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Abstract. In this paper  we use a dynamical systems approach to prove the 
existence of a unique critical value c* of the speed c for which the degenerate 
density-dependent diffusion equation u~ = [D(u)Ux]x + g(u) has: 1. no travelling 
wave solutions for 0 < c < c * ,  2. a travelling wave solution u ( x , t ) =  
c ~ ( x - c * t )  of sharp type satisfying q ~ ( - o o ) = l ,  ~b(z)=0 V z > z * ;  
cy(z*-)  = - c*/D'(O), qS'(z *+) = 0 and 3. a cont inuum of travelling wave solu- 
tions of monotone  decreasing front type for each c > c*. These fronts satisfy the 
boundary  conditions qS( - ~ ) = 1, ~b'( - ~ ) = q~( + ~ ) = qT( + oo ) = 0. We 
illustrate our analytical results with some numerical solutions. 

Key words: Travell ing waves - Non- l inear  diffusion equat ions  - Sharp  solu- 
t ions - Wavespeed  - Degenera te  diffusion 

1 Introduction 

In  spite of  its biological  importance ,  the in t roduct ion  of dispersal into math-  
ematical  models  to describe the space distr ibution pat terns  of  species is 
relatively new. Cont inuous  models  to describe the spread of biological  popu-  
lations in their habi ta t  can be derived in two ways: 1. R a n d o m  walks followed 
by the so-called diffusion approximation and 2. Cont inuous  media  dynamics,  
based on conservat ion  laws. 

The  first systematic  model  to describe the space distr ibution of individuals 
of  a single popula t ion  was derived by Skellam [30]. H e  used a r a n d o m  walk 
app roach  to deduce the equat ion ut = DV2u + g(u) where u = u(r, t) is the 
popula t ion  density at posi t ion r and t ime t, D is a positive cons tant  and  g is the 
g rowth  rate. In  his app roach  the basic assumpt ion  was that  the habi ta t  is 
homogeneous .  F r o m  the model l ing viewpoint  this means  that  the probabi l i ty  
p tha t  an individual  of the popula t ion  moves  f rom one point  r l  to ano the r  
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point r 2 in a small time interval z is the same as that of moving from i" 2 to rl in 
the same time interval ~, i.e., the probability is a space-symmetric function. In 
mathematical terms we have p(rl,r2)= p(rE,rl) for all pairs of points rx 
and r E . 

However, as pointed out by Skeltam [31] himself, there are biological 
(mating, attracting and repelling substances, overcrowding, spatial distribu- 
tion of food, social behaviour, etc.) and physical (light, temperature, humidity, 
etc.) factors which influence population dispersal. The introduction of 
some of these factors into the derivation of the corresponding models 
implies that the probability p is no longer a space-symmetric function. It 
could depend on local biological and physical conditions such as popula- 
tion density or concentration of a chemoattractant or chemorepellant, for 
instance. 

In this paper we restrict ourselves to the case in which the probability is 
a density-dependent function. In Sect. 2 we review several density-dependent 
dispersal models and show that their flux terms are all special cases of a more 
general case. We then consider a special type of solution to this general 
problem, namely, travelling wave solutions (t.w.s.). In Sect. 3 we briefly review 
existence results for t.w.s, for the linear and non-linear density-dependent 
diffusion Fisher-KPP models. We extend these results to the general non- 
linear degenerate diffusion equation. Section 4 contains a review of the local 
non-linear analysis of the system of ordinary differential equations (ODEs) 
associated with the dynamics of the t.w.s, for the partial differential equation 
(PDE). In Sect. 5, by analysing the global phase portrait of the ODE system 
for sufficiently small and then for sufficiently large values of c, we obtain the 
non-existence of t.w.s, and a result which assures the existence of a continuum 
of t.w.s, of front type, respectively. Section 6 contains the result which ensures 
the existence of a saddle-saddle heteroclinic trajectory i.e., the existence of 
a travelling wave solution of sharp type. In Sect. 7 we prove the uniqueness of 
the sharp front. The analytical results are illustrated by considering a few 
examples in Sect. 8. 

2 Density-dependent models 

Density-dependent dispersal has been observed in many biological popula- 
tions. By way of example we briefly mention a few of them. Myers and Krebs 
[23] studied the population density cycles in small rodents, in particular the 
highest incidence of dispersal during periods of population growth and the 
effect of the stress produced by high densities in the population. Carl [7] 
observed that Arctic ground squirrels migrate from crowded areas into 
sparsely populated areas. Morisita (in [29]) studied the spatial segregation of 
the ant-lion Glenuroides japonicus. 

Several models have been proposed to describe the density-dependent 
dispersal phenomenon. The first density-dependent diffusion models in an 
ecological context were constructed by Gurney and Nisbet [14, 15]. By using 
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a random walk approach they deduced the equation 

au 
& = G(r)u - V .J(r, t) (1) 

for a single species of density u where G is the intrinsic rate of growth of the 
population and the flux J takes different forms depending on the type of 
movement involved. For biased motion J = - DVu - 2uVu and for directed 
motion J = - kuVu. 

In the remainder of this section we consider only purely diffusive phe- 
nomena, that is, we concentrate on the flux term in (1). 

Gurtin and MacCamy [16], by using a continuum mechanics approach 
and assuming that the average velocity v of the population is an isotropic 
function of u and 7u i.e., that for any orthogonal transformation 
Q, Qv(u, Vu) = v(u, QVu), derived the equation 

0u 
& = q~'(u)VZu + ~b"(u)II Vu l] 2 (2) 

where q~(0) = ~b'(0) and q~'(u) > 0 Vu >0. 
Montroll and West [21] derived a one-dimensional model for a single 

species by using a random walk approach. Their basic assumption was that 
each step of length a of an individual is determined by the population density 
at the nearest (left and right) points from the departure point. Their model is 

a2U [-aU32 d 
au [D - 2~w(u)u] ff~x2 2 ~ L ~ x J  [w(u)u] (3) &= - , 

where D = aZ/2"r, ~ = kta2g and w is a weighting function whose value tells us 
the direction of motion. For example, if w is constant, then the bias depends 
on the gradient of the population. 

Based on the results of Morisita's experiments on the ant-lion Glenuroides 
japonicus, Shiguesada et al. [29] developed a mathematical model to analyse 
the spatial distribution pattern and the effect of non-linear diffusion on the 
spatial segregation of a species. By analysing the flux of ants throughout 
a compartmentally divided habitat, they obtained the equation 

- =  + 2 u) x 2/ l-aug aU ~2~ -~- + [IgU'(x)] (4) 
at 

where U(x) is a space-dependent function which measures the favourableness 
potential of the habitat at the point x. 

