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Abstract. How to sample alignments from their pos- 
terior probability distribution given two strings is shown. 
This is extended to sampling alignments of more than 
two strings. The result is first applied to the estimation of 
the edges of a given evolutionary tree over several 
strings. Second, when used in conjunction with simu- 
lated annealing, it gives a stochastic search method for an 
optimal multiple alignment. 
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Introduction 

Estimating the evolutionary "distances" between some 
given strings, for example, DNA sequences, and finding 
an alignment for them, are examples of inductive infer- 
ence problems. We rarely know the "r ight"  answer to a 
question of evolution and must be satisfied with a 
"good"  hypothesis. In previous papers (Allison et al. 
1992a; Yee and Allison 1993), minimum message-length 
encoding was used to infer the relation, if any, between 
two strings and to compare models of evolution or rela- 
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tion. It is not possible to extend the algorithms given 
there directly to K > 2 strings in any simple way due to 
rapidly increasing algorithmic complexity. A stochastic 
process is one possible way around this difficulty. Such 
a process is described for two problems given a set of K 
/> 2 strings and given an evolutionary tree over them: 
first estimating the evolutionary "distances" on the 
edges or arcs of the tree and second finding a good 
alignment of all of the strings. The method relies on 
sampling from the posterior probability distribution of 
alignments. 

In an inductive inference problem we are given some 
data D and wish to form a "good"  hypothesis H about 
the data. The language of hypotheses should be tailored 
to the problem we wish to solve. The following standard 
definitions are useful: 

P (H&D) = 

Definitions: 
P (HID) = 
P (n )  
P (DIH) 
ML (E) 

ML ( H & D )  = 

M L  (HID) - 

P (H) .P (DIH) 
P (D) .P (HID)--joint probability 

posterior probability of H given D 
= prior probability of H 
= likelihood of H 
= - log 2 (P(E))--message length of 

event E 
ML (14) + ML (DIH) 
ML (D)  + ML (I-IID)--joint message 
length 
ML (H'ID) 
ML (H) - ML (H') + ML (DIH) - ML 
(DIH') = - log 2 posterior odds ratio of H 
& H '  



In the present context, the data consist of some given 
strings. Alignments and estimates of evolutionary dis- 
tances are different kinds of hypotheses about those 
strings. P(DIH) is called the likelihood of the hypothesis 
H; it is a function of the data given the hypothesis and it 
is not the probability of the hypothesis. P(H) is the prior 
probability of the hypothesis H. P(HID) is the posterior 
probability of H. 

The message length (ML) of an event E is the minimal 
length, in bits, of a message to transmit E using an op- 
timal code. A long message indicates a low probability 
and a short message indicates a high probability. It is 
convenient to work with message lengths, rather than 
probabilities, for a number of reasons: Typical probabil- 
ity values can be very small and the message lengths are 
of a more convenient magnitude for handling by com- 
puter and by person. The message paradigm reinforces 
the view that there should be no hidden parameter values 
associated with the hypothesis itself. All such values are 
costed explicitly in ML(H). All real-valued parameters 
must be stated to some optimum but finite accuracy, as 
described by Wallace and Boulton (1968). In sequence 
comparison there is a natural null theory which has a 
message length, being that required to state the given 
strings individually; this takes approximately two bits 
per character in the case of DNA. It provides a method of 
hypothesis testing. The null theory assumes that there is 
no pattern or structure in the data. It includes the assump- 
tion that an individual string is random. Wallace and 
Freeman (1987) gave the statistical foundations of min- 
imum message-length encoding. 

We often wish to find the "bes t"  hypothesis, from a 
specified class of hypotheses. (Depending on the appli- 
cation, this might be the best evolutionary tree, a good 
estimate of the evolutionary "distance" between strings, 
or the best alignment). It is generally possible to calcu- 
late, or at least to give a good approximation of, ML(H) 
and ML(DIH) under reasonable assumptions. ML(H) can 
even be ignored if it is a constant for all members of a 
class of hypotheses. It is not often possible to calculate 
ML(D),  which is unfortunate, for it would yield 
ML(HID). However, by subtracting ML(H'&D) from 
ML(H&D) it is possible to get a posterior - log 2 odds- 
ratio for two competing hypotheses H and H'; the shorter 
message indicates the more likely hypothesis. If  one hy- 
pothesis is the null theory this also gives the hypothesis 
test. 

An evolutionary tree which is a good hypothesis 
makes good predictions about the sorts of tuples of char- 
acters that occur in good alignments. (A tuple consists of 
the characters that appear in a column of a conventional 
alignment.) For example, given four related strings sl to 
s4 and assuming that all edges are similar, the tree ((sl 
s2)(s3 s4)) predicts that tuples of the form xxyy appear 
more often than xyxy, whereas ((sl s3)(s2 s4)) favors 
xyxy over xxyy. Similarly, a good alignment contains 
many highly probable tuples, which leads to a short mes- 
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sage length for the data. In the extreme case of the strings 
being identical they can all be transmitted for little more 
than the cost of transmitting one. 

An optimal alignment of a set of strings can be used 
to infer an estimate of evolutionary distances and is 
sometimes used primarily for that purpose. However, a 
single alignment is a much more detailed sort of hypoth- 
esis that an estimate of distances because it also states 
which characters of the descendant strings are related. In 
statistical terms, the optimal alignment problem has 
many nuisance parameters--if the question is one of 
evolutionary distances. The message for the data given 
the estimate of distances should not be based on one 
alignment. It is not the case that distance estimates are 
better than alignments or vice versa; they are answers to 
different questions. Alignments are useful in their own 
right, for some purposes. 

Yee and Allison (1993) showed that in order to obtain 
an unbiased estimate of the evolutionary "distance" be- 
tween two strings it is necessary to use a weighted av- 
erage of estimates from all alignments, whereas the use 
of a single optimal alignment gives a biased estimate. 
The average can be computed in a few steps, each step 
taking time proportional to the product of the string 
lengths. This is feasible for two strings but not more 
unless the strings are short. In this paper, a stochastic 
process is used to average over not all but many align- 
ments of K strings so as to get the estimates of the dis- 
tances on the edges of a tree over the strings in an ac- 
ceptable time. This is an example of Gibbs sampling or 
a Monte-Carlo method (Hastings 1970). Random align- 
ments are generated from the posterior probability dis- 
tribution of alignments. When used in conjunction with 
simulated annealing this also gives a stochastic search 
process for a good alignment. We use tree costs because 
these correspond to explicit evolutionary hypotheses; the 
edges of a tree are modeled individually. We note that 
Lawrence et al. (1993) describe a Gibbs sampling strat- 
egy for finding ungapped signals in a set of protein se- 
quences. That work relates each protein to a central 
model which implicitly represents the constraints of the 
typical member of the set. It is using a form of star costs 
which is probably more suitable for proteins, particularly 
if they are only distantly related. 

