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Abstrac t .  The dynamics of three-variable models of bursting are studied. It is 
shown that under certain conditions, the dynamics on the attractor can be 
essentially reduced to two dimensions. The salient dynamics on the attractor can 
thus be completely described by the return map of a section which is a logistic 
interval map. Two specific bursting models from the literature are shown to fit 
in the general framework which is developed. Bifurcation of the full system for 
one case in investigated and the dynamical behavior on the attractor is shown to 
depend on the position of a certain nulMine. 

Key  words:  Bu rs t ing  - Fast-slow decomposition - B i f u r c a t i o n  - Pancreatic fl- 
cell model 

1. Introduct ion  

One of the interesting behaviors in cell-membrane models is bursting, in which 
a rapid oscillatory state alternates with a quiescent recovery state (Adams and 
Benson 1985; Alving 1968; Atwater et al. 1980; Chay 1985; Chay 1986; Chay 
and Keizer 1983; Chay and Rinzel 1985; Hindmarsh and Rose 1984; Johnson 
and Brown 1984; Plant 1978; Plant 1981; Plant and Kim 1976; Rinzel 1985; 
Traub 1982; Wong and Prince 1978; Wong and Prince 1981). Bursting has also 
been observed in chemical systems (DeKepper et al. 1976; Hudson et al. 1979; 
Hudson et al. 1986). A number of analyses on different aspects of  the dynamics 
of bursting have been done (Alexander et al. 1989; Alexander et al. 1990; 
Argemi et al. 1984; Argemi et al. 1979; Argemi et al. 1980; Baer and Tier 1986; 
Decroly and Goldbeter 1987; Ermentrout and Kopell 1986; Honerkamp et al. 
1985; Janz et al. 1980; Rinzel 1987; Rinzel and Lee 1986; Rinzel and Lee 1987; 
Rinzel and Troy 1982; Rinzel and Troy 1983; Terman 1989). In order to isolate 
essential aspects of bursting dyamics, simple bursting systems have been con- 
structed, in particular 3-variable models. Essentially these models consist of two 
"fast" variables and one "slow" variable. If the slow variable is made infinitely 
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slow (by adjusting a time-scale parameter e to 0) so that the system is degenerate, 
the resulting 2-dimensional system on the fast variables exhibits bistability; it can 
exist in a stable periodic state or a stable stationary state. When e ¢ 0, the slow 
variable moves the fast subsystem between the two states, resulting in the 
oscillatory and quiescent states. 

In order to understand the dynamics of models, it is necessary to explain the 
observed behavior from basic features of the differential system. For example, 
Chay (1985), following earlier work on a larger model (Chay and Rinzel 1985), 
considered various delay and return maps of the model and realized them as 
interval maps. Similarly, Rinzel and Troy (1982) constructed a simplified model 
of Janz et al. (1980) of the Belousov-Zhabotinskii reaction. With an analysis of 
the return map, they were able to predict behavior of the model, such as multiple 
stable periodic orbits (Rinzel and Troy 1983). In both cases, the important 
dynamical behavior of the attractor--both regular and complicated--seems to 
be completely described by these interval maps. Since a return map is described 
by a one-dimensional map, the important dynamics on the full attractor should 
be described in two-dimensions. We seek to extract such an explanation from the 
dynamics of the original three-dimensional system. Terman (1989) has recently 
obtained some results in this direction. He shows that for certain 3-variable 
models which are sufficiently close to degeneracy (e sufficiently close to 0), 
complicated dynamics can arise from the presence of a horseshoe in a return 
map. He presents an explicit example exhibiting this phenomenon. His result 
does not reduce the dynamics to two dimensions, since the horseshoe in the 
return map is itself two dimensional, and in the model he discusses, a further 
reduction is not possible. However, his underlying approach is the same as ours: 
determine the key dynamical behavior on the attractor in terms of the dynamics 
of the full system. 

