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Abstract. Two approximate methods are proposed 
for maximum likelihood phylogenetic estimation, which 
allow variable rates of substitution across nucleotide 
sites. Three data sets with quite different characteristics 
were analyzed to examine empirically the performance 
of these methods. The first, called the "discrete gamma 
model," uses several categories of rates to approximate 
the gamma distribution, with equal probability for each 
category. The mean of each category is used to repre- 
sent all the rates falling in the category. The performance 
of this method is found to be quite good, and four such 
categories appear to be sufficient to produce both an op- 
timum, or near-optimum fit by the model to the data, and 
also an acceptable approximation to the continuous dis- 
tribution. The second method, called "fixed-rates mod- 
el," classifies sites into several classes according to 
their rates predicted assuming the star tree. Sites in dif- 
ferent classes are then assumed to be evolving at these 
fixed rates when other tree topologies are evaluated. 
Analyses of the data sets suggest that this method can 
produce reasonable results, but it seems to share some 
properties of a least-squares pairwise comparison; for 
example, interior branch lengths in nonbest trees are of- 
ten found to be zero. The computational requirements of 
the two methods are comparable to that of Felsenstein's 
(1981, J Mol Evol 17:368-376) model, which assumes 
a single rate for all the sites. 
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Introduction 

Variation of substitution rates across nucleotide sites has 
long been recognized as a characteristic of DNA se- 
quence evolution, especially for sequences coding for bi- 
ological products (e.g., Fitch and Margoliash 1967; 
Fitch and Markowitz 1970; Uzzell and Corbin 1971; 
Holmquist et al. 1983; Fitch 1986; Kocher and Wilson 
1991; Wakeley 1993). There have been many attempts 
to account for such rate variation in phylogenetic analy- 
sis. Two approaches are taken. The first assumes that 
rates over sites are random variables drawn from a con- 
tinuous distribution; for example, Nei and Gojobori 
(1986), Jin and Nei (1990), Li et al. (1990), and Tamu- 
ra and Nei (1993) used the gamma distribution for rates 
over sites when they constructed estimators of the dis- 
tance between two sequences. The second approach us- 
es several categories of rates. The simplest model of this 
sort assumes that a proportion of sites are invariable 
while others are changing at a constant rate (e.g., 
Hasegawa et al. 1985; Palumbi 1989; Hasegawa and Ho- 
rai 1991). In accounting for the extreme rate hetero- 
geneity of the control region of the human mtDNA, 
Hasegawa et al. (1993) adopted a three-rate-category 
model, wherein some sites are assumed to be invariable 
while others are either moderately or highly variable. 

Biologically, a continuous distribution may seem to 
be more reasonable, and indeed, when fitting several 
models to the control region of human mtDNAs, Wake- 
ley (1993) found that a two-rate-category model could 
not fit the data properly, while the fit of a gamma dis- 
tribution was statistically acceptable. Recently, the gam- 
ma distribution was also incorporated into a joint like- 
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lihood analysis by Yang (1993), a direct extension of 
the method of Felsenstein (1981), which assumes a sin- 
gle rate for all the sites. However, the algorithm of 
Yang (1993) involves intensive computation, making 
it impractical for data sets with more than a few spe- 
cies. 

In this paper, we introduce two approximate methods. 
The first, called the "discrete gamma model," uses sev- 
eral categories to approximate the continuous gamma 
distribution. Rates over sites are regarded as random 
variables drawn from a discrete distribution. The ad- 
vantage of taking a discrete distribution as an approxi- 
mation to the continuous one is that only one extra pa- 
rameter is needed. This appears to lead to more efficient 
estimation, easier interpretation of results, and also bet- 
ter fit of the model to data. The second method, called 
the "fixed-rates model," predicts rates at specific sites 
by assuming the star tree and the gamma distribution us- 
ing the method of Yang and Wang (in press), and then 
combines sites into several classes according to these 
predicted rates. Sites in different classes are then as- 
sumed to be evolving at known (different) rates when 
other tree topologies are evaluated. 

