2) 1B Dk2 1 - + A 2 + ~  2 - - T ( A , + ½ B , )  a, 

--a (At+½Bt)+A2+-~B2 al 

cos 

-- ~XoaxB1 + ½ BI(1 + C~o)a1(/7(0, 4k 2) + H(0, k2)) + ½(a2B~ + a~Ba)'X 
+ -- ½ a(a2B1 + a~B2) ) 
x cos3~. (4.17) 
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By the Fredholm Alternative, this has a solution if and only if 

1 1 

1 Dk 2 1 + A 2  + ~ S 2 - - - - f f - ( A 1  +½B1) dl 

k ~ b ) ( A I + ½ B ~ ) + A 2 + ½ B z  = 0  

Hence, using (4.16), 

a2b(1- /4(O,  kZ))=A1 +~B~ (f(O;ao, 4k2)-ab(1 -b))  4 2 

[a2b(1 - b) Dk2"~ / 1B ab 

so that after some algebra, 

a,o  
1~2 =b (1  ----~O, k2))L\2ab 2 + ' - - ~  + k 2 8k 4 

ab2(1 - b) 2 ]-~4- • 

Now a l - - k 2 a 2 / a ( 1 -  b) so in the bifurcating solution a2 only arises as 
a factor of e, as expected. Hence we may take a 2 -= 1 and ax -- k2/a(1 - b) and 
our construction of the first few terms in the bifurcating solution is complete. 

The sign of a2 determines whether the bifurcation is sub- or supercritical. 
It is straightforward to see that as k2-~ oo (with C~o = ao(k2)) we have 
f(0; ao, 4k 2) ~ 12Dk 4 and as k 2 ~ 0, f(0;  ao, 4k 2) ~ - 15ab(1 - b). Hence 

Dk4ala2 
for k 2 large,  

0~ 2 r ~  3ab3( 1 _ b) 

5a2ala2 
for k 2 small, 

c~2 ~ - 12k4(1 _ / / ( 0 ,  k2)) 

so that this bifurcation is supercritical for k 2 sufficiently large and subcritical 
for  k 2 sufficiently small. 

4.2 Hopf bifurcation to periodic standing waves 

We consider the bifurcation that occurs in (1.1) when as c~ is increased, two 
roots of the eigenvalue equation (2.3) cross the imaginary axis as a pair of 
complex conjugates. In this case the linearised equations have solutions 
proportional to eikXe i'~t so this suggests that we should consider the possibility 
that from the uniform steady state solution (u, v) = (b, 1 - b) there bifurcates 
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a family of p lane  wave  solut ions which are periodic in bo th  space and time. To  
be specific, we look  for a solut ion of (1.1) of the form u(x, t ) =  d(~, z), 
v(x, t) = ~(~, ~) where  ~ = k . x  and z = cot (k being any fixed non-zero  vector) 
such tha t  d and  v ~ are 2rt-periodic in bo th  arguments .  After d ropping  the hats, 
the system (1.1) becomes  

ogu~ = u[1  + ~u - (1 + ~ )G**u]  - uv + Dk2u~¢ 

oov, = av(u - b) + k2v¢~ (4.18) 

for (4, z) ~ (0, 2rt) x (0, 2n) with periodic b o u n d a r y  conditions. We will again 
look  for solut ions which are symmetr ic  in ~ by seeking solutions which satisfy 
the b o u n d a r y  condi t ions  

u¢(0, z) = u~(rc, v) = re(0, ~) = ve(n , v) = 0 (4.19) 

and the condi t ions  

u(~, o) = u(~, 2re), u~(~, o) = u~(~, 2tO, 

v(~, 0) = v(~, 2r0, v~(~, 0) = v,(~, 2re). (4.20) 

Thus  the system is considered for (4, ~) e (0, z) x (0, 2n) only; it is clear how to 
define u outside this set so tha t  G** u is well defined. In this section we shall 
work  in a suitable space of functions satisfying (4.19), (4.20) with the inner 
p roduc t  

f: f: [(ul, u2), (vl, vz)] = (ul (4, ~)~ (4, ~) + u2(~, ~)~z(~, r))cl~ & . 