In this paper, we investigate the 3-variable models of Chay, Hindmarsh-Rose, 
and Rinzel-Troy. We show the dynamics on the attractor is essentially two-di- 
mensional, and develop a general model for such a reduction of dimension. In 
particular, the return map is essentially a logistic interval map, and thus for certain 
values of the parameters, there is complicated dynamics. The full models satisfy 
conditions similar to, but slightly different from, those of Terman. However, 
where Terman finds horseshoes, we find one-dimensional dynamics, and in that 
sense, the dynamics of our model is simpler than those described by Terman. One 
of the systems we consider is Chay's model for the bursting of the pancreatic 
/~-cell. Terman uses asymptotic analysis and his arguments are mathematically 
rigorous. The present paper discusses numerical examples that are not near the 
asymptotic limit and we do not achieve rigor. In particular, for our cases, the 
time-scale parameter e is not small enough that we can appeal to such an 
asymptotic analysis for rigorous results. However, as discussed below, it is likely 
that a rigorous formalism can be constructed for the systems we consider; 
however, in addition to e, a second degeneracy parameter must be incorporated. 

We next indicate briefly the form of our model. More details are given in the 
next section. The model conforms to a rather standard model for regular bursting. 
We consider a 3-variable autonomous system 

-~ = f l  (X, y, Z), 

j, =ACx, y, z), 

= ef3 (x ,  y ,  z) ,  

(1.1) 

(1.2) 

(1.3) 
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with fast variables x and y, and slow variable z. I f  e = 0, the system is 
degenerate; it reduces to a two-dimensional system in x and y with z as 
parameter.  The degenerate system has a n  S-shaped curve of  stationary points. 
The lower branch of the S is stable and a family of  stable periodic orbits 
"surrounds"  the upper branch of  the S (see Figs. 1, 2). The slow dynamics in z 
is such that for the non-degenerate system, the state varies between approximat-  
ing the stable stationary state and the stable periodic state. As the system makes 
its transition from the former to the latter, it passes close to the unstable 
stationary point of  the degenerate system in the middle branch of the S. Here it 
is trapped by the two-dimensional unstable manifold of  the middle branch, 
which effectively reduces the number  of  degrees of  freedom from three to two. 

2. Chay's//-cell model 

Chay and Keizer (1983), following the experimental work of  Atwater et al. 
(1980), developed a model for the ionic and electrical behavior of  the pancreatic 
//-cell. Chay (1985) reduced the model to three variables. In this section, we 
further the study of the dynamics of  that model. The model is the following: 

C 
12 . 3 ,,* n 4 t V  V )  * V )  + g * ( V z  V) ,  = g ~ m ~ h ~ ( v x - - V ) + 6 K ,  v ~ K - -  + g K ,  C l + c ( V K  - 

(2.1) 

h = (n~  -- n ) / % ,  (2.2) 

= Q(rn3~ho~(Vc - V )  - k c C ) ,  (2.3) 

where 

am 

//m 

m~ 

0~ h 

ho~ 

= 0.1(25 + V)/(1 - exp( - 0 . 1 V  - 2.5)), 

= 4 exp( - ( V  + 50)/18), 

= am/(am +/ /m),  

= 0.07 exp( - 0 . 0 5  V - 2.5), 

= 1/( 1 + exp( - 0.1 V - 2)), 

= ~h/ (~h  + / / ~ ) ,  

~, = 0.01(20 + V ) / (  1 - exp( - 0 . 1 V  - 2)), 

//, = 0.125 exp( - ( V  + 30)/80), 

n ~  = ~./(~° + / / . ) ,  

~. = (~. +//n)t230. 

In this model, V is the difference of the external and internal voltages, n is a 
gating variable for K +, and C is the C a  2+ concentration. Typical values for the 
parameters are: VK = 75, VZ 100, VL = --40, V~ = 100, * * glc, C 11, = 1700, = = g K ,  v 

g* = 1800, g* = 7 ,  kc =3.3/18, p =0.27.  Chay uses gK, C as a bifurcation 
parameter. At the parameter  value * = gK, C 11, the dynamics is aperiodic, and we 
fix gK, C at that value. 

The variable C is the slow variable, with Q the time-scale parameter.  I f  Q = 0, 
we can regard the resulting degenerate system as a 2-variable system (2.1)-(2.2)  
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with C as an additional parameter, which can then be considered a bifurcation 
parameter. The bifurcation diagram of this system is exhibited in Fig. 1.1 The 
vertical axis is V. There is an S-shaped curve of stationary points, and a Hopf 
bifurcation at C ~ - 0 . 3 6 1  (which value is physiologically meaningless, but 
dynamically relevant). The maximum and minimum V values of the periodic 
orbits on the resulting branch are exhibited; the periodic branch terminates in an 
orbit homoclinic to the stationary point on the central stationary branch at 
C ~ 0.447. The stability of the branches is also indicated. The lower branch of 
the stationary S-curve is stable; the middle branch consists of saddle points and 
the upper branch to the right of the Hopf bifurcation consists of totally unstable 
stationary points. The uninteresting part of the curve to the left of the Hopf 
bifurcation consists of stable points. The periodic orbits are stable. 