We will analyze three different data sets to examine 
the fit to data of the discrete gamma model, and its ap- 
proximation to the continuous distribution, in order to 
determine a satisfactory number of categories in the 
discrete distribution. The continuous gamma model 
(Yang 1993), the discrete gamma model, the fixed-rates 
model, and a least-squares method based on pairwise 
distance estimates will all be applied to evaluate the pos- 
sible tree topologies. The results will give us some idea 
about the similarities and differences among those tree 
estimation methods. However, the performance of these 
methods with regard to tree reconstruction will be ex- 
amined more rigorously by using computer simulations. 

Methods  and Data 

of substitution is 1 when the process is in equilibrium. Time t or 

branch lengths in the tree are then measured by the expected number 

of nucleotide substitutions per site. Parameter K > max(-~y,-r~a) ad- 
justs for the transition/transversion rate bias; a K larger than 0 will al- 
low transitions to occur with higher probabilities than transversions. 
The rate matrix was given by Hasegawa and Kishino (1989), and the 
transition probability matrix, P(t) = exp{Qt}, was described by 
Thorne et al. (1992). The model will be designated "F84." 

When applied to real data, the fit of F84 is very similar to that of 
the model of Hasegawa et al. (1985), denoted "HKY85" (results not 
shown). The transition/transversion rate ratios in the two models are 

roughly related as KHKY8 5 = 2KF84 -- 1, where KHKY8 5 is equivalent 
to a/J3 in the notation of Hasegawa et al. (1985). Goldman (1993) pro- 
vides a more accurate formula for this relationship. There is, howev- 
er, a mathematical difference between these two models: while the rate 
matrix of the HKY85 model has four distinct eigenroots (Hasegawa 

et al. 1985), Q in Eq. 1 has only three, that is, k~ = 0, ~'2 = --~t, ~'3 
= L 4 = - (1  + K)~t. The corresponding eigenvectors of Q are the same 
as those for HKY85 and are given by Hasegawa et al. (1985). The F84 
model therefore involves less computation than HKY85, especially for 
the algorithm of Yang (1993). Another result of this difference is that 
a simple formula for estimating the distance between two sequences 
is available for F84 while there is not for HKY85, for the reasons ex- 
plained by Yang (in press). 

Assume that rates over sites follow a gamma distribution with (giv- 
en or independently estimated) shape parameter ct. Let P and Q be the 
proportions of sites with transitional and transversional differences re- 
spectively in the two sequences. Following, e.g., Jin and Nei (1990) 
or Tamura and Nei (1993), parameter ¢ and sequence divergence t, 
as defined by t = [4J~T~C(I + K/Gy) -k 4JIAT~G(I q- K/GR) -t- 4gy~R] ' ~t, 
can be estimated as follows: 

= a/b - 1 (2) 

= [4~T~C(1 + l(/~y) -~ 4JIa~G(1 + K/JIR) 
+ 4~y~R] • b 

where 

[ -log(A)/2, if ot = 
a = ( l+K)~ t t  = i c z ( A _ l / .  1)/2, i f 0 < a < ~  

- -  [ -log(B)/2, if c~ = 
b =  u t =  l a ( B  - l m -  1)/2, i f 0 < c ~ <  

and 

(3) 

(4) 

(5) 

The Model of Nucleotide Substitution. In this paper we will use the 
Markov process model for nucleotide substitution that has been im- 
plemented in the DNAML program in J. Felsenstein' s PHYLIP pack- 
age since 1984 (Felsenstein personal communication). The rate ma- 
trix for this model is 

A - 
2(~Tg c + J~AJIG ) + 2(gTJIC~lR/g Y + :r~A~GJIy/J~R) " [1 -- Q/(2gy0"lg) ] -- P 

2(~T~C/G Y q- JIA~IG/JIR ) 
(6) 

Q _ 
I (1 • K/JIy)~ C ~A ~G ] 

(1 + ~/=Y)=T JIA =a 
JIT JIC (1 + K/JIR)~ c ' 
=T JIC (1 q- K/~R)~ A 

(1) 

where Qij (i ~ j) represents the rate of substitution from nucleotide i 
to j, with the nucleotides ordered T, C, A, G. The diagonals are spec- 
ified by the mathematical requirement that row sums of Q are zero. 
The equilibrium distribution is given by ~T, ~c, ~A' JIG, with ~y = ~T 