Aronson [4] denoted by u~ and pj(ul), respectively, the population density 
at locus al at time nz and the probability of a jump of aj units starting from 
locus al given that the population density at al is ul. By assuming that 
p j(- ) = 0 for sufficiently large I Jl and that the conservation law ~ j~  z pj(u) = 1 
holds, he proved the following recursion relationship 

÷1 y u" , u .  , = I-jPA l-j), j e Z ,  n e Z  +.  
jsZ 
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Furthermore, he then showed that u satisfies 

~u 2 0 2 
8t - 2 Bx 2 [u~b(u)] - 2 ~xx LUq;tu)J, 

where 

(5) 

L "2 n 1 J pj(uz) ~ (o(u) and - ~ jpj(u']) ~ O(u), 
jEZ a j ~ z  

nz ~ t, al ~ x and a2/z - -~  2 as z, a ~ 0 and 1, m ~ ~ .  The second term in the 
right hand side of (5) can be interpreted as a drift term which vanishes if 

p ~ ( ' )  = p - t ( ' ) .  
If, instead of supposing that the probabilities depend on the local popula- 

tion densities, it is assumed that they depend on the average between the 
beginning and the end of the step, it can be shown [-4] that 

Ot - Ox p(U)~x " (6) 

Note that if we define D such that q~(u) = ~o D(s)ds then model (2) takes the 
form 

Ou 
Ot D(U)V2u + O'(u)llVull2 (7) 

with D(0) = 0 and D(u) > 0 Vu. Observe also that if we set 
~(u)  = [D - 2Ow(u)u] then (3) can be written as 

pul  - ~ + ~ ' (U)Lax j  . (8) 

Also, if we set ~(u) = ~b(u) + u(9'(u) with zero drift term in (5), then this 
equation takes the form (8). Furthermore, setting D(u) - (~ + 2flu) and impos- 
ing a constant potential environment U in model (4), leads to the equation 

0--[ = ~ + D'(u) . (9) 

Hence, models (2), (3) and (4) are all special cases of the one-dimensional 
version of (7). Therefore, we propose to analyse travelling wave solutions for 
a reaction-diffusion model in which the diffusive term takes this general form. 

3 Brief review of  existence of t.w.s, for Fisher-KPP equations 

In this paper we study the problem of existence 
c~(x - ct) = ~b(~) for the parabolic equation 

t3u O [D(u) ~xx ] 
at  - ~ + g(u) , 

of t.w.s., u(x, t)  = 

(10) 
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where the functions D and g are defined on the interval [0, 1] and satisfy the 
following conditions: 

1. g(0) = g(1) = 0, g(u) > 0 Vu~ (0, 1), 
2 2. g ~ Cto.l~ with g'(0) > 0 and 9'(1) < 0 ,  

3. D(0) = 0 with D(u) > 0 Vu~ (0, 1],  
4. D E Cr2o.ll with O'(u) > 0 and D"(u) # 0 VuE [0, 1] , 

with initial condition u(x, O) = Uo(X), where Uo is any piecewise differentiable 
function with 0 < Uo(X) < 1 and boundary conditions 

lim q~(¢)= 1 and lim q5(¢)= 0 .  

We also require that 0 < q5(¢) < 1 for all ¢ ~ R. 
The ecological meaning of t.w.s, for (10) is that the individuals of the 

population disperse throughout the habitat  in a constant density profile 
moving with a constant speed. 

Because of condition 3, (10) degenerates into an O D E  at u = 0, while for 
u > 0 (10) is of parabolic type. This property leads to existence of a particular 
kind of travelling wave solution which can be defined as follows. 

Definition 1. I f  there exists a value c* > 0 of  the speed c, and a value 
~* ~ ( - oe , + oe ) of  ~ such that u(x , t )  = ~)(x - c ' t )  = (o(~) satisfies: 

1. O(~b)q~" + c*qS' + D'(~b)[~b'] 2 + g(~b) = 0, V ~ e (  - oo ,~* ) ,  
2. ~b( -  oe) = 1, q~(~*-) = qS(~ *+) = 0 and ~b(~) = 0 V~e(~*,  + ~ ] ,  

¢* 
3. q~'(~*-) = - ~ ,  q~'(~*+) = 0, and (a'(~) < 0 V ~ e  ( - oe, ~*) , 

then the function u ( x , t ) =  ( a ( x -  c ' t )  is called a travelling wave solution of  
sharp type for (10). 

Before embarking on the analysis of this degenerate problem we briefly 
review the results on existence of t.w.s, for the standard Fisher-KPP equation. 
The first systematic analysis on the existence of t.w.s, for the constant-diffu- 
sion equation ut = Duxx + g(u) where D is a positive constant, g(0) = g(1) = 0, 
g(u) > 0 Vu e (0, 1), g'(0) > 0 and g'(1) < 0 appeared in two separate works 
due to Fisher [12] and Kolmogorov  et al. [19]. In both cases the biological 
motivation was the analysis of the spread of an advantageous gene in a popu- 
lation living in a one-dimensional habitat. In fact the main ideas of the 
methodology introduced by Kolmogorov  et al. are still used today. A modern 
version of their result on existence of t.w.s, can be seen in Fife [11] and Britton 
[6], and may be stated as follows: For  each c > c* the above equation 
possesses a monotonic decreasing front u(x, t) = (a(x - ct) satisfying the boun- 
dary conditions q~( - go ) = 1 and q~( + go ) = 0, if and only if c* is such that 

2 ~  < e* < 2 x / ~  where v = supg(u)/u and the sup is taken on (0, 1). 
For  the non-linear diffusion u~ = [D(u)ux]~ + g(u) where D is a strictly 

positive function on [0, 1] and the kinetic part  g is as in the classic Fisher- 
K P P  equation, Hadeler [17] gave the lower bound on c for the existence of 
t.w.s, of front type. He also found ([18]) an important  relationship between 
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the ODE system associated with the t.w.s, of the Fisher-KPP equation and the 
corresponding ODE system for the t.w.s, of the more general equation 
ui = 1/m(u)[,D(u)ux]x + g(u). Engler [10] proved that the above equation 
possesses t.w.s, if and only if the equation u, = ux~ + D(u)g(u) also has t.w.s. 

Except for  particular cases of the degenerate equation (10), the problem of 
existence of t.w.s, for this equation is still not completely solved. For  the 
equation ut = [uu~]~ + u(1 - u) a complete analysis has been carried out by 
Aronson [4], Newman [24] and Murray [22]. The result may be stated as 

follows. There°exists a value c* = 1/x/~ ofc  such that: 1. For  0 < c < c* there 
are no t.w.s., 2. For  c = c* there is a travelling wave solution of sharp type 
(the explicit form is given in [22,24]); 3. For  each c > c* there is a t.w.s, of 
front type satisfying the boundary conditions ¢( - Do ) = 1 and ~b( + Do ) -- 0. 
Newman [25] studied the more general system ut = [u"u~]x + u(1 - u) using 
Lyapunov functionals. De Pablo and Vfizquez [9] studied the equation 
u~ = [u"]x~ + 2u"(1 - u) with m > 1 and 2 > 0 They proved the existence of 
a unique Iravelling wave of sharp type for 2 = l/m and (m + n) > 0. 

4 Review: the positivity of c and the non-linear local analysis 

Let us rewrite (10) as 

[o. T a-i = D(u) ~ + V'(u) LaxJ  + o(u) . (11) 

Note we note that if a travelling wave solution u(x , t )= ¢ ( x -  ct) of (11) 
exists, then it must satisfy the following second order ODE 

D(q~(~))¢" + c¢'(¢) + D'(¢(¢)) [¢'(~)] 2 + 0(¢(~)) = 0 .  (12) 

Here dash means the derivative with respect to ¢ on D and with 
respect to ~ on ¢. Let ~ * e ( -  oo, + oo] be such that 4 ) ( -  oo) = 1 and 
¢(¢) = 0 Dee [~*, + oo). 