We shall cons t ruc t  the first few terms in the bifurcating solution using 
a Po inca r&Linds ted t  procedure ,  tha t  is, we seek a solution of (4.18) with (4.19) 
and  (4.20) of  the fo rm 

= 1 b + e  + e  2 + . . . ,  (4.21) 
- v l  \ v 2 /  

c~ = ~o + e~l + ez~z + • " ", (4.22) 

co = 090 + e~ol + e2ogz + • • •. (4.23) 

We  subst i tute  this into (4.18) and  equate  powers  of e up to the third power.  
N o t e  however  tha t  since G * * u  involves co it is necessary to expand  each 
G**u,,  in powers  of e, 

G * * u ,  = (G**u , ) l ,=o  + e(G**u,)~[~=o + ½~Z(G**un)~,l~=o + "-" 

1 2 0 = ( G * * u , )  ° + e(G**un)  ° + ~ (G**u,,),= + • • • 

where the superscr ipt  zero denotes  evaluat ion  at e = 0. I f  we define the linear 
ope ra to r  M by  

c%b -- (1 + eo)b(G**. )  ° + Dk2d~ 2 -- b 
d 

M = O9o~--~ -- a(1 -- b) d2 (4.24) 
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then the first three perturbation equations are 

\ v ~ /  

- O)lUx~ + ~ l b u l  - (1 + ~zo)b(G**ul)  ° - ~zlb(G**Ul)  ° 

\ v z /  
- -  O ) I / ) l z  -~- at/l /)  1 

\ v 3 /  

(4.25) 

(4.26) 

- o91u2~ - ~2ul~ + o~lbu2 + ~2bUl - (1 + C~o)b(G**u2) ° 

- ) (1 + ao)b(G**ul)° ,  - a lb (G**u2)  ° - -  a l b ( G * * u O  ° 

- a2b(G**Ul)  ° + 2aoUlU2 + alu  2 - (1 + O~o)ul(G**u2) ° 

- (1 + O~o)Ul(G**Ul)  ° - o ~ l u l ( G * * U l )  ° - (1 + 0~o)uz(G**Ul) ° 

- -  U l U  2 - -  U 2 V  1 

--  o91v2~ --  o~2v1~ + a(v luz  + vzul)  

for (4, z)~ (0, n)x(0 ,  27z) with conditions of the form (4.19), (4.20) for each 
(Un, Vn). A simple computa t ion  yields the formula 

G**emi~cosn~ = H(mico, n 2 k 2 ) e m i ~ c o s n ~ ,  m, n = 0, 1, 2 , . . . .  (4.28) 

It is important  to note the effect of the superscript zero in the term (G** .)o of 
the operator  M. For  functions u of the form u,,,n(~, z) = emi'cosn~ we have, 
from (4.28), (G ** Um,,)O = H(micoo, n 2 k 2) urn, n. For  other functions u, (G ** u) ° 
would be calculated by first writing u as a Fourier  series in terms of the 
functions Um, n. 

The non-trivial solution of (4.25) is of the form 

(Ul )  = (11)  ei~ cos ~ -F c.c. vl (4.29) 

where c.c. stands for complex conjugate, which satisfies (4.25) as long as 

f(icoo; C~o, k z) = (icoo - c~ob + (1 + eo)b~q(icoo, k 2) + Dk2)(icoo + k z)  

+ ab(1 - b) = 0 (4.30) 

and in this case either component  of (4.25) implies that  

icoo + k 2 
(4.31) 

al  = a(1 - b )  " 

This is the only solution (up to scalar multiples) of (4.25) provided that  

f(micoo;ao, nZk z) ~- 0 for any pair of non-negative integers (m, n) ~ (1, 1) (4.32) 

which we assume to be the case. The real and imaginary parts of (4.30) give 
C~o and COo implicitly in terms of k 2, Cto = ~o(k2), COo = Coo(k2). 



328 S.A. Gourley, N. F. Britton 

by 
It is fairly easy to see that the adjoint M* of the linear operator M is given 

M* = -- COo~-~z -- - b k 2 d2 + (1 + eo)bM* (4.33) 

where the linear operator M* acts on Fourier components as follows: 

M~((::)emi~cosn~)=(a~n(mi~°°'n2k2)e'n~c°sn~) (4.34) 

and on any other function (satisfying (4.19), (4.20)) by expressing it as a Fourier 
series and using linearity. The term M* is in fact the contribution to the 
adjoint from the nonlocal term in the operator M. 