Figure 2 is a zoom of Fig. 1 with some additional information. A (partial) 
typical orbit of the full system (2.1)-(2.3) with the parameters above is superim- 
posed. Also the nullcline of (2.3) is superimposed. We note two facts evident in 
Fig. 2. (a) The C-nullcline is above the homoclinic point on the middle 
stationary branch (and above the middle branch for some distance to the right 
of the homoclinic point). (b) The value ~ = 0.27 is not particularly small. If the 
system is nearly degenerate (Q ~ 0), an orbit drops nearly vertically from the 
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Fig. 1. Bifurcation diagram of (2.1)-(2.2),  with C as bifurcation parameter, As discussed in text, 
there is an S-shaped curve of stationary points and a Hopf bifurcation (demarked by solid box) 
giving rise to a branch of periodic orbits. Solid line: stable stationary point; dashed line: unstable 
stationary points; gapped dashed line: upper and lower limits of stable periodic orbits 

Bifurcation diagrams in this paper were determined in double precision with the software A U T O  

(Doedel 1981); integrations were done in double precision with the ddriv routines in the software 
library cmlib 
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Fig. 2. Zoom of Fig. 1 with orbit of full system (2.1) (2.3) and nullcline of (2.3) (long-short dash) 
superimposed 
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middle stationary branch to the lower branch. For  the system as is, there is more 
horizontal than vertical movement in the lower part of  an orbit. 

Terman considers systems for which the corresponding degenerate system has 
the above form. Like him, we consider the return map- of  the flow descending 
through a plane V = V0 just above the lower stationary branch of  the degenerate 
system. Figure 3 exhibits the return map for system (2.1)-(2.3) for V0 = -46 .5 .  
The important point here is that the points essentially lie on a one-dimensional 
submanifold-- in  this case a line. Indeed the best L ~ (Chebyshev) fit is the line 
C = 32.281n - 3 . 2 8 4  with the maximal vertical deviation 2.6 x 10 -6. The devia- 
tion is 3.5 orders of  magnitude smaller than the extent of  the graph. The same 
holds if the axes are reversed. Consider the 3-variable degenerate system (2 .1) -  
(2.3) with Q = 0. For  each C for which there are three stationary points, the 
unstable manifold of  the center stationary point is a 1-dimensional manifold 
which is separated into two components by the stationary point. Along one of  
them V decreases and descends to the lower stable stationary point. The union 
of  these partial unstable manifolds is one component of the unstable manifold of  
the degenerate system (2.1)-(2.3).  There is strong compression onto the unstable 
manifold. As an indication, near the homoclinic point, the eigenvalues of the 
linearization at the middle stationary point are approximately 10 and - 3 5 ;  
orbits are compressed to the unstable manifold 3.5 times as fast as they are 
stretched out along it. Thus any orbit that comes near to the stable manifold 
leaves the region near the middle stationary point very close to the unstable 
manifold. For  Q > 0, there are no stationary points and no stable or unstable 
manifolds. However there is still a compressive effect. Orbits of the non-degener- 
ate system (2.1)-(2.3) are compressed towards a 2-dimensional surface. This is 
illustrated in Fig. 3; the intersections of  the orbit with the plane V = 46.5 lie 
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Fig. 3. Five hundred iterates of the return map of (2.1) (2.3) on the plane V = -46 .5 .  The n-axis 
has been shifted by 0.116. The points are virtually (i.e., to within two parts in 10 4) co-linear 

virtually on the intersection of the surface with that plane. The fact that the 
intersection is almost a straight line is not particularly relevant; the fact that the 
intersection is 1-dimensional is relevant. 