+ ~c and ~R = ~A + gC = 1 - ~y. g = 1 / [ 4 ~ c ( 1  + K/TOy) + 4~A~ G 
(1 + K/~R) + 4~y~R] is a scale factor, chosen so that the average rate 

B = 1 - Q/(2ZCyJIR) (7) 

The frequency parameters ~T' ~C, ~A' JIG, are estimated using the 
averages of the observed frequencies in the two sequences. When c~ 
= ~, the gamma distribution reduces to the model with a single rate 
over sites. In this paper, we estimate the c~ parameter to be used in Eqs. 
2 and 3 by the method of Yang (1993) assuming the star tree. Pair- 
wise distances estimated this way can then be used in constructing the 
least-squares (LS) additive tree (Cavalli-Sforza and Edwards 1967) or 
in other distance matrix methods. The maximum likelihood estimates 
of K and t are normally found to be very similar to those obtained from 
Eqs. 2 and 3 (results not shown). 
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The Discrete Gamma Model.  We use k categories to approximate 
the gamma distribution, with equal probability 1/k in each category. 
The density function of the gamma distribution G(c~,[3) is 

g ( r ; c ~ , [ 3 ) = ~ e x p { - ~ r } . r  ~ a, 0 < r < ~  (8) 

with mean E(r) = c~/[3 and variance V(r) = ct/[32. We note that when 
r -- G(c~,[3), cr ~ G(ct,[3/c). The gamma distribution with 13 = J/z re- 
duces to the Z2 distribution, that is, G(ot, I/2) --- X2(2c0. Using these re- 
lationships, we can calculate the percentage point (the cutting point) 
of the gamma distribution, i.e., the value of z such that Prob{r < z} 
= p where r ~ G(c~,13), as follows: 

zo(P,'Ct, 13) = z×2(p;2a)/(213) (9) 

where zx2(p;v) is the percentage point of the Z 2 distribution with v de- 
grees of freedom, which can be calculated by, say, the algorithm of 
Best and Roberts (1975). 

The range of r, (0,~), is cut into k categories by k - 1 percent- 
age points corresponding to p = 1/k, 2/k, . . . .  (k - 1)/k. The rate in 
each category can then be represented by the mean of the portion of 
the gamma distribution falling in the category. Suppose that the two 
cutting points of category i are a and b. Then the rate for category i 
can be obtained as 

4 ,  

3 

t(O 2 

0 7 - -  . . . .  

0 0,5 1 1.5 2 

r 

Fig. 1. Discrete approximation to the gamma distribution G(ct,[3), 
with ct = [3 = l/2. Four categories are used to approximate the con- 
tinuous distribution, with equal probability for each category. The 
three boundaries are 0.1015, 0.4549, and 1.3233, which are the per- 
centage points corresponding to p = 1/4, z14, 3/4. The means of the four 
categories are 0.0334, 0.2519, 0.8203, 2.8944. The medians are 
0.0247, 0.2389, 0.7870, 2.3535, and these are scaled to get 0.0291, 
0.2807, 0.9248, and 2.7654, so that the mean of the discrete distri- 
bution is one. 

ri = f ; r  g(r,'a,~) d r l f  g(r,'c~,13) dr 

= a/[3 [I(b13,c~ + 1) - l(a[3,ct + 1)](l/k) (10) 

where l(z, cQ = [1/F(c0] f~ exp { -x}  • x a - l d x  is the incomplete gam- 
ma ratio, which can be calculated, say, using the algorithm of Bhat- 

tacharjee (1970). 
If we use the median instead of the mean to represent the average 

rate, r i can be calculated as the percentage points corresponding to p 
= l/(2k), 3/(2k) . . . . .  (2k - l)/(2k). In the current context, the scale 
parameter 13 is redundant and can be set equal to c~ so that the mean 
of the distribution is one (Yang 1993). The discrete distribution needs 
also to be scaled so that the mean is one if the median is used. An ex- 
ample is given in Fig. 1, with ct = [3 = 1/2, in which case the gamma 
distribution is really the ~2 distribution with one degree of freedom. 