There is important prior work in the treatment of 
alignment and evolutionary trees as inductive inference 
problems. Bishop and Thompson (1986) first cast pair- 
wise alignment as a maximum-likelihood problem, sum- 
ming the probabilities of all alignments. Thorne et al. 
(1991, 1992) extended the maximum-likelihood method 
to more general models of evolution, including con- 
served and variable regions, and related probabilities of 
mutation to time. Allison et al. (1992a) included the 
model or hypothesis cost in pairwise alignment and com- 
pared evolutionary models of different complexities on 
an equal footing. Felsenstein (1981, 1983) treated the 
inference of an evolutionary tree from a given multiple 
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string A m TAATACTCGGC 
string B m TATAACTGCCG 

mutation instructions: 
copy 
change(ch) NB. ch differs from the CORE' char in string A. 
de1 
ins(ch) 

a mutation sequence: 
copy; copy; delete; copy; copy; ins(A}; copy; copy; 
del; copy; change(C); copy; ins(G} 

generation instructions: 
match(oh) 
misnlatch(chA, ChB) NB. ChA~Ch B 
i n s ^ ( c h  a) 

insa(ch a) 

a generation sequence: 
match(T); match(A); insA(A); match(T}; match(A); inss(A); match(C); 
match(T); insA(C); match(G); mismatch(G,C}; match(C); insBG 

equivalent alignment: 
TAATA-CTCGGC- 
I1 I1 I1 I I 
TA-TAACT-GCCG Fig. 1. Basic models. 

alignment as a maximum likelihood problem. All these 
are part of a large and important trend to make models of 
evolution explicit for better scrutiny and to place subse- 
quent inferences on a sound statistical footing. 

Models of Evolution 

We model the evolution of a parent string A into a child string B by a 
finite-state mutation machine. Such a machine can copy a character, 
change a character, insert a character, or delete a character. Inserts and 
deletes are collectively called indels. The machine reads A and a se- 
quence of mutation instructions and produces B. 

If we wish to consider A and B to be of equal standing, we model 
their relation under a finite-state generation machine. Such a machine 
can generate the same character in A and in B (match), generate dif- 
ferent characters in A and in B (mismatch), generate a character in A 
only (inSa), or generate a character in B only (insB). The machine reads 
a sequence of generation instructions and produces A and B. 

Traditionally, a (pairwise) alignment is used to show a hypothetical 
relationship between two strings. Each string is padded out with zero or 
more null characters " - - "  until they have the same lengths. The pad- 
ded strings are then written out one above the other. The two characters 
in a column are called a pair, a two-tuple, or just a tuple. The all-null 
tuple is not allowed. It is convenient to write a pair as (x,y) or just "xy" 

in text. 
There is an obvious correspondence between alignments of two 

strings, sequences of generation instructions, and sequences of muta- 
tion instructions, as illustrated in Fig. 1, and they will be used inter- 
changeably as convenient. Given a finite-state generation machine, say, 
the probability of a particular sequence of instructions of a given length 
is the product of the instructions' individual probabilities and the mes- 
sage length of the sequence is the sum of their individual message 
lengths. This depends on P(match), P(mismatch), P(inSa), and P(inss), 
which are called the parameters of the machine. The parameters might 
be given a priori, but in general they must be estimated from the strings. 
They correspond to the evolutionary "distance" of the strings. Note 
that an estimate can be got by counting instructions in one, or more, 
instruction sequences. The parameters consist of several values; a ma- 
chine has more than one degree of freedom. If it is necessary to reduce 
them to a single number representing, say, the number of years since 

divergence, then a rates model in the style of Thorne et al. (1991, 1992) 
could be fitted to them in some way. Our use of machines differs from 
the use of hidden Markov models by Haussler et al. (1993) in that a 
machine models an evolutionary process rather than a family of se- 
quences or the typical member of a family. We believe that the former 
use best captures evolutionary relations and the latter best captures 
functional constraints. 

The advantage of using finite-state machines is that there are stan- 
dard techniques for manipulating them. The composition of two or 
more such machines is yet another one. Figure 2 illustrates the evolu- 
tion of string A from string P as modeled by a mutation machine mA 
and of B from P as modeled by a mutation machine mB. If we know the 
parameters of mA and mB then we can calculate the parameters of an 
equivalent-generation machine m = mA.mB which relates A and B 
directly. There are a number of possible explanation for each genera- 
tion instruction of m in terms of instructions for mA and roB. We expect 
mA and mB to execute more instructions than there are characters in P 
because each copy, change, and delete acts on one character of P but an 
insert does not. The dashed quantities, pA'(c) etc., are the rates of 
instructions per character of P. Summing the rates of all explanations 
for all of m's instructions, we get a rate of (1 + pA'(i) + pB'(i)) instruc- 
tions per character of P for m, the excess over 1 being due to the 
insertion operations of mA and roB. A further normalization step gives 
the parameters of m. Similar calculations are used when several ma- 
chines are combined in the alignment of more than two strings. (See 
section K/> 2 strings.) Note that we do not allow " x ~ - - - ~ y "  to be an 
explanation of xy, for example, because the x and the y are not related 
in the explanation. 

The dynamic programming algorithm (DPA) can be used to com- 
pare two strings under a variety of costs calculating, for example, the 
edit distance as in Fig. 3a. We take an optimal alignment to correspond 
to a most probable instruction sequence. An instruction sequence hav- 
ing the highest probability, and the minimum message length, can be 
found by a DPA using costs based on the message lengths of instruc- 
tions, as in Fig. 3b. (Strictly, a term should be included for the number 
of instructions in the sequence but all plausible sequences have similar 
numbers of instructions and the -log 2 of those numbers are very sim- 
ilar.) The alignment can be recovered by a traceback through the D[,] 
matrix or by Hirschberg's (1975) technique. If, on the other hand, the 
object is to infer the machine parameters, rather than an optimal align- 
ment, something slightly different should be done. There are many 
optimal, near-optimal, and not-so-optimal instruction sequences or 
alignments in general. An estimate, E, of the machine parameters is 



P -- hypothetical, unknown parent 

/ ~ -- mutation machines 

A B -- given descendants 

m = mA.mB -- equivalent generation machine 

m's instns Explanation & 
pair (a,b) rates per character of P. 

matchlx) x<---x--->x x<---ym->x 
x x pA' (c).pB' (c) pA' (ch).pB' (ch)/3 

mismatch(x,y) x<---x--->y x<---y--->y 
x y pA' (c).pB' (ch) pA' (ch).pB' (c) 

inSA(X) X<------X------>_ X<--Ny------>_ 
X -- pA' (c).pB' (d) pA'(ch).pB' (d) 

inss(x) _<---x--->x _<---y--->x 

x pA' (d).pB' (c) pA' (d).pB' (chl 

<---x---> "invisible", 
pA' (d) .pB' (d) not seen 

x<---z----->y 
pA' (chl .pB' (ch)2/3 

x< ...... > 

pA' (i) 

< .... >x 

pB' (i) 

c-copy, ch-change, i-insert, d-delete 

Define instn rates per character of P: 
pA' (instn) i pA(instn)/(1-pA(il); pB' (instn) = pB(instn)/(l-pB(i)) 

Note pA' (c)+pA' (ch)+pA' (d) = pB' (c)+pB' (ch)+pB' (d) = 1 

Sum rates = (l+pA' (i)+pB' (i)) = (l-pA(i).pB(i))/((l-pA(i)).(l-pB(i))} 

421 

Fig. 2. Composition of two machines, 
for DNA. 