The following proposition holds: 

Proposition 1. For suitable smoothness conditions on the functions D and g on 
the interval [,0, 1],for ~* as in Definition 1, and for the two types ofbehaviour of 
¢(4) in Fig 1, we have 

~loD(w)g(w)dw 
c ~-*o~ D(¢(s)) [¢'(s)]2ds >= O. (13) 

Proof See S/mchez-Gardufio and Maini [-27]. []  

Our approach uses the result that for well-posed problems, to look for t.w.s. 
for a non-linear diffusion equation is equivalent to looking for the set of 
parameters (in which the speed c is included) for which there exist heteroclinic 
trajectories of the system of ODEs which arises from transforming the original 
problem into travelling wave coordinates. (See Sfinchez-Gardufio [-26]). 
Therefore the first part of the study of existence of t.w.s, for (10) consists of 
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¢ 

b 

Fig. la, b. Different behaviours of t.w.s, to (10). a Monotone decreasing with discontinuous 
derivative in ~*. The left derivative tends to i~'(~*-) 4: 0, the right derivative tends to 
¢'(~*+) = 0. This is the  so-cal led  sharp t y p e  front ,  b Monotone decreasing with continuous 
derivative. Here lim¢~ + ~ q~(~) = limes + ~ ¢'(() = 0 

determining the local behaviour  of the trajectories. Setting v = 4 / i n  (12) we 
have the following system of O D E s  

( ~ '  = /) 

(14) 
D ( ( ~ ) v '  = - -  c v  - -  O'(¢)v  2 -- g ( ¢ ) .  

Since D(0) = 0 this system possesses a singularity at ¢ = 0. We can remove it 
by introducing the parameter  z such that  

d z  1 ~¢ d s  

- D(q~(~)) ~ ~(~) = Jo D ( ¢ ( s ) ) "  
(15) 

dz d~ Except  at ¢ = 0, where ~ is not  defined, ~ > 0. Thus  z has an inverse z -1  
which in principle can be obtained from (15). Thus we have 

~b(~) = q~(z(~)) and v(~) = v ( z ( ~ ) ) ,  (16) 
and we obtain 

d e  1 ~ 1 
¢ ' (~)  = ~ (z) ~-(q~(~)) and v'(~) = . . .  (r) D(~b(~)) " (17) 

Substituting qS'(~) and v'(~) into (14) we have the new system without  the 
singularity 

= D ( c ~ ) v  = f ( ¢ ,  v) 
(18) 

(~ = - -  c v  - -  D'(¢)v  2 -- g(~b) - G(¢, v) 

where the dot  denotes differentation with respect to z. 
No te  that  systems (14) and (18) are topologically equivalent in the positive 

half  plane {(¢,v)1¢ > 0, - c~ < v < + oo }. This is true because (16) defines 
a re-parametrizat ion of  the trajectories which, according to (17), preserves the 
orientation. In  the remaining part  of  this section we only sketch the non-l inear 
local analysis of  the phase portrai t  of (18). Full details can be seen in [27]. 
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Since D'(0) > 0, the system (18) has three equilibrium points: Po = (0, 0), 
PI = (1, 0) and Pc = (0, - e/D'(O)). The local behaviour of the trajectories of 
(18) can be obtained as usual by analysing the linear approximation of (18) 
around each stationary point. The Jacobian matrix for all points (¢, v) is 

D'(O) v 
J[F,  G](o, o = _ D,,(0)v2 _ g,(¢) 

Evaluating (19) at Po we have 

J[F, G](o,o) = F 
0 

- g ' ( O )  L 

D(¢) ~ (19) 
-- c -- 2D'(¢)vJ  " 

0 J, (20) 
- - C  

from which t r J  [F, G](o.o) = - c < 0 and detJ  [F, G](o,o) = 0. Hence the lin- 
ear system is inadequate to give us the local behaviour around Po. Since the 
eigenvalues of (20) are 2x = 0 and 22 = - c, Po is a non-hyperbolic point of 
codimension one (Arrowsmith and Place [5]). The corresponding eigenvectors 
are vx = (c, - g'(0)) r and v2 = (0, 1) r, respectively. 

Our non-linear local analysis uses the method of Andronov et al. [1] and 
the Centre Manifold Theorem. According with [1], in order to determine the 
phase portrait  (18) around Po we are required to use higher order terms (h.o.t.) 
in the Taylor  series. For  (18) the second order terms are sufficient. The 
quadratic approximation to (18) around Po is 

~p = D'(O)~bv - F2(q~,v) 
( 2 1 )  

= - g ' ( o ) ¢  - cv + G ~ ( ¢ , v )  - G ~ ( ¢ , v ) ,  

where Gl(¢,v) = --½g"(0)¢ 2 -D'(0)v 2. Therefore by the result in [1], the 
point Po is a saddle-node for the system (21) and hence for (18). 

To complete the analysis around Po we have, by an application of the 
Centre Manifold Theorem (Carr [-8]; Arrowsmith and Place [5]), that (21) has 
a unique one-dimensional invariant stable manifold locally tangent to the 
eigenvector v2 = (0, 1) r and a one-dimensional invariant centre manifold 
locally tangent to the eigenvector vl = (1, - g'(O)/c)T. Both of these manifolds 
contain Po. Moreover, Carr's theorems also guarantee that any trajectory of 
(21) in the vicinity of Po, except those on the stable manifold, tend rapidly to 
the centre manifold. In other words, the dynamics around Po is given by the 
dynamics on the centre manifold. 

For  the application of the Centre Manifold Theorem we re-write the 
system (21) in its normal form, i.e., in the system of coordinates q~-  
generated by the eigenvector basis {vl, vz}. To do this let us introduce the 
following notation 

x = , y = , Q = and 

F D'(0)¢v ] 
I ( x )  = - • 
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In the above terms the system (21) can be written as 

Yc = J[F,  G](0,o)X + f ( x )  . 

We define y such that x = Qy. Substituting into (22) we have 

.~ : Q- 1j[V, G](o,o) Qy + f ( Q y )  . 
By noting that 

Q - 1 J [ F , G ] ( o , o ) Q = [ ~  

we write the normal form of (21) as follows 

where 

°c I 
q~ = _ 1 [D'(0)g'(0)] (~2 + D'(0) q~25 

¢ 

1 
= -- c5 - ~ c  2 [g"(0)c 2 + 4D'(0)g'2(0)] q~2 + G3((~, v') 

(22) 

(23) 

Therefore, in the original coordinates, denoting by h (to avoid additional 
notation) the centre manifold for (21) (hence for (18)) we have 

- - - -  I + 4D'(0)g'2(0)] 2 h(~b) = g'(0) ¢ _ g"(0)c 2 
c -2-J + 0 ( ¢ 3 ) "  

The flow on the centre manifold of (21) is given by the equation 

~ = F2(w,h(w)) - D'(O) {g'(O)w2 + [ -g'(O)c2 + -2~ £ .Jw3]~ -t- O(~b4). 

With functions D and g as in Sect. 3, Fig. 2 shows the dynamics given for the 
above equation for different values of c. There we have denoted by s the ratio 
[ -- 4D'(O)g'z(O)]g"(O). 

The above analysis shows that all trajectories of (21) with initial conditions 
(¢o, Vo) such that x /¢  z + Vo 2 is very small: 

1. tend to Po along the centre manifold for ¢o > 0, 
2. move away from Po tending to the centre manifold for ¢o < 0. 

h ( ( ~ )  ---  - I -~'t(0)C2 +2-~-4D'(0)g'2(0)~j ~2 + 0((~3). 