When the average rate for each category is determined, the prob- 
ability of observing data x at any site can be obtained as 

f (x)  = -~ . f (x lr  = ri) (11) 
i= l  

The conditional probability of observing x, given that the rate for the 
site is r = r e is given by Yang (1993). As the postorder tree traver- 
sal algorithm of Felsenstein (1981) can be used to calculatef(x[r = 
ri) , the computational requirement of the discrete gamma model is 
roughly k times that of Felsenstein's (1981) single-rate model. The 
continuous model was represented as, i.e., F84 + F (Yang et al. 
1994), and we therefore represent the discrete gamma model as, i.e., 
F84 + dG. The discrete gamma model with k = 4, the value to be rec- 

ommended, will be designated F84 + dG4. 
It may be pointed out that the value of r i, which max imizes f ( x l r  

= r~) in Eq. 11, can be used as the best predictor of the rate for the 

site. 

The Fixed-Rates  Model. With this model, substitution rates at 
sites are predicted using the method of Yang and Wang (in press), as- 
suming the star tree and the gamma distribution for rates over sites. 
This method takes advantage of the observation that parameter esti- 
mates and predicted rates are more-or-less stable across tree topolo- 
gies (Yang et at. 1994; Yang and Wang in press). Rates, and their cor- 
responding sites, are then classified into k = 4 categories, (0,1), (1,1 
+ c0, (1 + o, 1 + 2c0, and (1 + 2o,0*), with o = (1/(~) ~2, where 
is the estimated shape parameter of the gamma distribution. This 
scheme of classification is very poor if taken as an approximation to 
the gamma distribution, as the first category covers most of the sites. 

It, however, reflects the discrete nature of the data; with a typical da- 
ta set, the four site patterns that are represented by identical nu- 
cleotides in all the species cover most of the sites, and most often pre- 
dicted rates lbr those sites only are less than one, the average. The rate 
for the ith category, ~, is obtained by averaging the predicted rates 
for sites in the category. The probability of observing data x at a site 
from the ith category is calculated as 

f (x)  = f (Mr  = ?i) (12) 

In this formulation, rates at sites are not regarded as random vari- 
ables; they are constants or parameters. Biologically, if we knew 
which category a site should belong to, such as in the case of the three 
codon positions in protein coding sequences, or if we knew whether 
a site was located in a highly variable region or in a very conserved 
region, such information could be used. When we lack such infor- 
mation, a good guess, as provided by the method of Yang and Wang 
(in press), may be used. Mathematically, the contribution to f(x) from 
categories other than the most probable may be very small and may 
therefore be ignored. 

Several alternatives seem possible concerning the implementation 
of this method. Possibilities and problems concerning the estimation 
of the c~ parameter will be discussed later. It is possible to use the rates 
obtained from the star tree and the continuous gamma distribution on- 
ly to classify the sites, while rates for site classes can be estimated 
by the likelihood function based on Eq. 12. Parameter ~: can also be 
estimated this way. It is not very clear which options will produce 
good performance. In this study, the average rates for site classes, ~, 
and parameter ~; are all obtained from the star tree under the contin- 
uous gamma model, as this saves computation. Calculation of the like- 
lihood under this model, that is, based on Eq. 12, involves roughly the 
same amount of computation as that of Felsenstein's (1981) single- 
rate model. 

Data. We choose three data sets for which rates of substitution are 
clearly variable over sites, while other aspects, such as the amount of 
evolution as reflected in branch lengths in the tree, and the transition/ 
transversion rate bias, are quite different• For sequences such as 
pseudogenes or "junk" DNA, for which rates are more-or-less 
constant over sites, the methods considered in this paper are not use- 
ful. 