Boundary Conditions, i-l.. IAI, j=I..IBI: 
D[0,0] = 0 
D[i,0] = D[i-l,0]+f(A[i], '-') 
D[0, j] - D[0, J-1]+f('-', B[J]) 

General Step, i-l.. IAI, j-I..IBI : 
D[i,j] - g(D[i-l,j-l]+f(A[i],B[j]), -- match or mismatch 

D[i-l,j ]+f(A[i], "-'), -- ins A A[i] 

D[i, 5-1]+f('-', B[j]) ) -- ins B Btj] 

(a) For Edit Distance: 
f(x,x) = 0; f(x,y) - f(x,'-') = f('-',y) = 1 
g(a,b,c) - min(a,b,c) 

(b) For most probable alignment: 
f (x,x) =-log2 (P (match (xl) ) ; f (x,y) =-log2 (P (mismatch (x, y) ) ) ; 

f (x, ' -' ) =-log 2 (P (ins^ (x)) ) ; f (' -', y) =-log 2 (P (ins B (y)) ) 

g(a,b,c)- min (a,b, c) 

(c) For r-theory: 
f( , ) as for (b} 
g (a, b, e) = logplus (a, logplus (b, c) ) 

where logplus (-log 2 (p) ,-log 2 (q)) = -log 2 (p+q) 

Fig. 3. Dynamic programming algorithm 
(DPA) variations. 

itself a hypothesis. The best estimate minimizes ML(E) + ML(A&BJE), 
the parameters being stated to some optimal and finite accuracy. 
ML(A&BIE) is not the message length of any one instruction sequence. 
It is the -log 2 probability that the machine-generated strings A and B, 
i.e., the -log 2 of the sum of the probabilities over all possible instruc- 
tion sequences or alignments that yield A and B. The hypothesis is that 
A and B are related by the inferred machine in some unspecified way 
and it is called the r-theory, the " r "  standing for related. ML(A&BIE) 
can be calculated by a modified DPA which uses "logplus" instead of 
"min"  in its general step, as in Fig. 3c, effectively adding the proba- 
bilities of alignments. For example, logplus(m,m) = m - h We now 
have D[ij] = ML(A[1 . . .  i] & B[1 . . .  j]IE). Note that two different 

alignments represent exclusive explanations and their probabilities can 
therefore be added. Full details are given in Allison et al. (1992a). A 
code for efficiently transmitting A and B given E, using ML(A&BIE) 
bits and not based on a single alignment can be devised, but it is 
sufficient just to know what the message length would be in such a 
code. 

The machine parameters must be estimated if they are not known a 
priori. An iterative approach is used; it may give only a local optimum. 
Assume we require an optimal alignment. Initial parameter estimates 
are "guessed." An alignment is found that is optimal for the current 
estimates using the DPA of Fig. 3b. New estimates are derived from the 
alignment. The process is iterated until it converges, which it must, 
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invariably in a few steps. If, on the other hand, the objective is to 
estimate the machine parameters, rather than to find an optimal align- 
ment, a similar approach is used but with the DPA of Fig. 3c, and this 
is further modified to accumulate weighted averages of instruction 
frequencies when alignments are combined in the general step. These 
values are used in the next iteration. 

In what follows we consider only the simplest model of evolution, 
the one-state model, where the probabilities of instructions are inde- 
pendent of context. In particular, linear indel or gap costs require at 
least a three-state model. It is also assumed that P(insert) = P(delete) 
and that all characters are equally probable, all inserts are equally 
probable, and all changes are equally probable. In that case, we have for 
DNA and the generation machine: 

ML (match (x)) = -log2 (P (match)) + log2 (4) 
= -log2 (P (match)) + 2 

ML (mismatch (x,y)) = -log2 (P (mismatch)) + log2(12) 
ML (insA (X)) = ML (insB (x)) 

= -log2 (P (insA)) + 2 
= --1og2 (P (insB)) + 2 

These assumptions are made in the interests of simplicity as we are 
primarily interested in the underlying algorithms and methods. The 
model is simple but is not unacceptable for DNA. A more general 
model of changes would have to be incorporated if the methods were 
to be used on protein sequences. It is in any case the indels that are the 
main source of algorithmic complexity in string comparison. 

The Posterior Distribution of Alignments 

The stochastic processes to be described are based on a 
method of  sampling alignments (or machine instruction 
sequences), given two strings A and B, with the correct 
frequency as determined by the posterior probabili ty dis- 
t r ibut ion o f  a l ignments .  A sampl ing  procedure  that 
achieves this aim is sketched below with more details 
being given in the appendix. It is extended to multiple 
alignments of  more than two strings in later sections. It 
strongly resembles Hirschberg 's  (1975) l inear-space ver- 
sion of  the DPA in its use of  a recursive divide-and- 
conquer technique. 

Assume that A is of  length m and B is a length n. 
Informally,  the procedure divides A at i = m div 2 into A 1 
= A [ 1  . . .  i] a n d A 2  = A [ i  + 1 . . .  m]. It then chooses a 
point, j, and divides B into B1 = B[1 . . .  j ]  and B2 = B[j 
+ 1 . . .  n]; j might or might not equal n div 2. The 
procedure is then called recursively on A [ 1 . . .  i] and B[1 
• . . j ]  and o n A [ i  + 1 . . .  m] and B[j + 1 . . .  n] until the 
base case is reached. The base case is that A contains just  
one character. It is straightforward to enumerate all the 
al lowable ways of  generating A and B in the base case 
and to sample from them according to probabili ty.  The 
choice o f j  in the general case is made according to the 
probabil i ty distribution of  values taken over all align- 
ments or instruction sequences. The DPA of  Fig. 3c cal- 
culates the probabil i ty of  A and B being genera ted - -by  

summing over all possible alignments of  A and B. (It 
actually works with the - l o g  2 of  probabilities.) It can 
also be used to calculate the probabilit ies of  A[1 . . .  i] 
and each prefix of B being generated; these values are 
contained in one row of  D[,]. Running the DPA " in  
reverse"  gives the probabilit ies of  A[i + 1 . . .  m] and 
each suffix of B being generated. These results are com- 
bined and normalized to give the probabili ty distribution 
o f j  given i, a n d j  is sampled accordingly. This is closely 
related to the notion of  alignment density plots in All ison 
et al. (1992a, Figs. 6, 11). 

The complete sampling procedure is just  twice as 
slow as the DPA that it uses, i.e., it takes O(IAI x IBI) 
time. This is because it solves one full-size (IAI x IBI) 
DPA problem, two problems whose total size (LAI x IBI/2) 
is half  that of  the original problem, four problems whose 
total size is one-quarter that of  the original problem, etc. 

In Hirschberg 's  algorithm the divide-and-conquer tech- 
nique was used to reduce the use of  space to O(IBI)--as 
it still does he re - -because  only two rows of  a matrix of  
length IBI are required to calculate the values needed. 