D' 0 ' G3($ ,  - 3 ( )g (0) _ 

c 

This is the standard form on which the centre manifold theory can be applied 
in a straightforward way. We denote by g = h(¢) the unparametrized version 
of the centre manifold of (23). 

Following Carr's theorems we have that the centre manifold for (23) can be 
approximated (up to second order) by (full details can be seen in Sfinchez- 
Gardufio [26] and Sfinchez-Gardufio and Maini [28]): 
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~h 

J J J / 

L/ 

~b 

l . O  

b 

~b 

/ 
L3 

Fig. 2a-e. Dynamics on the centre manifold for the system (2l) as the speed c changes: 
a c 2 < s, b c 2 = s and e c 2 > s. Given that the equilibrium w - 0 is unstable, the point Po 
is unstable too (see text for details) 

D 7)  

b e 

Fig. 3a-e. Local behaviour of the trajectories of (18) around the equilibrium Po for those 
values of c as in Figs. 2a-c, respectively. This figure shows the centre manifold of the system 
(21), the nodal and saddle regions of Po 

F igure  3 shows the local  behav iou r  of  the t ra jec tor ies  of  (21) (hence those  of  
(18)) a r o u n d  the equ i l ib r ium Po for different values of  c. 

N o w  we comple te  the local  analysis  of  the  t ra jec tor ies  of  (18). Eva lua t ing  
(19) at  P1 we ob t a in  

J [ f ,  G ] ( 1 , o )  - -  - g ' (1) 

f rom which it fol lows tha t  t r J [ F ,  G] (1 ,o )=  - c  < 0 and  d e t J [ F , G ] ( x , o ) =  

g'(1)D(1) < 0. Thus  P1 is a saddle  point .  The  roo ts  of  the charac ter i s t ic  

p o l y n o m i a l  of  (24) a re  21,2 = [ - c +_ x / c  2 - 4 9 ' ( 1 ) D ( 1 ) ] / 2 ,  with 21 > 0 and  
22 < 0 .  The  co r r e spond ing  eigenvectors  a re  vl = (1,21) r and  v2 = (1,22) r, 
respectively.  

The  J a c o b i a n  mat r ix  at  Pc is 

i -c 0c] J[F, G](O,-c/D'(O)) = D " ( 0 ) c  2 . (25) 
- ~ - g ' ( 0 )  
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73 

Po 

y 
Fig. 4. Local phase portrait of (18) 
around the equilibria Pi and Pc 

Setting Vc = -  c /D'(O) ,  we have t r J [ F ,  G]~o.vo) = 0 and d e t J [ F ,  G]~o,vc) = 

- c 2 < 0. Hence Pc is also a saddle point. The eigenvalues of (25) are 21 = - c 
and 22 = c. The associated eigenvectors are vl = (1, - ~ ) r  and v2 = (0, 1) r, 

D"(O)c  z 
where r - ~ - g'(0). 

The phase portrait of (18) around P1 and Pc is as shown in Fig. 4. 
In the following sections we extend this local analysis to the whole phase 

portrait of (18) to obtain the t.w.s, dynamics of (10). 

5 Global analysis I: the existence of a continuum of front type solutions 

Given the equivalence of searching for t.w.s, for (10) and looking for hetero- 
clinic trajectories of the corresponding ODE system in travelling wave coord- 
inates, we focus our attention on finding values of the speed c for which there 
exist trajectories of (18) connecting pairs of equilibrium points° 

First, we introduce the following notation: Let W~(P1) and WZ(Pc)  be the 
left-unstable manifold of P1 and the right-stable manifold of Pc, respectively. 
The following proposition holds: 

Proposition 2. F o r  c = 0 the  s y s t e m  (18) is h a m i l t o n i a n - l i k e .  M o r e o v e r  W ~ ( P a )  

t ends  to  (0, - ~ ) as z ~ + ~ . T h e  p h a s e  p o r t r a i t  is as  i l l u s t ra t ed  in F ig .  5a. 

Proof. For c = 0 the system (18) becomes 

~p = D((9)v  

= _ D ' ( ¢ ) v  z - -  g(¢) .  
(26) 

Now we construct the system 

= [D(¢)]2v  
(27) 

= --  D ( ¢ ) D ' ( ~ ) v  z - -  D ( ¢ ) g ( ¢ ) .  



174 F. S~nchez-Gardufio, P. K. Maini 

a b 

Fig. 5.a, b. Phase portrait of the system (18) for small values of c: a c = 0 and b sufficiently 
small positive values of c 

Since D(~b) > 0 Vq~ E (0, 1] and is a well behaved function there, the paths of 
the trajectories of (26) and (27) coincide on the region ~ defined as follows 

~ =  {(¢,v)[0<q5 < 1, - o c  < v <  + o e } .  

Note that (27) can be written in the hamiltonian form 

q~ _ OH 

~v 
(28) 

OH ~ =  

where 

~(4~,v) = g [D(4~)v] 2 + O(s)g(s)as, (29) 
o 

with ~bo e (0, 1). The trajectories of (27) (and thus those of (26)) coincide with 
the level curves of H(~b, v) - C1 e R. In particular, the trace (path) of the 
trajectory of (26) passing through (1, 0) is given by the level curve 

fj [D(~b)v] 2 + D(s)g(s)ds = H(1,0) ,  (30) 
o 

where 

H(1, 0) = D(s)g(s)ds. 
o 

Hence the negative branch is given by 

v(4)) - O(~) X/2[H(1,o) -- f~,i D(s)a(s)ds I • 
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That the function v is well defined on (0, 1] can be seen by setting 
@((o) = S~o D(s)g(s)ds and verifying that: i) ~(~b) > 0 V~b~ (0, 1], ii) ~ is strict- 
ly increasing on (q~o, 1) iii) ~ attains its maximum at q~ = 1, which is 
9(1) = H(1, 0). 

From the explicit form of the path of W~(P1) given in the above formula it 
can be seen that lim~_~o+V(~b) = - ~ .  This completes the proof. [] 

To continue our analysis we must use the continuity property of the 
solutions of (18) with respect to the parameter c. Therefore we state the 
following result: 

Proposition 3. The solution ((a(~), v(~)) of the initial value problem 

= D ( ¢ ) v  

= -- cv -- D'(c~)v 2 -- 9((~) 

with (9(%) = C~o, v(%) = Vo depends continuously on To, (9o, Vo and c. 

Proof Given that the vector field defined by (18) depends differentiably on ~b, 
v and c, the proof follows by applying the corresponding general theorem on 
continuity of solutions with respect to the parameters and initial conditions. 
Full details can be found in Arnold [2]. [] 

The following proposition can be proved: 

Proposition 4. For sufficiently small positive values of the speed (c ~ 0), the path 
v(4) of  W~'(P1) tends to - oo as 0 --* 0 + , while W~(Pc) leaves (in inverse time) 
the region 

~={@,v) lO<~b_-<  1, - o o  < v < 0 }  

at some point C~o situated to the right of  Po but sufficiently close to Po. The phase 
portrait is illustrated in Fig 5b. 

Proof The first part follows by using Propositions 2 and 3. For  the second 
part we have that for a given c, the uniqueness property implies that the 
manifolds W"~(P1) and W~(Pc) cannot cross each other. Now 
W~(P1) --+ (0, -- oo ) as • ~ oo and for small values of c the vector field (18) 
behaves as in Fig. 5, hence W~(P~) must leave (in inverse time) the region ~ on 
the interval (0, 1). Because of the position of Pc for small c and the vertical 
null-clines of (18) (see Fig. 9), the exit point must be close to Po. [] 

Remark 1. Note that for c :4= 0 the equilibria Pc and Po are always connected 
by a trajectory (a trivial heteroclinic trajectory), but associated with this 
trajectory we have q~ -- 0 which, from the physical interpretation of gb, is not 
important. However, the non-existence of any heteroclinic trajectory of the 
system (18) for sufficiently small values of c implies the non-existence of t.w.s. 
for equation (10). 