With this information, we construct our general model. We consider the 
3-variable autonomous system (1 .1)- (1 .3) ,  with fast variables x and y, and slow 
variable z (corresponding respectively to V, n, and C for Chay's model), such 
that the corresponding degenerate system (e = 0) has the dynamics indicated in 
Fig. 2: an S-shaped set of stationary points which can be parameterized 
y = s2(x), z = s3(x) with lim s3(x)  = ~ ~ ,  and with the indicated stability, and 

x ~  + o o  

a branch of stable periodic orbits terminating at a homoclinic point (x~ ,  yoo, Zoo) 
on the center branch of  stationary points. It is not necessary that the periodic 
orbits arise from a Hopf  bifurcation, although that is usually the case. We are 
only interesting in the dynamics in a nieghborhood of the S-shaped curve. A 
single stable periodic orbit exists for each z < z~  and the periodic orbit sur- 
rounds the upper stationary point. We consider the full 3-variable system with 
e > 0. We suppose that for the full 3-variable system, the equation f3(x, y, z) = 0 
defines a surface which can be written x = f ( y ,  z). For x < f ( y ,  z ) , f 3 ( x ,  y ,  z)  < 0 
and vice versa. We suppose 

f3(x~,y~, Zoo) < 0. (2.4) 
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For e = 0, the value of z does not change during the evolution of (1.1)-(1.3).  
Consider the periodic orbit Pe for (1 .1)-(1.3)  for e = 0  with some value 
z = 2 < zoo. Consider 

L(2) = 1 f3(x, y, 2) dr. (2.5) 
dP 

Let T(2) denote the minimal period of  Pc. If L(2) is positive, for e small enough 
the orbit of (1.1)-(1.3) moves to the right (larger z). That  is, if at time t = 0, an 
orbit starts at (x, y, 2) near Pc, at time T(2) the z value of the orbit is larger than 
L For  negative L(~), the opposite holds. This follows from the theory of  
averaging. By (2.4), L(~) < 0 for ~ near zoo. We assume there is zc < zoo such that 
L(2) > 0 for 2 < zc and L(2) < 0 for z~ < ~ < zoo. 

We impose a second degeneracy in our model. We suppose there is a second 
parameter 2 ~> 0 in (1.1)-(1.3) with the following effect. When e = 0, there are 
1-dimensional stable and unstable manifolds of the center branch stationary 
points. We suppose that for e = 0, as 2--*0, orbits in a neighborhood of the 
stable manifold on these points are collapsed onto the unstable manifold. Thus 
when 2 is close to zero and e is sufficiently small, orbits near the homoclinic point 
are still strongly compressed to a two-dimensional surface. This is the effect we 
observe in Fig. 3 for (2.1)-(2.3).  In general, the parameter e is explicitly in the 
differential equations, whereas 2 is not and must be considered implicit. For  the 
present paper, we do not try to develop mathematically precise notation and 
results. 

We turn to the dynamic consequences of  this model. Consider a section taken 
at a plane Xxo = {(x, y, z ) : x  = Xo} for a value of Xo that is above the lower 
x-value of  the periodic orbits of  the degenerate system. For  e small, consider 
a point (Xo, Yo, Zo) with Zo < Zc, where z~ is the point where L(z) changes sign, 
and with f l  (x0, Yo, z0) < 0. Then the z-value, denote it zl, of  next descending 
return of  the orbit to the plane is to the right of  Zo. On the other hand, if Zo > z~, 
then Zm < Zo. Suppose for no z o that Zl > zoo. Then the orbit remains near the 
periodic orbits of the degenerate system and in fact approaches a periodic orbit. 
The return map z0 ~ z~ has a stable fixed point. This dynamic behavior of 
(2.1)-(2.3) is called beating. On the other hand, suppose there is some Zo < z~ 
such that the corresponding z~ > zoo. Then the orbit "falls through" below the 
periodic orbits. It is caught in the compression of the previous paragraph, and 
the dynamics is essentially concentrated in a 2-dimensional attractor. If  the 
attractor is 2-dimensional, a section is 1-dimensional. Thus representing the 
return map as an interval map is a complete description of the dynamics on the 
attractor. Note from Fig. 2, that the C-nullcline is near the V-minima of the 
periodic orbits so that zc is close to zoo, and hence bursting, rather than beating, 
Occurs. 