K/> 2 Strings 

A (multiple) alignment of  K strings is formed by padding 
out each string with zero or more null characters so that 
they all have the same lengths. The padded strings are 
then written out one above another. Each column of  char- 
acters is called a K-tuple or just  a tuple. The all-null tuple 
is not allowed. There are two parts to the optimal align- 
ment of  several strings. The first is the search algorithm 
for finding a good alignment. The second is the cost 
function to be applied to alignments. As before, we take 
an optimal alignment to be a most probable alignment of  

the strings. 
The naive extension of  the DPA to K strings, each of  

approximately n characters, would require o(2Kn K) run- 

ning time, which is infeasible for even modest  values of  
K and n. However,  the DPA can be extended so as to 
align two alignments. A string can be considered to a 
trivial case of  an alignment and its characters to be one- 
tuples. Given an alignment AS over a set of  L strings S 
and an alignment A T  over a set of  M different strings T, 
AS and A T  can be aligned to give an alignment of  K = L 
+ M strings S u T. The algorithm aligns AS, a string of 
L-tuples, with AT, a string of  M-tuples. Al l  that is nec- 
essary is that a cost be given to each K-tuple within the 
DPA; this is described below. The final alignment may 
not be optimal for the L + M strings, but this algorithm 
can be used as an iterative step to improve a multiple 
al ignment to at least a local optimum. This kind of  de- 
terministic heuristic is quite common, and an example 
has been described by All ison et al. (1992b): Given K > 
2 strings and an evolutionary tree over them, an initial 
K-way alignment is found by some suboptimal process. 
The tree is then " b r o k e n "  on some edge which partitions 



the strings into two disjoint sets, S of size L and T of size 
M = K - L. The K way alignment is projected onto these 
two sets of strings to give two subalignments, AS over S 
and AT over T, which are realigned with the DPA to give 
a new overall K-way alignment. The process is iterated 
and terminates when there is no further improvement in 
the full K-way alignment. The results are usually good 
although not guaranteed to give an optimal K-way align- 
ment. The process may get stuck in local optima and 
results may depend on the initial alignment and the order 
in which edges are chosen during improvement. The 
alignment sampling process in the following section pro- 
vides a way around these and other difficulties. 

The other part of the optimal alignment problem is the 
assignment of a cost to an alignment of K strings. We use 
tree costs and model each edge of the evolutionary tree 
by a separate mutation machine. The machines can be 
combined so as to calculate the probability, and hence 
the message length, of each K-tuple examined by the 
DPA. The DPA can then find a good K-way alignment 
and calculate its total message length by summing K-tu- 
ple message lengths. A particular K-tuple of descendant 
characters can have several evolutionary explanations. If 
we knew the hypothetical ancestral characters at the in- 
ternal nodes of the tree it would be a simple matter to 
combine the probabilities of the implied machine instruc- 
tions on the edges. Since we do not, it is necessary to sum 
over all possible assignments to internal nodes in the 
style of Fig. 2. Fortunately, the combinatorial possibili- 
ties can be dealt with efficiently; Felsenstein (1981, 
1983) describes the necessary algorithm. It involves cal- 
culating probabilities for each possible character value at 
each internal node of the tree; an example is given in Fig. 
4. The probabilities of the various instructions for a given 
tuple can also be calculated and can be used to estimate 
instruction probabilities for each machine from a given 
K-way alignment. All this can be done by traversing the 
tree, in O(K) time, for each tuple, but it is a significant 
computation and should not be repeated unnecessarily. 
Therefore results are stored in a lookup-table for fast 
access if ever the tuple is met again, as it probably will 
be. The lookup-table speeds up the algorithm consider- 
ably. Two alignments of four strings of length 500 can be 
aligned, to given an eight-way alignment, in 15 s on a 
SPARC station. 

Sampling Alignments of K > 2 Strings 

It is infeasible to average over all K-way alignments of K 
strings for the purpose of estimating the edges of a given 
evolutionary tree but it can be sufficient to average over 
a large sample of alignments. Unfortunately it is also 
infeasible to extend the alignment sampling procedure of 
two sections previous directly to K > 2 strings for the 
same algorithmic reasons that the DPA cannot be di- 
rectly extended. However, we can think of an alignment 

Actual machine parameters: 
copy change indel 

ml: 0.9 0.05 0.05 
m2: 0.9 0.08 0.02 
m3: 0.7 0.2 0.1 
m4: 0.8 0.1 0.1 
m5: 0.75 0.1 0.15 

A A 

A:0.40 
C:0.59 

m5 

4 

C C 

Probable hypothetical characters. 
Tuple ACAC's probability = 0.00027 

Estimated operations carried out: 
P(copy) P(change) P(indel) 

ml: 0.43 0.57 <0.01 
m2: 0.57 0.43 <0.01 
m3: 0.40 0.60 <0.01 
m4: 0.59 0.41 <0.01 
m5: 0.94 0.06 <0.01 

Fig. 4. Example, explanations ~rtuple ACAC. 
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as the state of a complicated system having many de- 
grees of freedom. It is sufficient to hold many of those 
degrees of freedom fixed while sampling the remainder 
from the conditional posterior distribution, so that is 
what is done: Given a multiple alignment, the tree is 
"broken" on a random edge which partitions the strings 
into two disjoint sets, as in the previous section. The 
multiple alignment is projected onto the two sets of 
strings to give two subalignments. A random realign- 
ment is sampled from the posterior distribution of align- 
ments (of the subalignments) as described for just two 
strings (in section before last) and using the costs for 
K-tuples (as described in the last section). The realign- 
ment is sampled conditional on the subalignments. Each 
subalignment and the degrees of freedom that it specifies 
remain fixed during the realignment. Only the relation 
between the two subalignments is sampled in this step 
but the process is iterated many times, choosing random 
edges. 

The machine parameters are estimated for each mul- 
tiple alignment sampled. Results from all samples are 
averaged to give the final estimate of the machine pa- 
rameters. Standard deviations are also calculated and 
give an indication of the accuracy of estimates. A work- 
ing estimate of the machine parameters is needed to cal- 
culate the distributions in the algorithm and a weighted 
average from "recent" alignments is used for this pur- 
pose; the algorithm seems to be insensitive to the details 
of how this is done. To begin the sampling, an initial 
multiple alignment is found by the deterministic heuristic 
described previously. 
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s9 

\ 

slO 

s8 

e6 

s4 

s2 

s5 

e9 

sll 

el 

e13 

s15 

s14 

/ 
s7 ~ 5 

sl=s3 

s6 

1 s13 
s12 

Ancestor. slffis3, leagth(s l)ffi500 
1st generation: s2 and s3 
2nd generation: s4 to .*7 
3rd generation: s8 to s15 
Probabilities for each edge during evolution= 

P(¢opy)ffi.9; P(change)=.05; P('msert)=P(delete)=.ff25 Fig. 5. Full tree. 

Simulated Annealing 

The alignment sampling procedure of the previous sec- 
tion is trivially modified for use in a simulated annealing 
approach to optimal multiple alignment. At the heart of 
the sampling procedure a point j of string or alignment B 
is chosen to correspond to the midpoint i of string or 
alignment A. The point j is sampled from the probability 
distribution of possible values. If the values of the prob- 
ability distribution are raised to some power p / >  0, and 
the distribution is renormalized, the sampling of j, and 
hence of alignments, is modified in a useful way. When 
p = 0, j is chosen from a uniform distribution. When p = 
1, j is chosen from the posterior distribution implied by 
alignments. When p > 1, j is biased toward the more 
probable values. When p is very large, j is chosen so as 
to lead to an optimal (pairwise) alignment; the procedure 
becomes Hirschberg's algorithm in effect. Increasing p 
implements lowering the temperature in simulated an- 
nealing. Since the algorithm actually uses message 
lengths, the message lengths are multiplied by p, which 
is equivalent to raising the probabilities to the power p. 