In the next part of our analysis, the role of the vertical null-clines (18) 
will be important. From (18), ~ = 0 only on the graph of the following 
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two functions: 

and 

v , ( ¢ )  = 

v 2 ( ¢ )  = 

- c + ~fc  2 - 4D ' (¢)g(¢)  

2D'(¢)  

- c - x / c  2 - 4D ' (¢)g(¢)  

2D'(¢)  

(31) 

(32) 

Let  us list some propert ies of V1 and Vz valid for all positive values of c: 

1. Vl(0 ) = V1(1 ) - -0 ,  V2(0 ) -- - c and V2(1)= - 'B~(o) 
2. As V~(0) o'(o) o'(1) = c < 0 a n d  V~(1)= c > 0 ,  by the Mean Value The- 

orem, there exists a point  (~ e (0, 1) such that  V~((~) = 0 ,  
. 

and 

D'2(0)g'(0) + c2D"(0) 
V~(0)= D,2(0) c (33) 

D'2(1)g'(1) + cZD"(1) 
V~(1) = D,2(1) c (34) 

Note  that  the signs of both  V6(0) and V6(1) depend on the sign of the 
numera tors  in (33) and (34), respectively, which, in turn, depends on the local 
profile (at ¢ = 0 and ~b = 1) of the diffusion coefficient D. Here  we will 
distinguish the following cases: 

1. D"(¢)  > 0 V~b e ]-0, 1 ] ,  
2. D"(¢)  < 0 V C e  [ 0 , 1 ] .  

Observe that  the condi t ion on D to be a strictly increasing function on [0, lJ, 
together  with the above condi t ion 1. implies D'(O) < D ' (¢ )  on (0, 1]; while 
f rom condi t ion 2. given above, together  with assumptions 3 and 4 in Sect. 3, 
we have D'(0) > D' (¢ )  on the same interval. 

Firstly let us determine the sign of V~(0) for each of the above two cases: if 
D"(O) > 0, then V~(0) > 0, while for D"(0) < 0 we have the following possibili- 
ties: 

1. c 2 < g'(0)D'2(0) ~ V~(0) > O, 
D"(0) 

2. c z - g'(0)D'2(0) ~ V~(0) = 0 ,  
D"(0) 

g'(0)D'2(0) 
3. c 2 >  ~ V~(O) < O . 

O"(O) 
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We have ana logous  propert ies  for Vj(1). If  D"(0) < 0 then Vj(1) < 0, while for 
D"(0) > 0 we have the following possibilities: 

1. c 2 < g '(1)D'2(1) ~ Vj(1) > 0 ,  
D"(1) 

2. c 2 g '(1)D'2(1) 
- ~ V j ( 1 )  = 0 ,  

D"0) 

g'(1)D'2(1) 
3. C 2 > =:~ V2(1)  < 0 .  

D"(1) 

In  order  to consider precisely the behaviour  of V1 and V2 on [0, l ]  let us define 
the function ~ by ~ ( ~ b ) =  4D'(gb)g(c~). Since D and g are well behaved  
functions on [0, 1], ~ at tains its m a x i m u m  there. Let  us denote  it by M. 
Figure  6 illustrates typical shapes of  ~-. 

The  shapes of  V1 and 1/2 also depend on the values of c compa red  with M. 
We  consider  the following two cases: 
Case 1. c 2 >= M .  Here  we have: 

1. The  domain  of V1 and 1/2 is the interval [0, 1] , 
2. Vl(~b) -< 0 and V:(~b) < 0 V~b~ [0,1],  with Vl(~b) >_- V:(O); the equali ty 

occurs at ~b* ~ (0, 1) such that  c 2 = M = ~(~b*), and the c o m m o n  value 
/~_(~*) ~* then is - x / D ~ i ,  where is the point  at which the function ~ at tains its 

m a x i m u m ,  
3. Given  that  Y ( ¢ )  is a well behaved (bounded) function on [0, 1], it follows 

tha t  for sufficiently large c, V~(¢) tends to the hor izontal  axis and V2(~b) 
becomes more  negative on (0, 1). 

5r 

/Po P~i 

Fig. 6a, b. For functions D and g as in Sect. 3 these are typical behaviours of 
~(~b) = 4D'(4))g(4)) on [0, 1]. a For D(4)) = (24) + 4)z) and 9(4)) = 4)(1 -- 4)); b For 
D(4)) = (1 - exp( - 4))) and 9(4)) = 4)(1 - qS) 
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Figures 7 and 8 show the typical behaviour of the vertical null-clines defined 
by (18) corresponding to the geometrical features of D and 9 mentioned in 
Sect. 3, together with the vector field defined by (18). 

Case 2. c 2 < M. Here the domain of V1 and V2 is the union of at least two 
disjoint sub-intervals contained in [0, 1]. The qualitative behaviour of Vx and 
Vz where they are defined is illustrated in Fig. 9. 

Now we determine the way in which W~(P~) leaves P~ and W~(P~) attains 
the point Pc. The local analysis around P~ and Pc gives us the following 
information: The slope, M2(Pa), of W:(P1)  at P1 is given by 

M2(P, )  = - c + x / c  2 4D(1)O'(1 ) (35) 
20(1) 

P0 P~ 
. . . . .  ! 

\ / /  
f J  

J 
J 

/ 
/ 

Po P1 

/ J 

P~ 

P0 P1 

\ "-. 

1 t 
j f  

j f  

f 
J 

J 
. /  

c Pc 

' "  .. " 

\ "-. 

j ~  
J 

f / 
j J  

f 
J 

J 

/ /  J 
/ 

/ 

d 

Fig.  7a -d .  Vertical  null-clines 0f(18)  for c 2 2> M with D ( ¢ )  = 2 ¢  + ¢ and g(qS) = q5(1 - 4). 
As D"(O) > 0, it fo l lows that V2(0) and V2(1) changes  sign: see text for details, a c 2 ~- M. 
For c 2 > M: b V~(1) < 0, c V~(1) -- 0 and d V2(1) > 0. The  continuous line represents V1 
and the broken line Vz 
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Fig. 8a-d. Vertical null-clines of (18) for c2> M with D(~b)= 1 -  e x p ( - ¢ )  and 
g(~b) = ¢(1 - ¢). As D"(O) < 0, it follows that V;(1) < 0 and V;(0) changes its sign depend- 
ing on c: see text for details, a c 2=  M. For c2> M: b V;(0)< 0, e V;(0)= 0 and 
d V~(0) > 0. The continuous line represents V1 and the broken line V2 

and the slope, M~(Pc), of W~(Pc) at Pc is given by 

D'Z(O)g'(O) + c2D"(0) 
M~(Pc) = 2D,2(0) c (36) 

We now compare  V~ (1) with M~(P1) and V~ (0) with M~(Pc), respectively. Fo r  
given D and g, Fig. l0 shows the behaviour  of  V~(1) and of M~'(P1), bo th  as 
functions of  c. 