The solution * . a- (ul, vl) of the adjoint equation 

is of the form 

with 
v*J 

ifD o - -  k 2 
dl = - -  (4.35) 

b 

Let us now consider the transversality condition required for this bifurcation. 
For  general kernels G the condition is, unfortunately, not easy to check. What 
we can do, however, is derive a certain formula which will be needed in later 
calculations, and we will demonstrate that the transversality condition does 
indeed hold at least for large k 2. For  values of c~ near ~o, let ~t(~) be the root of 
the eigenvalue equation (2.3) such that #(~o) = i~oo. Then 

(/~(a) -- ctb + (1 + a)b_H(p(a), k 2) + Dk2)(#(a) + k 2) + ab(1 - b) = O. 

Differentiating with respect to a and evaluating at ct = ao, we can show that 

#'(~o)[1 + aid1(1 + (1 + ~xo)bRs(icoo, k2))] = alttlb(1 - /~(icoo,  kZ)). (4.36) 

We shall use this formula later. Referring back to the asymptotic analysis 
described in § 2, we can show that when k 2 ~ ~ ,  

b bGn(O) (4.37) 
- + i2COo, G,(0 ) 

where 

/Gn(0)2 [ 2o °'2 
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This will be used later when we calculate the sub/supercriticality of this 
bifurcation as k 2 ~  c~. We return to our construction of the bifurcating 
solution, assuming that Re #' (~o) 4= 0. Now 

(G**uO ° = alio~lHs(icoo, k2)ei~cos~ + c.c. 

and, taking the inner product of the right hand side of (4.26) with (u*, v'~) "r, we 
obtain after some algebra the solvability condition for (4.26): 

io91 [1 + aid1(1 + (1 + ~o)b/Ts(io)o, k2))] = e~a~dlb(1 - H(io)o, k2)). 

Combining this with (4.36) yields 

(icol - p'(ao)~l)(1 -/7(icoo, k2)) = 0 .  

From property (vi) of /7  it follows that p'(~o) ~1 =ico 1. Hence ~ 1 Re #' (~o) = 0 
and COl = ~, Im #'(ao). By the transversality assumption it follows that ~, = 0 
and co l=  0. Consequently we also have (G** u,) ° = 0 and (4.26) becomes 

M(UZ~ = 
\132,1 

cos2~/%(a~e2'~ + la112)- (1 + ~o)a~/7(i~oo, k~)(a,e2i~+ a O - a ~ ( e  ~'~ + 1)~ 
aal(e 2i~ + 1) ) 

+ complex conjugate 

= 1 ( 1  [/[[a2(ie)°+Dk2)aal + (  [al[2Dk2/b~l 

aal /I 
This has solution 

= + cos2¢ e2i~q - C2 71- D2 
V2 A2 

where, after some algebra and using (4.31), 

al ( 2icoo(i~oo + k2)(ioo + Dk2) ab ) 
AI = 2f(2icoo; Cto, 0) ab(1 - b) ' 

al ((icoo + k2)(iCoo + Dk2) a ) 
A2 - 2f(2icoo; Co, 0) b t- 2-~o (f(2ic°°; ct°' 0 ) -  ab(1 - b)) , 

a, ((icoo + k2)(2icoo + 4k2)(icoo + Dk2) ) 
B1 = 2f(2icoo; ~o, 4k 2) ab(1 - b) - ab , 

al ((icoo + k2)(icoo + Dk 2) 
B2 = 2f(2icoo; ~o, 4k 2) \ b 

(f(2iCOo; ~o, 4k 2) - ab(1 - b))'~ 
+ a 2icoo + 4k 2 ) '  
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a l  a l  (Dk2( --  io90 + k 2) + ab 2) 
C1 = 2(1 - b ) '  C2 - 2ab2(1 _ b) 

al ( 4Dk4( -- io9o + k 2) _ ab ) 
D1 = 2 f ( 0 ; a o , 4 k 2 ) \  ab-(-i ---'b') / 

a, ( D k 2 ( - i o 9 o + k 2 )  a ) 
D2 - 2 f (0 ;  ao, 4k 2) b + ~ ( f (0 ;  Cto, 4k 2) - ab(1 - b)) . 