Consider the form of the return map on the plane Xx0. We use z as the 
variable in the interval. Let z0, zl . . . .  be the successive values. As discussed 
above, Zn+m> zn for z, < z~, and the return map is increasing. Consider the 
return of  the interval z > zoo. Orbits descend below the periodic regime and are 
compressed to 2-dimensions. Note that in this region, f3(x, y, z ) <  0 so the 
motion is in the direction of  decreasing z. The dynamics on the two-dimensional 
manifold is effectively a "rota t ion"  as z decreases and inverts the z order (see 
Fig. 2). The return map is monotonically decreasing. Thus the return map has a 
logistic shape--monotonical ly  increasing for small values of z and monotoni- 
cally decreasing for large values of z. For  ~ > 0, this shape is preserved, except 
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Fig. 4. The logistic return map of the C component for system (2.1)-(2.3) with parameters as given 
in the text. For these values the attractor is aperiodic and the return map samples most of the 
interval. The return map of the n-component is also logistic. This interval map captures the salient 
dynamics of the attractor 

possibly near z = zoo, where the system is sensitive to perturbations. For  the most  
part, however, the dynamics is essentially described by the logistic interval map. 

I t  is well known that the logistic interval map admits complicated dynam- 
i c s - p e r i o d  doubling cascades and aperiodic behavior. The details of  the cascad- 
ing depend on the shape of  the graph of the return map at its maximum. When 
s is very near 0, the maximum occurs for z very near zoo, and the dynamics is the 
most sensitive to s. That  is, in the present model, the region of  the graph near its 
maximum is the most  sensitive to e. Thus although the dynamics is described by 
an interval map, the detailed changes in the dynamics as a bifurcation parameter  
is varied may be difficult to quantify. 

We return to the case of  Chay's  ]~-cell model. The return map for V = - 4 4  
is exhibited in Fig. 4. Note the logistic shape. Our model explains why the 
interval maps of  Chay (1985) completely describe the dynamics of  her model. 

3. The Hindmarsh-Rose  model 

Hindmarsh and Rose (1984) have developed a three-variable model for the 
bursting of neurons, which is a variant of  the F i t zhugh -Nagumo  model 
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(Fitzhugh 1961). Much of their paper concerns the two-variable subsystem which 
describes the action potential. They add a third "adaptive" variable which is 
governed by a simple linear equation, and note that the resulting autonomous 
system admits aperiodic behavior. We consider this system in the context of the 
general model developed in the previous section. 

The Hindmarsh-Rose model has three variables x, y, z, satisfying the 
following polynomial equations: 

= y - a x  3 + b x  2 "+ I --  Z, 

~ = c - - d x 2 - - y ,  

= r ( s ( x  - x l )  - z ) .  

(3.1) 

(3.2) 

(3.3) 

For the physiological significance of the variables, the reader is referred to the 
original paper. The third variable is the slow variable and r is the time-scale 
parameter. Typical values for parameters are: a = 1, b = 3, c = 1, d = 5, I = 0, 
I = 3.25, xl = -½(1 + x/~), r = 0.005, s = 4 (Hindmarsh and Rose 1984, p. 98). 

If  r = 0, so (3.3) is degenerate, there is an S-shaped branch of stationary 
points, as in Chay's model. The relevant portion of the bifurcation diagram of 
(3.1)-(3.2) is presented in Fig. 5. The branch of stable periodic orbits terminat- 
ing in a homoclinic is present. There is also a smaller Hopf  branch near the 
right-hand turning point. This branch is of some interest in its own right, as seen 
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Fig. 5. Bifurcation diagram of (3.1)-(3,2), with parameters of the text, with z as bifurcation 
parameter. A bursting orbit of the full system (3.1) (3.3) is superimposed. The nullcline of (3.3) is 
also superimposed. As in Figs. 1, 2 there is an S-shaped curve of stationary points and a Hopf 
bifurcation giving rise to a branch of periodic orbits. There is also a smaller Hopf branch near the 
right-hand turning point. This branch is not involved in bursting. Solid line: stable stationary point; 
dashed line: unstable stationary points; gapped dashed line: upper and lower limits of stable periodic 
orbits 
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Fig. 6. Five hundred points of the return map of (3.1)-(3.3) on the plane x = -0.85. Again the 
points effectively lie on a one-dimensional set 

below, but is not involved in the bursting phenomenon. A bursting orbit of  the 
full system (3 .1) - (3 .3)  is superimposed, as is the nullcline of (3.3). Note that the 
nullcline is above the homoclinic point. 

Similarly, a section of the attractor is presented in Fig. 6. As in the case of 
Chay's model, the section is virtually a straight line, and in particular is 
1-dimensional. Thus an interval map should describe the return map and as 
described in the previous section, the return map should be logistic. A return 
map for x = - 1  is presented in Fig. 7. The logistic shape is clear. 