C o m p a r i n g  directly (33) with (36) we conclude that  MS(pc) < V&(0) for 
all c provided bo th  are positive. The  inequali ty is reversed when bo th  are 
negative. Figure 11 shows how W'j(P1)leaves PI and  how W~( Pc) approaches 
Pc. It  illustrates the local behaviour  of the vertical null-clines of(18) at P1 and  
at  Pc. 



180 F. S/mchez-Gardufio, P. K. Maini 
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Fig. 9a, b. Qualitative behaviour of V1 and V2 for c 2 < M with D and g as in: a Fig. 7 and 
b Fig. 8 

¢-g'(1)/D(1) 

L 

¢ 

Fig. 10. Slopes of the vertical null-cline of (18) and of W~(P1) at ~b = 1, as functions of c 

With  all this information,  we are able to prove the following lemma: 

L e m m a  1. For each c such that c 2 > M = max4D'(q~)g(qS)] where the max- 
imum is taken on [0, 1], there exists a heteroclinic trajectory of(18) connecting 
P1 with Po. Moreover, the trajectory W~( P~) leaves (in reverse time) the region 

N =  {(~b,v)10<~b < 1 , -  oc < v < 0 }  

somewhere on {(~b,v)l~b = 1, v < 0}. 

Proof This follows from using the vector field defined by (18), the vertical 
nullclines of  (18) and the local analysis of  (25) at P1 and Pc. 

In  bo th  cases D"(qS) > 0 and D"(~b) < 0 V~b E [-0, 1] with e 2 > M, we have 
two types of  vertical null-clines: those with a c o m m o n  point,  or those wi thout  
any intersection at all, as can be seen from Figs. 7 and 8. Let us start with the 
si tuation as in Fig. 12a i.e., with the vertical null-clines as in Fig. 8a. The 
unstable manifold Wy(PI) leaves P1 as shown in Fig. 12a and enters the region 
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Fig. 11. Behaviour of W ~ ( P 1 )  at Pl and that of W2(P~) at P,, for different values of c (see 
text for details). Compare their behaviour to that Vl(~b) and Vz(~b) at the same points 

Po ~= 

° v,-,J 

P~ 

Pc 

Po 

" - ~ v , " , " ' _ 3 ~ , '  Tz . 
5 {, . ' , .~. .V' , '4 ", , , 2c ,2 ,~  " , ~  vx  \ 

w:( e< 

v~ , 

Fig. 12a, b. Proof of Lemma 1, for: a vertical null-clines as in Fig. 7a. b vertical null-clines 
as in Fig. 7b. See text for details 

~2  = {(q~,v)10 < 4, < 1, Vx(q~) -<_ v < 0}, where the vector field pushes it to- 
wards the graph of  V1. Let (q~o, Vl(qSo)) be the first intersection of  W~(P1) 
with the graph of V1. If  ~bo > q~*, then W~'(P1) re-enters the region ~2  and 
eventually re-attains V~. If  this occurs for 4, < ~b*, then the vector field pushes 
W~'(P1) towards  Po, while if q~0 < ~b* then there are no more  intersecting 
points and W~'(P1) reaches Po as time tends to + az.  
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However, WZ(Pc) reaches Pc as can be seen in Fig. 12a. This occurs because 
with this behaviour of the vertical null-clines the unique possibility for W~(P~) 
to intersect the graph of V2 is at the point (q~l, V2((~l)) with ~bl > q~*. In this 
situation, for inverse time, W~(Pc) must leave the region ~2 at the point 
Q = (1, v) where 1/2(1) < v < 0. 

For  the case in Fig. 12b (which corresponds to Fig. 8b) we conclude that 
W2(P1) ends at Po by showing that the shaded region is a positive invariant 
set of (18) and by using the Poincar6-Bendixon Theorem. We can follow 
similar arguments as those given in the case of Fig. 12a to prove that W~(Pc) 
has the same qualitative behaviour. This completes the proof. [] 

To summarise the analysis carried out thus far, we have proved the following 
theorem: 

Theorem 1. I f  the functions D and 9 satisfy the conditions 1-4 in Sect. 1 and for 
M as defined above, then (10): 

1. Has no t.w.s, for sufficiently small c, 
2. Possesses a monotone decreasing travelling wave solution of front type 

u(x,t)  = ~(x  - ct) satisfying the boundary conditions (a( - oo ) = 1 and 
(a( + oo) = O, for each c such that c 2 > m = max[4D'(qS)9(q~)]. 

6 Global analysis II: monotonicity properties and the existence 
of a sharp type solution 

In the previous section, we proved the non-existence of t.w.s, for (1) for 
sufficiently small c. We also stated there the existence of a front type solution 
for each c such that c 2 > M -- max[-4D'(~b)o(q~)]. In this section we investi- 
gate the phase portrait of(18) (thus the possibility of existence of t.w.s, for (10)) 

for c e IM ---- [-Co, x//-M], where Co is a positive and sufficiently small value 
of c. 

Let el and c2 be two arbitrary values of the speed on IM with cl < c2. 
Define vcl(q~) and vc2(~b) as the trace (path) of W~I(P J and W~(Pc2), respec- 
tively, whose graphs belong to the region ~ = {(qS, v)[0 < q5 < 1, v < 0}. In 
a similar way define Vco((O) and v/-~(~b). We can prove our first monotonicity 
result: 

Proposition 5. For all (o ~ ~0, 1] the following inequality holds 

v/~(~b) < vc2(~b) < vcl(~b) < Vco(~b). (37) 

Proof Note that the equilibrium Pc = ( 0 , -  c/D'(O)) moves monotonically 
away from Po on the negative vertical axis as c increases. Since 
~(b) = - v  > 0, we have that the vertical component of the vector field 
defined by (18) is an increasing function c on the region ~ defined above, while 
the horizontal component does not change with c. 
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Given that the argument is the same for any pair of functions v in (37) we 
prove the inequality only for Vco and vc,. Let us define the region No as (see 
Fig. 13): 

No = {(¢,v)10 _-< q$ = q$o, V<o(¢)) <= v <= 0} .  

Let (~, Vco((O)) be any point on that part of the boundary of No on the graph of 
V<o(~b ). We now consider the vector field (18) for c = cl. For  the above 
property of (~, l?) with respect to c, each trajectory through (q$, Vco(q~)) enters 
No and ends at Po when z --, + oe. For c = c l ,  ~)Cl(0)  = - ci/D'(O) < - co/D'(O), 
thus the point (0, - Cl/D'(O)) is outside of No and W~I(P1 ) cannot enter No in 
reverse time. Hence the result follows. [] 

Remark 2. By Proposition 5 we have that if W~,(Pc,) and Wc~(Pc2) leave N on 
(0, 1), then Wc~(Pc2) does so to the right of W~,(P~,), while if both leave N on 
{(q$,v)lq$ = 1, v < 0}, then Ws,(pc,) does so below W~,(PcJ. 

To state our second result on monotonicity we start by writing the first 
order ODE for the trajectories of (18): 

dv - cv - D'(~b)v z - g((o) 
(38) 

d~ D(~)v 

and note that v = v(qS) also satisfies the boundary condition v(1) = 0. 
Now we define the function ~(qS) as 

~ q ( ¢ ) = ( V z - v l ) e x p { - F ( V Z V z - V ~ v l ) D ' ( s ) + 9 ( s ) ( v z - V l ) d s } j ~  ~ ~ ) ~ - ~  (39) 

where ~ e (0, 1) with ~ < ~b. 