N o t e  tha t  by  a s s u m p t i o n  (4.32), all these coefficients are  well defined. N o w  
with a l  = o)l = 0 we have (G**u2) ° = 0 and  (G**uO ° = 2ialo92H=(iogo, k 2) x 
e i* cos ~ + c.c.. T h e  sys tem (4.27) becomes  

- O)zUl, + azbul - ½  (1 + ao)b(G**ul)°, - c~2b(G**ul)°l 

u f U 3 " ~ =  + 2aoUlU2- - (1  + O:o)ul(G**uz)°--(1 + ao)u2(G**ul) ° 
(4.39) 

\ Jr3 - u l v z - u z v l  

- -  o92vl~ + a(vlu2 + VzUl) 

After  subs t i tu t ion  of  the  express ions  for  u~, v~, u2, v2 a n d  a ra ther  l eng thy  
ca lcu la t ion  the  sys tem (4.39) yields a differential equa t ion  of the  fo rm 

M =t+i2Je c o s ~  +t+22)e cos3~  

/ / ~ 3 i ' ~  3i~ (~41"~eai ' cos3~ + complex  con juga te  (4.40) + ° c°s  + / 

where  

~ 1  = - ia~ogz(1 + (1 + eo)bH=(iogo,kZ)) + e2bal(1  - / - / ( i coo ,  k2)) 

+ .41 (2~odl - (1 + ao) ,h  H(2io9o, o) - (1 + ~o),h H(iogo, k 2) - 1) - a , &  

+ ½Bx (2c~od 1 -- (1 + ~to)dlH(2io)o,4k 2) - (1 + ~to)d~ H(io)o, k 2) - 1) - 12~i~ B2 

+ 2ReC~(2eoa~ - (1 + ao)a~ -- (1 + ao)al ~q(iogo, k 2) - 1) - 2 a l R e C 2  

+ ReD1 (2aoal - (1 + eo)al/-/(0,4k 2) - (1 + ~o)alH(kOo, k 2) - 1) - al ReD2 , 

q~12 = -- io92 + a(A1 + d lAz  + ½B1 + ½dlB2 + 2 R e C 1  

+ 2 a a R e C 2  + R e D 1  + a l R e D z )  

~21 = ½Bl(2aoS1 -- (1 + ~o)~il//(2io9o, 4k 2) - (1 + Cto)til H(iogo, k 2) - 1) --  ½ti lB 2 

+ ReD1 (2~oal -- (1 + c%)ai//(0,4k 2) -- (1 + Cto)aliq(koo,k 2) -- 1) - a iReD2,  

~22 = a(½B1 +½alB2 + R e D 1  + a t R e D 2 ) ,  

~31 = A1 (2ao a l  --  (1 + ao)al/-I(2io90, 0) --  (1 + ao)al/~(iogo, k 2) - 1) --  alA2 

+ ½ B1 (2aoal  --  (1 + ct o ) a l / t ( 2 i ¢ o  o, 4k 2) - -  (1 + ao )a t / / ( i o9o ,  k 2) - -  1) - ½al B2, 
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~32 = a(A1 + alA2 + ½B1 + ½alB2),  

~,1 = ½B1 (2~oal - (1 + c%)alaq(2icoo,4k z) - (1 + O~o)alH(icoo,k z) - 1) - ½alB2, 
• ,2 = a(1 1 + ½a1 2). 

The  solvability condi t ion for (4.40) is 

~11dl  + ~12 = 0 .  (4.41) 

Let  us define ~lx  and ~12 by writing 

~11 = - ialcoz(1 + (1 + C~o)btis(icoo, kZ)) + ezbal(1 - /7( icoo,  k2)) + ~11,  

~12 = - ico2 + ~12. 

Then we have explicit expressions for ~ 1  and ~ z ,  these expressions being 
independent  of ez and coz. The  solvability condit ion (4.41) reads, after some 
algebra, 

ico 2 [1 + ald~(1 + (1 + ~o)blt~(iCOo, k2))] - ~2baadl(1 - H(iCOo, k2)) = d 1 ~la + ~ 2 -  

F r o m  (4.36) it follows that  

~'(0~0) (d1(~11 "[- ~12) ico2 -- ~zff(~o) = aldlb(1 - I~(icoo, kZ)) 

so that  

[ .o, 1 c% = R e ,  Re (d1~11 + ~12) • aldlb(1 ~-~ icoo ,  k2)) 