4. The Rinzel-Troy model 

Rinzel and Troy (1982) develop a simplified model of the Belousov-Zhabotin-  
skii reaction with continuous flow-through. The equations are 

1 r 
= -  ( - y  - g ( y ,  r)y + f ( p ) z )  - - y ,  (4.1) S S 

r 
= w(g(y ,  r) -- z )  - -  - z ,  (4.2) 

S 

P =-s y + 2g(y,  r)y + (g(y ,  r)) 2 - - f ( p ) z  -- -sp , (4.3) 
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where 
r x  o ]/2 1 (1 --~2-+-[(1- -f~)z-k-4q(y-kT) 1 ), g(y,  r) = ~q -- y y 

Fp 2 
f(P) Kff2 + p2 (the stoichiometric parameter). 

The variables are concentrations of  various chemicals. The third variable is the 
slow variable, although it is not evident from the form of  (4.3). This set o f  
equations is more complicated than (2.1)--(2.3) or (3 .1 ) - (3 .3 )  since/~ depends 
on both of  the fast variables instead of  only the first, and the behavior of  the 
slow variable is more complicated. A more complete analysis will be presented 
elsewhere. Here we note only the behavior of  the return map. Parameter values 
are s = 77.27, w = 0.161, q = 8.375 x 10 -6,  F = 4, K = 0.0005, ,5 = 107/3 and r 
(the flow rate) = 0.00348985. The return map to the plane y = 2 is exhibited in 
Fig. 8. 

5. Discussion 

We have developed a model  that reduces the description of  the dynamics on the 
attractor of  a class of  three-variable bursting models to logistic interval maps. 
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Fig. 8. Five hundred iterates of the return map of (4.1)-(4.3) on the plane y =2 

The key points of the model are: a fast-slow decomposition and a standard form 
for the dynamics if the slow system is infinitely slow and a compression of  orbits 
towards a two-dimensional unstable manifold. A secondary feature is the influ- 
ence of the position of the nullcline of  the slow variable. In general of  course, 
there will be very fine details in the dynamics which is not described by the 
interval map. However, it does describe the dynamical features salient to the 
physiology behind the model. 

5.1. Terman's model 

We contrast this model with that of Terman (1989). He also considers equations 
(1.1)-(1.3),  and investigates the section on the attractor through a plane z = Zo 
just above the lower stationary branch of the degenerate system. However, in 
contradistinction to us, he posits that the homoclinic point lies above the 
z-nullcline (his condition A6). Under this and his other conditions, there is a 
horseshoe in this return map. An essential condition for his result is that the 
z-nullcline lie below the homoclinic point. An important ingredient of this 
argument is an orbit that can "run up along" the middle stationary branch some 
distance towards the right-hand turning point before descending to the lower 
branch. Clearly, if the z-nullcline is above the homoclinic point, orbits that pass 
near to the homoclinic point must move to the left, not the right. Terman 
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considers the system 

= y  - 0.5(v + 0.5) - 2w(v + 0.7) - m~(v)(v - 1), 

= 1.15(w~ (v) -- w)z(v), 

with 

3~=-e[0.22 + v ] I ( - ~ ) -  ( ~ - ~ ) t a n h ( V  +0"23"]7 jj '  

M 1 ~o(v) = ~ [ 1  

w~(v)=~[1 
+ tan( p + 0"01"]q ) j '  

+ t a n h ( ~ ) ] ,  

z(v)= c o s h ( ~ ) .  

The parameter 6 controls the relative speed of the dynamics on the lower 
stationary branch and upper periodic branch. For sufficiently small 6 and e, this 
system satisfies the conditions of Terman's theorem. The variable y is the slow 
variable. Terman exhibits the figure analogous to our Fig. 1. Note that the 
y-nullcline is the plane v = -0.22; this plane is below the homoclinic point and 
thus our description is not applicable. Terman also exhibits a section analogous 
to our Fig. 3; it is definitely two-dimensional. 

In our model, it is 2, which governs the compression to the unstable 
manifold, which permits control of the dynamics. In fact, if 2 is sufficiently small, 
so that there is sufficient compression, the model seems to be more robust in e. 
This is the case in the models we consider. In general of course, there may be 
systems which exhibit behavior intermediate between that of Terman and ours. 
For these systems, a more complicated model will be necessary. 