Fig. 13. Proof of Proposition 5. See 
text for details 
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Given that the trajectories of (18) leaving Pi enter the region ~ ,  and in the 
extremum case (for large c) end at Po, it makes sense to consider that both vl 
and vz are negative on (0, 1). The following proposition holds: 

Proposition 6. Let vi and v2 be two solutions of (38) correspondin9 to the speeds 
cl and cz, respectively, satisfying: i) vi(1)= vz(1)= 0 and ii) vl((o) < 0 and 
v2(~) < 0 V q5 ~ (0, 1). Then f#((o) ~ 0 when c~ ~ 1. 

Proof This can be seen in [-27, 28] [] 

The following proposition gives us a monotonicity property of the solutions of 
equation (38) with respect to the speed c. 

Proposition 7. Let vl(~b) and v2(q~) be two solutions of(38) correspondin 9 to c l 
and c2, respectively. Suppose that vl and v2 satisfy; a) vi(1) = v/(1) = 0 and 
b) [Vl(~b)v2(~b)] > 0 V~b~ (0, 1). Then for all dp in the interval (0, 1): 

1. v1(¢) = v 2 ( ¢ ) / f c l  = c2 ,  
2. v1(¢) > v 2 ( ¢ ) / f c ~  > c2 
3. v~(~) < v ~ ( 6 ) / f c l  < c~.  

Proof This follows by using Proposition 6. Full details can be seen 
in 1-27]. [] 

Remark 3. In geometrical terms, Proposition 7 gives us the relative position of 
the graphs of vl and v2 for q5 ~ (0, 1). For example, if ei > c2 (both positive) 
then the corresponding graphs are as illustrated in Fig. 14. 

Now let us denote by (~bc, vc(~bc)) the exit point (in reverse time) of WZ(Pc) 
from the region {(~b, v)10 < q5 < 1, v > 0} and define a critical value c*, of c, as 
follows: 

c* = inf{c > 0lqS~ = 1, vc(1) < 0} . 

Given that for suitable values of c, W2(Pc) leaves the region { (~b, v)l0 < 0 < 1, 
v < 0} on (0, 1) this implies that the set in the definition of c* has a lower 
bound, hence c* is well defined. 

"t] 

Po Pl 

'l) 2 

~b 

Fig. 14. Geometrical interpretation of the 
result given in Proposition 7 
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We can prove the following lemma: 

Lemma 2 (Existence). For c* defined above the trajectory WZ,(Pc,) of (18) 
connects the saddles PI and P<,. 

Proof  We use the continuity of the solutions of (18) with respect to c and the 
monotonicity property given in Proposition 5. The aim is to prove that 
~bc, = 1 and Vc,(qS~,) = 0. We will prove it by contradiction. If the above does 
not occur then we have two possibilities: 

1. ~b~, = 1 and v¢,(~b~,) < 0, 
2. 0 < q$c* < 1 and vc,(q$c,) = 0. 

Consider first possibility 1. We take values ofc  less than but close to c*. Let us 
denote by v~(q$) and vc,(q$) the solutions of (38) corresponding to the speeds 
c and c*, respectively. Their graphs are the paths of the trajectories W~(P¢) 
and W~,(Pc,). Because of Proposition 5 and continuity, v~(q$)> v~,(~b). In 
particular this holds for q$c, = 1. Therefore 0 > v~(1)> vc,(q$~,). But c* is 
defined as the infimum of the c's for which ~bc = 1 and vc(1) < 0, yet we have 
exhibited values of c for which 0 > vc(1) > v~,(q$c,). Hence we have obtained 
a contradiction to the definition of c*. Therefore possibility 1. cannot occur. 

We now consider possibility 2. Here we take values of c larger than but 
close to c*. By using the above notation we have, by Proposition 5 and 
continuity arguments, that vc(~b) < v~,(~b) < 0. Moreover, 0 < ~bc, < q$¢ < 0 
with vc,(q$c) = vc(q$c) = 0. Again we have found values of c which violate the 
definition of c*. Therefore our assumption is false. [] 

7 Global analysis III: the uniqueness of a sharp type solution 
and a summary 

In this section we present an alternative uniqueness result of the saddle-saddle 
heteroclinic trajectory for (18) to that given in [27]. 

Let 0 be the angle between the positive @axis and the vector defined by 
(18) at (~b,v)e ~ i  = {(~b,v)10 < 4b _-< 1, - oo < v < 0}. For  each (q$,v)~ ~1 
and for each c, we have 

O( dp, v; c) = t a n - i [  - -  cv - D' ( 4))v2 - 9( (°! c~)v . (40) 

Now we can prove the following proposition: 

Proposition 8. For f ixed (Q), v) ~ N i ,  0(0, v; c) is a decreasing function o f t .  

Proof  Let (~b, v) be an arbitrary fixed point on ~ l .  By using an elementary 
formula we have 

- O ( ~ ) v  z 

O'(C) = [.D(q~)v]2 + [. __ cv -- D'(q~)v 2 -- g(q~)]2 < 0 .  [] 

The geometrical interpretation of Proposition 8 is shown in Fig. 15. 
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Fig. 15a, b. Geometrical interpretation of Proposition 8 in different regions depending on 
the vertical null-clines: a e z > M and b c z < M. The angle 0 is a decreasing function of c. 
The vectors represented by the broken lines correspond to a larger value of c than for those 
drawn with continuous lines 

With Propositions 7 and 8, we can demonstrate the following result on 
uniqueness of the heteroclinic trajectory for the system (18) connecting P~ 
with Pc. 

Lemma 3 (Uniqueness). For c* defined in the previous section, the trajectory 
Wc. of(18) is the unique one connecting the saddles P1 and Pc*. Moreover, (18) 
has: 

1. No heteroclinic trajectories for 0 < c < c* ,  
2. A saddle (PO-saddle-node (Po) heteroclinic trajectory for c > c* . 

Proof Suppose that there are two critical values c* and c* of the speed for 
which the connections P1 - Pc* and P1 - Pc* exist. Without  loss of generality 
suppose that c* < c~. Let vl(qS) and Vz(~b) be the solutions of(38) correspond- 
ing to the speeds c] ~ and c* respectively, and satisfying the boundary  
conditions: 

c~ c~ 
vl(1) = vz(1) = 0, vl(0) - and v2(0) - 

D'(0) D'(0) " 

By Proposit ion 7, in a lcft-neighbourhood of ~ = 1 the relative positions of vl 
and vz are as in Fig. 16. This holds for all values of the speed c > 0, in 
particular for c~' and c~. The relative positions of Pc~ and Pc* on the negative 
vertical axis is also shown in Fig. 16. This implies the existence of at least one 
point (~bo, Vo) e N1 for which the graphs of vl and v2 intersect transversally. 
This means that the vectors defined by (18) at (qSo, Vo) for c~ and c~' are as in 
Fig. 16. This contradicts Proposit ion 8. Note  that both items 1. and 2. are 
consequences of the continuity of the solutions of (18) with respect to c (see 
Proposit ion 3) and of the behaviour for small and large values of c. Hence the 
result. []  
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P0 

Fig. 16. Proof of Lemma 3. See text 
for details 

For  c* as defined in Sect. 6, and using the continuity of the solutions of(18) 
with respect to c, we can summarize all the results in the previous sections in 
the following theorem which is the main result of this paper: 

Theorem 2. I f  the functions D and 9 in (10) satisfy the conditions 1 to 4 9iven 
above, then the reaction-diffusion equation (10) has: 

1. No. t.w.s, for 0 < c < c * ,  
2. A travelling wave solution u ( x , t ) =  O ( x -  c ' t )  of  sharp type satisfying: 

c* ~ b ( - o o ) = l , ~ b ( ~ ) = 0  V~>~*;  q S ' ( - o e ) = 0 ,  qS ' (~*)=-D-  ~ and 
= 0 

3. A monotone decreasin 9 travellin9 wave solution of  front type satisfyin9 
c~( - oo) = 1 and (o( + oo ) = O for each c > e* . 