This strategy is very different in action from the sim- 
ulated annealing strategy of Ishikawa et al. (1992), which 
makes small perturbations to a multiple alignment. The 
present strategy can make large perturbations to an align- 
ment, especially when p is small. 

Results 

A program was written containing the alignment sam- 
piing procedure and the simulated annealing method de- 
scribed above. It was first tested on artificially generated 
DNA data. Figure 5 shows the artificial evolution of 
three generations of strings. The original ancestor, sl ,  is 
a random string of 500 characters. The first-generation 
descendants are s2 and s3; s3 is identical with sl to make 
all edges similar because we are dealing with unrooted 
trees. Every edge in the tree corresponds to a mutation 
machine with the following parameters: P(copy) = 0.9, 
P(change) = 0.05; P(insert) = P(delete) = 0.025. One 
expects something like 10% mutation from parent to 
child but it could be more or less as the evolutionary 
process is random. One expects something like 20% mu- 
tation between s8 and s9 say, 30% mutation between s4 
and s6, 40% mutation between s8 and sl0, and 50% 
mutation between s8 and s12. Note that alignments can 
be found for s8 and s12 with more than 50% matches 
(their edit distance is 189, not 250) and that an alignment 
with 60-70% matches can be found even for two ran- 
dom, unrelated DNA sequences of similar length. 

In three separate trials, first-, second-, and third- 
generation strings were used as data----each with the cor- 
rect evolutionary tree. The tree for trial 3 includes that 
for trial 2 which includes the trivial tree for trial 1. Three 



Table 1. Estimated edges from evolution at 10% mutation/edge a 
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( i )  d a t a  = 1st generation, s2 and s3: 
Edge Actual det Gibbs 

el: 0.895 0.037 0.068 0.900 0.040 0.061 0.893 0.038 0.070 (0.005) 

(ii) data = 2nd generation, s4 to s7: 
Edge Actual det Gibbs 

el: 0.895 0.037 0.068 0.894 0.044 0.063 0.878 0.038 0.085 (0.009) 
e2: 0.902 0.053 0.045 0.910 0.054 0.036 0.899 0.052 0.049 (0.007) 
e3: 0.919 0.041 0.039 0.916 0.057 0.026 0.917 0.048 0.035 (0.005) 
e4: 0.898 0.055 0.047 0.899 0.059 0.043 0.891 0.054 0.056 (0.007) 
e5: 0.908 0.041 0.051 0.915 0.055 0.030 0.908 0.052 0 . 0 4 1  (0.006) 

Means over subsets of edges: 
e2-5: 0.907 0.048 0.046 0.910 0.056 0.034 0.904 0.052 0.045 
el-5: 0.904 0.045 0.050 0.907 0.054 0.040 0.899 0.049 0.053 

(iii) data = 3rd generation s8 to s15: 
Edge Actual det Gibbs 

el : 0.895 0.037 0.068 0.878 0.060 0.062 0.863 0.043 0.094 (0.016) 
e2: 0.902 0.053 0.045 0.928 0.048 0.025 0.900 0.054 0.046 (0.007) 
e3: 0.919 0.041 0.039 0.915 0.061 0.025 0.920 0.048 0.033 (0.008) 
e4: 0.898 0.055 0.047 0.920 0.038 0.043 0.906 0.036 0.058 (0.009) 
e5: 0.908 0.041 0.051 0.913 0.055 0.032 0.904 0.061 0.035 (0.008) 

e6: 0.891 0.058 0.051 0.896 0.066 0.038 0.893 0.062 0.045 (0.006) 
e7: 0.926 0.035 0.039 0.924 0.035 0.042 0.918 0.031 0.052 (0.007) 
e8: 0.922 0.029 0.049 0.937 0.037 0.026 0.932 0.026 0.041 (0.006) 
e9: 0.898 0.035 0.067 0.909 0.042 0.050 0.895 0.032 0.073 (0.009) 
el0: 0.893 0.060 0.048 0.898 0.048 0.055 0.879 0.052 0.069 (0.009) 
el 1: 0.902 0.049 0.049 0.907 0.057 0.036 0.906 0.053 0.042 (0.007) 
el2: 0.898 0.049 0.053 0.909 0.045 0.046 0.902 0.040 0.059 (0.008) 
el3: 0.916 0.049 0.035 0.912 0.064 0.024 0.906 0.064 0.030 (0.007) 

Means over subsets of edges: 
e2-5: 0.907 0.048 0.046 0.919 0.051 0.031 0.908 0.050 0.043 
e6-13: 0.906 0.046 0.049 0.912 0.048 0.040 0.904 0.045 0.051 
el-13: 0.905 0.045 0.049 0.911 0.050 0.039 0.902 0.046 0.052 

Evolution: Ancestor length = 500. P (copy) = 0.9; P (change) = 0.05; P (insert) = P (delete) = 0.025 for each edge. Key: P (copy) P (change) P 
(indel); actual = frequencies as measured during evolution, det = inferred from a good alignment by deterministic heuristic, Gibbs = averaged from 
1,000 × sampled alignments 

analyses were performed in each trial. First, the deter- 
ministic heuristic was used to find a good alignment and 
parameters were estimated from this alone. The align- 
ment was used as a starting point for the next two anal- 
yses. Second, parameters were estimated from 1,000 sto- 
chast ical ly sampled alignments.  Third, s imulated 
annealing was used over 1,000 trials with the message- 
length multiplier increasing linearly from 1.0 to 4.0. 

The results of these trials are summarized in Table 1. 
The figures marked actual give information from the 
evolution of the strings which is unknown to the analysis 
program. During evolution the machine on each edge had 
parameters P(copy) = 0.9, P(change) = 0.05, P(insert) = 
0.025, P(delete) = 0.025 but there is variation and so the 
actual figures are given. 

The figures marked det give the parameter estimates 
from the putative optimal alignment found by the deter- 
ministic heuristic in each trial. There is the beginning of 

a trend to overestimate P(copy) and, with the exception 
of e7 and el0, to underestimate P(indel). This is consis- 
tent with previous results on two strings (Yee and Alli- 
son 1993). In order to avoid repeated qualification in 
what follows, we often refer to an alignment found by the 
deterministic heuristic or by simulated annealing as an 
"optimal alignment" even though it may only be a near- 
optimal alignment. 