5.2. Bifurcation behavior of  full model 

A fuller picture of the dynamics can be developed by generating the bifurcation 
diagram for the full model. For her model, Chay has presented such a diagram 
using * gK, c as bifurcation parameter (Chay 1985). Thus we concentrate on the 
Hindmarsh-Rose example. Since the location of the z-nullcline is important, we 
use x~ as a bifurcation parameter for (3.1)-(3.3). Altering x~ moves the 
z-nullcline vertically in Fig. 5 without changing its slope. The bifurcation 
diagram for the full system (3.1)-(3.3) with the parameters in the text is 
presented in Fig. 9, and a zoom in Fig. 10. Here the horizontal axis is x~ and the 
vertical axis is x. For larger values of x~, the z-nullcline is higher up. There is a 
branch of stationary orbits from lower left to upper right. There are four Hopf 
bifurcation points at Xl values (zz) 3.904, (aa) -0.867, (bb) -1.064, and (ee) 
-2.077. In Fig. 12, the z-nullclines for the last three of these four values are 
superimposed on the graph of Fig. 5, along with some periodic orbits discussed 
below. Thus the intersection of the z-nullcline (ee) for Hopf point (ee) intersects 



418 

3 .  

J. C. Alexander and D.-Y. Cai 

2 . _  

1 . _  

0 , _  

- 1  . _  

I 
3 .  2 .  

/ 

~ J  

/ 

I 

/ 

t 
f 

f 
/ 

/ 

I 
J 

i 
f 

I 
f 

f 
t 

/ 

J 

/ 

f 
t 

\ 

/ 

/ 

I I I I I I 
I. O. i. 

x 1 

2. 3. 4. 5. 

Fig. 9. Bifurcation diagram of (3.1) (3.3), with x 1 as bifurcation parameter. The vertical axis is x. 
The figure is discussed in the text and clarified in the next three figures. There is a branch of 
stationary points from lower left to upper right. Hopf  points are demarked with solid squares. 
Maxima and minima of periodic orbits are exhibited. Solid line: stable stationary point; dashed line: 
unstable stationary points; gapped dashed line: upper and lower limits of stable periodic orbits; 
long-short dashed line: upper and lower limits of unstable periodic orbits 

2.0 

1.5-- 

1.0_ 

0.5_ 

0.0_ 

-0.5_ 

-i.0_ 

-1.5_ 

-2.0 

b, d d 

CC 

ee 

/ 
/- 

/ 

i 

f 
I 

J 

c 

-- j j J 

-~ j J 
blb/~/af f 

./ a 

/ 

I I I 
-2 . 5 -2 . 0 -i . 5 -I . 0 

×I 
Fig. 10. Zoom of Fig. 9. Labels locate positions for next two figures 

I 
-.5 0.0 



On the dynamics of bursting systems 

2 . 0  

419 

1.5_ 

1.0_ 

o 

0 .0_  

- 0 . 5 _  . t  " ~ f  

- 1 . 0 _  ~ 

- 1 . 5 -  

- 2 . 0  
I I I I I I 

2 . 7 5  3 . 0 0  3 . 2 5  3 . 5 0  3 . 7 5  4 . 0 0  4 . 2 5  4 . 5 0  
Z 

Fig. 11. Periodic orbits on the branches of Fig. 10 superimposed on the bifurcation diagram of Fig. 
5. Labels correspond to positions in Fig. 10 

2.0 

1.5 

1.0_ 

0.5_ 

0.0_ 

x 

-0.5 

-i i O_ 

-i .5_ 

-2.0 

as  
bb ~ --- ~ _ -- - 

. . . . .  2 - -  _-2 
/ 

- - -  ~ . ~  dd 
- -  7 CC 

e e  

i I I I I I 
2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 

Z 

Fig. 12. z nullclines pertinent to Fig. 10 superimposed on the bifurcation diagram Fig. 5. Labels 
correspond to positions in Fig. 10. The nullclines: (aa) x I = --0.867, Hopf bifurcation point; (bb) 
x~ = - 1.064, Hopf bifurcation point; (cc) x~ = -- 1.544, period doubling on periodic branch coming 
in from right; (dd) Xl = -1.767, homoclinic terminus of periodic branch Coming in from right; (ee) 
x~ = - 2.077, Hopf bifurcation 



420 J . C .  Alexander and D.-Y. Cai 

the S-curve of stationary points essentially at its left turning point. Similarly 
other Hopf  points correspond to intersections with nullclines with other special 
points on the S-curve of stationary points. 