8 Illustrative examples 

Here we apply the results of the above sections to different non-linear 
degenerate parabolic equations corresponding to several forms of the diffu- 
sion term D and of the kinetic part 9 in (10). The numerical simulations that we 
will carry out are on the phase portrait and on the solutions of the full PDE. 
In this section we use a program written by Malajovich [20] which draws the 
phase portrait of two-dimensional autonomous systems of ODEs. This pro- 
gram uses a Runge-Kutta method to solve the ODE system. We obtain the 
solution of the full PDE by using the NAG library routine DO3PGF,  which 
replaces the space derivative by finite differences to approximate the PDE by 
a system of ODEs. This system is integrated forward in time using Gear's 
method. We also plot the speed of the t.w.s, as time increases. 

Example 1. Consider the degenerate parabolic equation 

~t - ~x (flu + u 2) ~xx + u(1 - u) , (41) 

where fl > O. 
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Clearly the functions D(u) = (flu + u 2) and g(u) = u(1 - u) satisfy the condi- 
tions imposed in the previous sections and therefore all the above results hold. 

Suppose that (41) has a travelling wave solution u(x,  t) = c~(x - ct)  =- dp(~). 
Setting v = ¢'(~) we have that the second order ODE for ¢ can be written as 
the following singular system 

~ b ' = v  
(42 )  

1 
v ' -  c v - ( f l  + 2 ¢ ) v  z ¢(1 ¢)] +  b2)E - - - • 

Introducing the parameter ~ as in (15) with D(~b) = fie + ~b z, we get a new 
system without the singularity 

= + ¢ 2 >  

(43 )  
f: = - cv - ( f l  + 2 ¢ ) v  2 - qS(1 - q~) 

whose equilibrium points are Po = (0,0), P1 = (1,0) and Pc = (0,v*), where 

In Fig. 17 we show the numerically calculated phase portraits of the 
system (43) for/~ = 2 and for different values of c. These agree with the analysis 
of the previous sections. In particular, this figure shows that system (43) has 
a saddle-saddle heteroclinic trajectory for values of c close to 1.0979 which, by 
Lemma 3, must be unique (see Fig. 17b). Corresponding to this connecting 
trajectory we have a travelling wave solution of sharp type for equation (41). 
This is because ~b( - oo ) = 1 and as z increases ¢ tends to 0 but q~ tends to 
- 1.0979/2. 

Figure 17a shows the non-existence of heteroclinic trajectories, which 
means non-existence of t.w.s, for (41). Figure 17c shows a saddle to saddle- 
node connection which was also predicted by the analysis of the previous 
sections. In this case, since ¢( - oo ) = 1 and ¢( + oo ) = ¢( + oo ) = 0 with 
q~(z) < 0 Vz ~ ( - oo, + ov ), corresponding to the above connection we have 
a monotonic decreasing front type solution for (41). 

In Fig. 18a we show the numerical solution of the PDE (41) for the step 
function initial condition 

1, V x e ( - x  . . . .  0) 
U(x,O) = /go(X) = 0, V X e  (0, Xmax) 

where Xmax > 0 and such that 2Xma x is the size of the space interval on which 
the equation is solved. For  numerical purposes it is enough to consider 
sufficiently large values of x . . . .  The boundary conditions are 

U ( - - X  . . . .  t ) =  1 and u(x  . . . .  t)=OVteEO, tmax] 

where [0, tmax] is the time interval on which the system is solved. 
Each graph in this figure corresponds to the solution of the PDE at regular 

time intervals of duration tmax/n, where n in the number of iterations. Clearly 
this wave is of sharp type. In Fig. 18b we show the speed of a selected point 
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Fig. 17a-c.  Phase  portrai ts  of the system (43) for different values of c: a 0 < c < 1.0979; 
here we take c = 0.81; there are no heteroclinic trajectories, b c = 1.0979; the figure shows 
a good  approximat ion  to the saddle-saddle connection,  e c > 1,1; here we take c = 1.5. The 
figure illustrates a saddle-saddle-node trajectory 
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Fig. 18a, b. Numerical  solution of (41): a The sharp type solution at regular time intervals. 
b Diagram of the speed as a function of time. The calculated final speed c* ~ 1.089 agrees 
well with that  in Fig. 17b 



190 F. Sfinchez-Gardufio, P. K. Maini 

(u = 0.5) on  the  s o l u t i o n  prof i le .  N o t e  t h a t  the  f inal  speed  agrees  c lose ly  wi th  
t h a t  c a l c u l a t e d  for  the  s a d d l e - s a d d l e  he t e roc l i n i c  c o n n e c t i o n .  

E x a m p l e  2. H e r e  we c o n s i d e r  the  e q u a t i o n  

- (1 --  0 x ]  + u(1 --  u ) .  (44) 

W e  fo l low the  s a m e  p r o c e d u r e  as  before .  Af te r  s u b s t i t u t i n g  u ( x ,  t )  = c~(x - c t )  

i n t o  (44), w r i t i n g  d o w n  the  s i n g u l a r  sy s t em of  O D E s  a n d  i n t r o d u c i n g  the  
p a r a m e t e r  z as in (15) w i th  D(~b) = (1 - exp(  - q~)), we get  the  n o n s i n g u l a r  
sy s t em 

q~ = (1 - e - + ) v  
(45) 

b = - c v -  e - %  2 - q~(1 - ~b), 

wi th  e q u i l i b r i u m  po in t s :  Po = (0, 0), P1 = (0, 1) a n d  Pc = (0, - c). T h e  loca l  a n d  
g l o b a l  b e h a v i o u r  of  (45) is as in  p r e v i o u s  sec t ions .  F i g u r e  19 s h o w s  the p h a s e  

V 

V 

Fig. 19a-c. Phase portrait of (45) for different values of c: a c = 0.4; there are no hetero- 
clinic connections, b c = 0.645; this is a good approximation to the critical value c* for 
which there exists the heteroclinic saddle-saddle trajectory, e c = 1.5; here we have 
a saddle-saddle-node connection 
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Fig. 20a, b. Numerical simulation for (44). a Sharp front solutions at regular time intervals 
and b diagram of the speed of the sharp solution as a function of time 

portrai t  of  (45) for different values of  c. These numerical simulations strongly 
suggest that  the critical value c* of the speed c for which there exists 
a heteroclinic saddle-saddle connect ion is ~ 0.645 (Fig. 19b). The behaviour  
for 0 < c < 0.645 is shown in Fig. 19a and that  for c > 0.645 is shown in 
Fig. 19c. 

If  we solve numerically (44) for the step function initial condi t ion as in 
Example 1, we obtain the sharp type solution profile shown in Fig. 20a. 
Figure 20b shows the dependence of  the speed c on the time. After a transient 
phase, the speed reaches a steady value which agrees with the results f rom the 
phase plane simulations• 
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