The figures marked Gibbs give the estimates from the 
1,000 sampled alignments in each trial. (The standard 
deviation of the estimate of P(indel) is the largest and is 
the only one reproduced.) The actual proportion of indels 
on each edge lies within about two standard deviations of 
the estimate of P(indel). Note that the standard deviation 
of the estimates for el ,  which is common to each trial, 
increases as the data gets farther from el,  roughly dou- 
bling with each extra generation, and that the estimates 
for this edge are the worst. 
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Table 2. Estimated edges from evolution at 15% mutation/edge ~ 

Edge Actual det SA Gibbs (SD) 

el 0.858 0.056 0.086 0.854 0.089 0.057 0.876 0.073 0.051 0.850 0.073 0.078 (0.015) 
e2 0.849 0.073 0.079 0.862 0.093 0.046 0.869 0.080 0.051 0.838 0.067 0.095 (0.017) 
e3 0.881 0.069 0.051 0.920 0.050 0.030 0.908 0.069 0.024 0.887 0.062 0.052 (0.012) 
e4 0.839 0.085 0.076 0.863 0.103 0.034 0.864 0.119 0.018 0.836 0.107 0.058 (0.014) 
e5 0.833 0.079 0.088 0.845 0.133 0.022 0.833 0.160 0.008 0.836 0.089 0.075 (0.019) 

e6 0.862 0.063 0.076 0.877 0.059 0.064 0.875 0.041 0.085 0.850 0.047 0.103 (0.011) 
e7 0.871 0.069 0.061 0.880 0.079 0.041 0.876 0.093 0.031 0.877 0.084 0.040 (0.009) 
e8 0.885 0.049 0.066 0.890 0.062 0.049 0.896 0.053 0.051 0.890 0.053 0.057 (0.010) 
e9 0.831 0.083 0.086 0.841 0.098 0.062 0.838 0.091 0.072 0.813 0.079 0.108 (0.012) 
el0 0.873 0.066 0.060 0.895 0.045 0.060 0.880 0.047 0.074 0.877 0.052 0.071 (0.009) 
ell 0.837 0.088 0.074 0.845 0.090 0.059 0.860 0.074 0.065 0.836 0.075 0.089 (0.013) 
el2 0.856 0.078 0.066 0.876 0.083 0.041 0.889 0.078 0.033 0.861 0.090 0.049 (0.008) 
el3 0.844 0.084 0.072 0.866 0.083 0.051 0.854 0.079 0.066 0.846 0.075 0.079 (0.011) 

Means over subsets of edges: 
e2-5: 0.851 0.077 0.073 0.873 0.095 0.033 0.869 0.107 0.025 0.849 0.081 0.070 
e6-13 0.857 0.073 0.070 0.872 0.075 0.053 0.871 0.070 0.060 0.856 0.069 0.075 
el-13: 0.855 0.072 0.072 0.871 0.082 0.047 0.871 0.081 0.048 0.854 0.073 0.073 

Message lengths (bits): 6,735 6,701 
Null: 8,045 

7,556 (+109) Mean (SD) 

a Evolution: Ancestor length = 500; P (copy) = 0.85; P (change) = 0.075; P (insert) = P (delete) = 0.0375 for each edge. Key: frequencies or 
estimated probabilities of copy, change, and indel from actual--as counted during evolution, det---estimated from a "good" alignment by 
deterministic heuristic, SA---from an optimal (?) alignment by simulated annealing, Gibbs--from 1,000 x Gibbs sampling 

The deterministic heuristic proved hard to beat in the 
search for an optimal alignment at this moderate level of 

mutation. It was not beaten by simulated annealing in 

any of the above trials although simulated annealing 

found many alignments with a message length just two 

bits more than that found by the heuristic. From other 

trials it also seems that four-way alignment might be 

rather easy, in that the heuristic was not beaten in several 
trials. On eight-way alignment with 10% mutation per 

edge, the heuristic was sometimes beaten, but never by 

more than a few bits on artificial data. Possibly the sim- 
ulated annealing was cooled insufficiently or was cooled 

too quickly. It seems that there is a very large number 

indeed of near-optimal alignments and that the search- 
space is hardly informative close to them. It would take 

extremely t ime-consuming tests to map out the align- 

ment landscape thoroughly. The search for the margin- 

ally "bes t "  alignment may be rather pointless in any 

case. 
Simulated annealing beat the deterministic heuristic 

by a significant 34 bits when the level of mutation was 
increased to 15% per edge. Table 2 gives results for a 
tree with the topology of Fig. 5 where the machine on 
each edge had parameters P(copy) = 0.085, P(change) = 
0.075, P(insert) = P(delete) = 0.0375. Strings such as s8 
and s12 are only tenuously related here. Estimates are 
given from single alignments by the deterministic heu- 
ristic (det) and simulated annealing (SA) and from sto- 
chastic sampling of 1,000 alignments (Gibbs). There is 
an increased tendency for (near) optimal alignments to 
underestimate P(indel). This effect is most marked on 

" in ternal"  edges of the tree, as illustrated by the means 

over different sets of edges. For example, simulated an- 

nealing gives an average of 0.025 against a real figure of 

0.073 over e2 to eS. Sampling gives an average of 0.070. 
Note that much of the improvement in message length in 

going from the heuristic to simulated annealing seems to 

be due to the latter "explaining away" more indels as 

changes in the inner edges. (A similar effect has been 

noted with algorithms under development for the most 
parsimonious alignment problem.) The standard devia- 

tions in sampling's parameter estimates increase with the 

level of mutation as is to be expected. 
Some tests were also done on unbalanced trees with 

edges of different lengths. Sampling continued to yield 

better estimates of actual edges although accuracy de- 
creased and standard deviations increased on the longer 

edges. 
Various tests were done to study the asymptotic be- 

havior of the algorithms and some results are given in 

Table 3. In order to reduce computer time, only the de- 
terministic heuristic was used to find (near) optimal 
alignments to compare with sampling. First, ten data sets 
were generated for the tree of Fig. 5 at 20% mutation per 
edge. This is quite a high level of mutation; across the 10 
data sets the message lengths range from 7,700 to 7,900 

bits for an optimal alignment, from 8,000 to 8,150 bits 
for the null theory, and from 9,100 to 9,900 bits for an 
average alignment. (Note that the message length of the 
r-theory, if it could be calculated, would be less than that 
of an optimal alignment.) Averages over all edges and all 
ten data sets of actual and estimated parameters are 
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Table 3. Averages over all edges & 10 data sets each for four different settings a 

Generation Actual det Gibbs SD 

a) 0.8 0.1 0.1 0.801 0.101 0.099 0.828 0.125 0.048 0.790 0.107 0.103 (0.008 to 0.068) 
b) 0.9 0.05 0.05 0.896 0.052 0.053 0.901 0.054 0.044 0.893 0.051 0.056 (0.003 to 0.008) 
c) 0.8 0.1 0.1 0.795 0.105 0.101 0.815 0.124 0.061 0.785 0.104 0 . I l l  (0.007 to 0.022) 
d) 0.7 0.15 0.15 0.702 0.150 0.148 0.745 0.194 0.061 0.683 0.141 0.176 (0.012 to 0.051) 

a Ancestor length = 500. Key: P (copy); P (change); P (indel). a): tree = (((sl s2) (s3 s4)) ((s5 s6) (s7 s8))) unrooted, b), c) & d): tree = (sl (s2 s3)) 
unrooted, generation: settings for mutation machine on each edge, actual: as counted during evolution, det: estimated from a "good"  or optimal 
alignment, Gibbs: estimated by Gibbs sampling 1,000× per data set, std dev's: range of std dev's for sampling, across ten data sets 

shown in Table 3, line (a). There is an increased tendency 
for optimal alignments to underestimate P(indel) at the 
20% mutation level, particularly on inner edges of the 
tree. In going from Table 2 to Table 3 line (a), the av- 
erage frequency of indels per edge has risen from 0.072 
to 0.099 but the estimate from optimal alignment has 
remained at 0.048. Stochastic sampling gives good av- 
erage estimates, within 0.01 of the actual figures. How- 
ever for some data sets the estimates of some edges by 
sampling have standard deviations of over 0.06, imply- 
ing that little more than one decimal place of such an 
estimate may be usable. Subsequently, ten data sets were 
generated for the tree of three leaves, (sl, (s2 s3)), at 
10%, 20%, and 30% mutations per edge. Averages over 
all edges and all ten data sets of actual and estimated 
parameters are shown for each level of mutation in Table 
3 lines (b)-(d). Sampling gives good estimates although 
standard deviations of estimates rise with the mutation 
level. At the same level of mutation per edge, the esti- 
mates from optimal alignment are better for the three- 
leaf than for the eight-leaf tree, presumably because the 
former has fewer degrees of freedom available for the 
maximization of alignment probability. The mutation 
level of 30% per edge is high and an optimal three-way 
alignment typically fails to be an acceptable hypothesis 
by a margin of 30-60 bits. The results also suggest that 
there may be a small bias in the sampling program to 
overestimate P(indel) at high levels of mutation. This 
possibility is being further investigated. 