From these Hopf  points continua of periodic orbits branch. For each of 
these branches the maximum and minimum of x are shown in Fig. 9. The 
branch corresponding to bursting is the larger branch of periodic orbits 
orginating at the Hopf  point (zz) at xl = 3.904. For much of the Xl range, there 
is a single periodic orbit on this branch. At Xl = -  1.544, there is a period 
doubling. The nullcline (cc) of Fig. 12 is the one for this value of x~. A second 
period doubling occurs at Xl = -1.560 and a third at xl = -1.564. Presumably 
there is a period doubling cascade to the left of this point. It is in this region 
that true bursting occurs. A period-2 orbit from this branch is exhibited as 
orbit (b) in Fig. 11. Each of these branches seems to terminate at an unstable 
homoclinic. These homoclinics occur with xl ~ -1 .767.  The z-nullcline (dd) 
for this value is also plotted in Fig. 12. Note that it crosses the S-curve of 
stationary points very near the homoclinic point. 

The branch emanating from Hopf  point (ee) is subcritical. The periodic 
orbits branch to the left and are unstable. There is one period-doubling bifurca- 
tion from this branch at x ~ -  -2.089 and possibly some others, all evidently 
unstable. A period-doubled orbit from this region is exhibited as orbit (a) in 
Fig. 11. 
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Fig. 13. The time traces of  two period-doubled periodic orbits of  (3.1)-(3.3) which are on branches 
of Fig. I0. These are the time traces of  the correspondingly labelled orbits o f  Fig. 11. The horizontal 
axis is time normalized to 1 period. The actual periods of the two orbits are ~460 and ~2160, 
respectively. The vertical axis is x. The sharp spikes in the orbits prevent the software frrom following 
the branch further. However (a) is not close to homoclinic; if it were, there would be a long nearly 
horizontal tail at each end. Thus the leftmost branches do not terminate as indicated in Fig. 10. Orbit 
(b) is close to homoclinic, and the rightmost branches likely do terminate as indicated 
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The Hopf  bifurcations (aa) and (bb) are related to the rightmost branch of 
periodic orbits in Fig. 5. They are unrelated to bursting phenomena, but have 
some interest in their own right. The branch emanating from (aa) consists of 
unstable periodic orbits which are single loops in the phase space. The branch 
terminates in a homoclinic. The periodic orbits on the branch emanating from 
(bb) "wind around" many times as the z-value increases and then returns along 
the middle stationary branch. One of  these orbits is exhibited as orbit (c) in Fig. 
11. These orbits are stable, but with relatively small domains of attraction. The 
number of  times the orbit winds around increases without bound as we move out 
the branch, as does the period, and in a suitable topology, the branch terminates 
on the branch from (aa). That  is, this branch is an example of a branch with 
terminates by approaching a simple periodic orbit. The stationary points between 
(aa) and (bb) are stable. 

It may be noted that there is a region between xl ,~ - 2  and xl ,~ - 1.75 in 
Fig. 10 with no stable stationary points and no exhibited periodic orbits of any 
kind. In fact, direct integration of (3.1)-(3.3) indicates there are stable periodic 
orbits in this region. They are probably on a continuation of a branch emanating 
from (ee). The orbits on these branches become very spiked and the software 
cannot follow the branch further; however there is no evidence the orbits are 
approaching a homoclinic. The time traces of orbits at the limits of two of the 
branches visible in Fig. 10 are exhibited in Fig. 13 (both are at the end of  a 
computed period-doubled branch). These are the time traces of  the correspond- 
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ingly labelled orbits of  Fig. 11. A n  orbit  with three spikes obta ined  by direct 
in tegrat ion with x~ = - 1 . 9  is exhibited in Fig. 14. This orbi t  likely lies on a 
con t inua t ion  of the left b ranch  of Fig. 10; however it does no t  have the 
quali tat ive behavior  of  orbits on the left branch,  and  in fact is quali tat ively closer 
to a burs t ing  orbit. Note  that  in this range of  Xl, the z-nullcl ine is below the 
homocl inic  point .  I t  is in this range of Xl that  a horseshoe might  be found.  We 
have not  been able to pin down a non-per iodic  orbit  to look for one. It  is also 
by no means  clear that  the condi t ions  of Te rman  are satisfied. The compressive 
effect is s t rong enough that  the impor t an t  aspects of the dynamics  on  the 
at t ractor  remain  2-dimensional .  
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