This quant i ty  is well defined, and determines whether  the bifurcation is sub- or 
supercritical. F o r  k 2 large, with eo = eo(k 2) and coo = coo(k2), we can use the 
expression for #'(co) given by (4.37) and a heavy piece of asymptotic  analysis 
(Gourley 1993) to get 

Dk 6 bGn(Oy) ~ (2/-/(2ico*, 0 ) -  

with co* given by (4.38). This is as far as we can go for general kernels G, so we 
shall consider in the remainder  of this section what  happens in the particular 
case of the kernel G(x, t) = 1/22e - 21xl 0e-Or studied in § 3.4. Recall that  for this 
kernel the locus Re s = 0 only exists as k 2 ~ oe if 0 _<__ D22 so we assume this 

to be the case. Fo r  this kernel co* = x / 0 ( D 2 2 -  0), if(c%) ~ b/2(1 -iO/co*) 
and /7(2ico*, 0 ) =  0/(0 + 2io9"). We find that  ~z has the same sign as 
Re (co~ - iO)(6co* -- iO), i.e., as 6D22 -- 70. Thus in the limit a s  k 2 ~ (30 the 
bifurcation is supercritical if 6D2 z > 70 and subcritical if 6/7D). 2 < 0 _< D22 . 

5 Conclusions 

In this paper  we have considered a predator  prey system in the form of 
a coupled system of react ion diffusion equations containing a term which is 
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nonlocal in both the spatial and the temporal variables. Our model is an 
extension, to a two-species predator prey system, of a single species model 
which had been studied previously. The system has the property that in the 
purely local case, when G** u = u, the coexistence steady state is not driven 
unstable by diffusion. However for spatio temporal convolutions, possible 
bifurcations from this steady state are (i) to steady spatially periodic solu- 
tions, (ii) to periodic standing wave solutions and (iii) to periodic travelling 
wave solutions. These bifurcations occur under only very minimal assump- 
tions on G and the behaviour is evidently not brought about by diffusion 
alone, but rather by the nonlocal term in the system or by its interaction with 
the aggregation term ~u. In the purely local case the system is very simple, 
being a Lotka Volterra diffusion system with logistic growth of the prey. 
Whilst integrodifferential systems tend to be rather complicated in appear- 
ance, all we have done essentially is to recognise that time delays should be 
included in the term representing intraspecific competition for resources for 
the prey species, and that the assumption of motion (through diffusion) means 
that any time delayed term should be nonlocal in space as well as in time. As 
a consequence, we have obtained a variety of solution behaviour which reflect 
phenomenon such as animal aggregation, population cycles and the motion of 
aggregations as observed in nature. We therefore claim that nonlocal effects 
play a very important role in pattern formation, and that our model is more 
realistic than the usual type of reaction diffusion system used to model 
predator prey interactions in which the species can diffuse. 

We have noted that bifurcations (ii) and (iii) above can occur for purely 
temporal convolutions and that for purely spatial convolutions all three 
bifurcations can occur. The introduction of some spatial averaging (however 
little) has a significant effect by introducing a third bifurcation. The analysis in 
the purely temporal case of § 3.2 shows that for instability of the uniform 
steady state the parameter 0 has to be sufficiently small, which means the 
delay has to be sufficiently large. This property of delays has been frequently 
observed in studies of spatially uniform systems, but little research has 
previously been done in establishing the property for reaction diffusion 
systems. In the purely spatial case of § 3.3 we observed that for instability to 
occur the spatial parameter 2 has to be sufficiently small, meaning the average 
must not be too localised. With a suitable parameter to measure spatial 
averaging for more general kernels, this property could be established for 
whole classes of systems. 

Many more questions are raised by this research. It would be interesting to 
investigate the stability of the bifurcating solutions we have obtained, and to 
investigate the possible existence of large amplitude waves. More work needs 
to be done on the global behaviour of solutions, and methods similar to those 
used by Ding (1989) may be useful in establishing global stability of steady 
states. It would also be interesting to consider nonlocal effects in other types of 
species interaction, such as competition models. Moreover, in (loeal) reaction 
diffusion systems where a steady state is diffusionally unstable, the regions of 
parameter space in which diffusive instability occurs are often very small 
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(Murray  1982). The incorpora t ion  of delay effects and the analogous mecha- 
nisms in space m a y  considerably increase the size of these regions of pa- 
rameter  space. 
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