Transthyretin is a protein expressed in the brain. It is 
also expressed in the liver of some animals. Amongst 
other things, it is relevant to the evolution of birds, rep- 
tiles, and mammals (Schreiber et al. 1992). The cds se- 
quences for transthyretin (Duan et al. 1991) from human, 
sheep, mouse, rat, chicken, and reptile (T. rugosa) were 
obtained from Genback. There is little doubt about the 
correct topology of the evolutionary tree, which is shown 
in Fig. 6 annotated with the estimates of the parameters 
for each edge as averaged from sampling 1,000 align- 
ments. There must be considerable pressure of selection 
on these sequences, some relationships being close, and 
only the edge joining birds and reptiles to mammals 
shows significant numbers of indels. The standard devi- 
ations of estimates are low as the alignment is con- 
strained. An optimal alignment gives similar estimates. 

Huggins et al. (1992) constructed a tree of chloram- 

phenicol acetyltransferase (CAT) monomers from vari- 
ous bacteria. Tests on five of the corresponding DNA 
sequences (Allison and Wallace 1994) revealed an inter- 
esting possibility. The tree (((CATQ CATB) (CATP 
CATD)) CCOLI) is weakly preferred on the basis of the 
message length of an optimal alignment. However, the 
tree ((CATQ CATB) ((CATP CCOLI) CATD)) is pre- 
ferred on the basis of the average message length of 
sampled alignments, although the difference between the 
trees is less than the sum of the standard deviations in 
message lengths. This implies some uncertainty in the 
placing of CCOLI. Subsequently a sixth DNA sequence, 
PC221, was added to the data set. All test results are clear 
on how PC221 should be linked to each of the two trees 
above. For the six strings, the tree (((CATQ CATB) 
PC221) ((CATP CCOLI) CATD)) is supported over 
(((CATQ CATB) PC221) ((CATP CATD) CCOLI)) by 
both the optimal alignment and the average alignment 
criteria, although only weakly by the former. These trees 
are also closer, in terms of the average message length of 
alignments, than the trees on five sequences. As it hap- 
pens the correct tree is almost certainly (((CATQ CATB) 
PC221) ((CATP CATD) CCOLI)) which is a subtree of 
the tree that Huggins et al. inferred using protein se- 
quences and sequences from more organisms. The situ- 
ation is illustrated in Fig. 7. The annotations on the edges 
come from Gibbs sampling 1,000 alignments of the six 
sequences under either tree as convenient; the two trees 
had good agreement on common edges. The significance 
of the above to the particular case of CAT genes is prob- 
ably not great as the analysis is based on a simple model 
of evolution that is not the best for coding sequences and 
takes no account of expert biological knowledge. How- 
ever, the results do illustrate the important general point 
that optimal alignment message length and average 
alignment message length may support different trees. 
An interesting question is, which one should be believed 
in such cases? The best answer is neither. The best cri- 
terion for choosing a tree would be based on the message 
length of the r-theory: the - log 2 probability of getting the 
strings given the tree, i.e., the - log 2 of the sum of the 
probabilities of all alignments given the tree. This could 
support a different tree entirely. Unfortunately it is not 
feasible to calculate its message length. The message 
length of an optimal alignment provides an upper bound 
on that of the r-theory, and a good alignment contributes 
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sheep  human 

(.911,.O81,.00~,.086,.0011 

~ 73 , . 026 , . 001 )  

taOuse 1.945,.054,y ~(.838,.136,.0261+-.003) 1 

(.951,.041,.008} I(.945,.055,.001 } 

rat I (.853,.146,.0011 

~ ( 923 076 001) 

chicken 

key: (P(match),P(change),P(indel}) 
Genbank ids: HUMPALA(27-470}, OATTHYRE(12-452}, MMALBR(27-467), 

RATPALTA(10-453}, GDTRTHY(26-478), TRTRANST(16-468). 

reptile 

Fig. 6. Edge estimates by sampling 
for transthyretin cds. 

CATQ 

(,84,.16,.~ CATB 
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.84,.14,.02) 
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(.83,.08,.09(+-.01)) 
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CCOLI ............. 
+ 

+ (.81, .18,0) 
+ 

(.67, .32,0)+ +/\ 
CATP CATD 

PC221 

unmarked => P (copy) > .97 

Message Lengths (bits) : 
Tree over 5 sequences 

(((CATQ CATB) (CATP CATD))CCOLI) --- 
((CATQ CATB) ((CATP CCOLI)CATD)) +++ 
Null: 6449 bits 

Tree over 6 sequences 

(((CATQ CATB)PC221) ((CATP CATD)CCOLI)) --- 
(((CATQ CATB)PC221)((CATP CCOLI)CATD)) +++ 
Null: 7752 bits 

opt" 

4369 
4376 

opt' 

5395 
5391 

Data: chloramphenicol resistance gene, cds or orfs from 
Genbank-id organism designation 
m55620 Clostridiumperfringens 459-1118 CATQ 
m28717 Clostrldiumperfringens 145-768 CATP 
x15100 Clostridium difficile 91-726 CATD 
m35190 Campylobacter coli 309-932 CCOLI 
m93113 Clostridium butyricum 145-800 CATB 
spc221 Staphylococus aureus 2267-2914 PC221 

Gibbs (SD) 

4555 (+-40) 
4502 (+-26) 

Gibbs (SD) 

5564 (+-36) 
5519 (+-32) 

Fig. 7. Alternative trees for bacterial 
sequences. 



more to the probability of the r-theory than an average 
one contributes, but there are many more of the latter. It 
is only sensible to exercise caution in such cases. 

Conclusions 

An alignment of a set of strings can give an estimate of 
the edges of an evolutionary tree over the strings• How- 
ever, the use of a good or optimal alignment gives a 
biased estimate of the true values, particularly on the 
inner edges of the tree. Forming the weighted average of 
estimates from all alignments would give an unbiased 
estimate of the edges• This can be done efficiently for 
two strings but is not feasible for more than two. How- 
ever, averaging the estimates from many alignments 
sampled from their posterior probability distribution 
gives a good approximation and is feasible• In addition, 
sampling from the probability distribution raised to an 
increasing power (or from message lengths with an in- 
creasing multiplier) effects a simulated annealing search 
for an optimal alignment• A computer program embod- 
ying these ideas has been implemented for the simplest, 
one-state model of evolution. We intend to extend the 
model although this is not trivial for more than two 
strings• The current implementation is practical for ten 
strings of several hundred characters when used on a 
good work-station. With some optimization each limit 
could be increased somewhat. It is tempting to reduce the 
time complexity of the underlying DPA from quadratic 
to near linear by a windowing technique under the as- 
sumption that most of the probability in alignment space 
is concentrated near the current alignment. However, this 
may be a trap because the assumption may be invalid, 
particularly if the strings contain repeated and transposed 
sections. The sampling method is certainly a good can- 
didate for implementation on a parallel computer• The 
tuning of simulated annealing algorithms is a difficult 
area and more work needs to be done on tuning the one 
described here. 

It would be useful to be able to handle many more 
than ten strings• To do this it will probably be necessary 
to use a method related to the one described here, but one 
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iterated three-descendant problem. Each step will be rel- 
atively simple but more of them will probably be re- 
quired to explore the search space adequately. The re- 
suiting program would be a stochastic version of a 
method proposed by Sankoff et al. (1976)• A program of 
this type is under development. 

Our sampling and simulated annealing techniques 
could be used with other cost functions, such as star and 
all-pairs costs, in multiple alignment provided that the 
costs can be interpreted as something like the - log 2 of a 
probability. It would be sufficient for the rank-ordering 
of the better alignments to be correct at low temperature• 
Simulated annealing could help with the problem of local 
optima that also affects alignment under such costs• 
However, it is not clear what the results of stochastic 
sampling would mean for these costs as they do not seem 
to have an obvious evolutionary interpretation. 

Appendix: Sampling Alignment of Two Strings 

The alignment sampling procedure given in the section 
The Posterior Distribution of Alignments is recursive 
and is in general called to act on a substring of string A 
and a substring of string B. If either substring is empty 
there is only one possible alignment. Otherwise, suppose 
we are given substrings A [ k . . .  m] of string A where m 
> k and B [ h . . .  n] of string B where n i> h. Let i be the 
middle position (k + m) div 2 o f A [ k . . ,  m]. Consider an 
arbitrary alignment of A[k . . .  m] and B[h . . .  n]. A[i] 
appears somewhere in the alignment. It either occurs 
alone as <A[i], - > which is equivalent to delete (A[i]) or 
as (A[i], B[j]) for some j which is equivalent to copy 
(A[i]) or to change (A[i], B[j]). In either case let B[j] be 
the last character of B [ h . . .  n], if any, that occurs with or 
before A[i]; h - 1 ~< j ~< n. There is a certain probability 
distribution over the possible values of j given i. The 
probability of a particular value " j "  is proportional to the 
sum of the probabilities of all alignments that involve its 
choice, i.e., events (i) and (ii) below. 

Divide-and-Conquer Cases o f  A[k ..  m]&B[l . . .  n], 
m > k , n ~ h  

( i )A[k . . .  i -  1] & B [ h . . j ] ;  <A[i], -+; 
• . .  delA[i] . . .  

for some j, h -  1 < = j < = n  
(ii) A [ k . . .  i -  1] & B [ h . . . j -  1]; <A[i], B [j]>; 

. . .  copy A[i] or 
• . .  change A[i] to B [j] 

for some j, h < = j  < = n 

A[i + 1 . . . m ]  & B D'+ 1 . 

A[i+ l . . . m ]  & B [ j +  l .  

• n ]  

• n ]  

which samples definite strings for the internal, hypothet- 
ical nodes of the tree in a stochastic manner. (The current 
method makes only implicit, probabilistic assignments to 
internal nodes.) The problem can then be treated as an 

Now P(A[p . . .  q]&B[r . . .  s]) can be calculated for all 
" s "  by the modified (logplus) DPA of Fig. 3c. Therefore 
the probabilities of each possible value o f j  can be cal- 
culated with two calls to the DPA: one on the forward 
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strings A [ k  . . .  i ] & B [ h  . . .  n] and one  on the reversed  

strings A [ i  + 1 . . .  m ] & B [ h  . . .  n]. The forward  run is 

used to calculate  the probabi l i t ies  o f  A [ k . . .  i] and each 

pref ix o f  B[h  . . .  n] being  genera ted  together,  by any  

ins t ruct ion sequence  w h o s e  f inal  ins t ruct ion inc ludes  

A[i] .  The reverse  run calculates  the probabil i t ies  o f A [ i  + 

1 . . .  m] and each suffix o f  B[h  . . .  n] being  generated 

together  in any way.  Combin ing  the results,  using log-  

plus, g ives  the - l o g  a odds ratios o f  all possible  ways  o f  

part i t ioning an instruct ion sequence  for A and B at the 

instruct ion that includes  A[i] .  This a l lows j to be sampled  

f rom its correct  probabil i ty  distribution. The  sampl ing 

procedure  is then cal led recurs ive ly  on A [ k  . . .  i ] & B [ h  

• . . j ]  and o n A [ i +  1 . . . m ] & B [ j +  1 . . . n ] .  

The coordinates  ( i j )  are cal led an i n t e rna l  t erminal .  

The  coordinates  (IA,IBI) are cal led the ex t e rna l  t erminal .  

Since  the first hal f  o f  the overal l  a l ignment  was forced  to 

end with  ei ther  (A[i], - > or  <A[i],B[j]) and not < - ,B[ j ] ) ,  

any subsequent  reversed  D P A s  are forced to begin  f rom 

an internal  terminal  wi th  one o f  these al ternat ives by 

modi f ica t ion  o f  the boundary  condit ions.  

The  lengths o f  the sections o f  A and B shrink with 

each recurs ive  call  to the sampl ing procedure.  Eventua l ly  

a single character  o f  A remains  and this leads to the base  

cases  of  the procedure.  I f  the call  is for an internal ter- 

minal ,  A[i] must  occur  at the end of  the mini -a l ignment .  

There  are two possibil i t ies:  

I n t e r n a l - T e r m i n a l  B a s e - C a s e s  o f  A [ i ] & B [ j  . . . k], k >! j 

( i )  - 

B [ j ]  

ins 
( i i )  - 

B f j ]  

ins 

- A [ i ]  

B [ ~ ]  - 

ins del 

- A [ i ]  

B [ k  - 1] B[k] 

ins copy  or  

ins change 

The probabi l i ty  o f  each possibi l i ty  is easi ly calcula ted 

and they are sampled  accordingly .  I f  the base  case is for 

the external  terminal  there are more  possibi l i t ies  but  each 

is no more  complex  than before  and they are easi ly sam- 

pied: 

E x t e r n a l - T e r m i n a l  B a s e - C a s e s  o f  A [ i ] & B [ j  . . .  k] 

(i) A [ i ] -  . . .  - or - A [ i ] -  . . .  - etc. 
- B[ j ] . . .B[k]  B[ j ] -  B [ j + I ] . . ,  B [ k ]  

del ins . . .  ins ins del ins . . .  ins 

(ii) A[i] - . . . -  o r -  A[i] - . . . -  etc. 
B[j] B[j + 1] . . .  B[k] B[j]B[j + 1]B[j + 2] . . .  B[k] 

copy/ copy/ 
chng ins . . .  ins ins chng ins . . .  ins 

Essent ia l ly  the same procedure  is used to sample  K-way  

a l ignments  o f  K-str ings as descr ibed in sect ion 5. 
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