The mtDNA Sequences f rom  Primates. The 895-bp mtDNA se- 
quences of human, chimpanzee, gorilla, orangutan, and gibbon (Brown 



Table 1. Likelihood values and estimates of parameters as functions of k, the number of categories in the discrete gamma model a 
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Branch lengths 

k f 6 ~ 5  6<-->4 6<-->7 7 ~ 8  7 ~--'3 8<-->1 8 ~ 2  ~ 

1 --2, 

2 - 2  
3 - 2  
4 - 2  
5 - 2  
6 - 2  
7 - 2  
8 - 2  
9 - 2  

10 - 2  
12 - 2  
15 - 2  
20 - 2  

- 2  

667.08 0.1385 0.0998 0.0531 0.0174 0.0578 0.0412 0.0539 4.344 NA 
625.55 0.2471 0.1627 0.0730 0.0225 0.0685 0.0504 0.0651 6.614 0.038 
620.90 0.4686 0.2842 0.1062 0.0347 0.0669 0.0559 0.0700 11.239 0.183 
621.18 0.4665 0.3010 0.1151 0.0341 0.0738 0.0576 0.0734 11.619 0.212 
621.64 0.4482 0.2953 0.1151 0.0335 0.0777 0.0586 0.0750 11.359 0.228 
621.98 0.4393 0.2917 0.1142 0.0334 0.0801 0.0594 0.0760 11.198 0.238 
622.21 0.4348 0.2897 0.1134 0.0333 0.0816 0.0602 0.0767 11.098 0.243 
622.39 0.4325 0.2887 0.1129 0.0334 0.0827 0.0608 0.0772 11.037 0.247 
622.51 0.4316 0.2884 0.1126 0.0334 0.0835 0.0613 0.0776 10.999 0.249 
622.61 0.4313 0.2884 0.1124 0.0335 0.0842 0.0617 0.0779 10.977 0.251 
622.74 0.4319 0.2890 0.1122 0.0336 0.0852 0.0625 0.0785 10.959 0.252 
622.86 0.4340 0.2904 0.1123 0.0338 0.0861 0.0632 0.0792 10.960 0.253 
622.96 0.4375 0.2928 0.1126 0.0340 0.0871 0.0640 0.0799 10.986 0.253 
623.06 0.4532 0.3033 0.1148 0.0349 0.0892 0.0659 0.0821 11.127 0.248 

a The mtDNA data for five species (895bp) were analyzed, assuming the best tree (Fig. 2) and the F84 model of nucleotide substitution. The 
averages of nucleotide frequencies across species are wq: = 0.2532, n-r e = 0.3289, VA = 0.3120, and ~r~ = 0.1059 with ~max = -2,476.97. The 
branches are specified by their two nodes in the tree shown in Fig. 2 

et al. 1982) were analyzed. This segment of the mitochondrial genome 
codes for parts of two proteins at the two ends and three tRNAs in 
the middle. Rates are highly variable over sites. The transition/trans- 
version rate bias is very high for these sequences, and only a small 
amount of evolution is involved. 

This data set has been expanded since Brown et al. (1982), and 
we added sequences of this region from crab-eating macaque, squir- 
rel monkey, tarsier, and lemur to form another, larger, data set. The 
sequences were aligned by A. Friday by eye. After sites involving in- 
sertions or deletions have been excluded, there are 888 nucleotides in 
each sequence. A much greater amount of evolution is now involved 
due to the addition of more distantly related sequences. These two da- 
ta sets can be distinguished by their numbers of species. 

The et- and {3-Globin Genes from Mammals. The c~- and [3-globin 
genes of a primate (human), an artiodactyl (goat for the ct-globin gene 
and cow for the f3-globin gene), a lagomorph (rabbit), a rodent (rat), 
and a marsupial (the native cat for the ot-globin gene and opossum for 
the [3-globin gene) were analyzed. As the evolutionary dynamics of 
those two genes appear to be very similar, they were combined into 
one data set. Only the first and second codon positions in the coding 
regions were used, and there are 570 nucleotides in each combined 
sequence (2 × 141 for the c~-globin gene and 2 X 144 for the [3-glo- 
bin gene). This data set is characterized by high rate variation over 
sites, relatively low transition/transversion rate ratio, and intermedi- 
ate branch lengths. 

The Small-Subunit rRNAs (ssrRNA). Small-subunit rRNA se- 
quences of Sulfolobus solfatarius, Halobacterium salinarium, Esch- 
erichia coli, and Homo sapiens as analyzed by Navidi et al. (1991) 
were used. There are 1,352 nucleotides in the sequence. Rates do not 
appear to be highly variable over sites for those sequences, and • is 
not large. The sequences are very different. Even nucleotide fre- 
quencies are quite different among species, suggesting that the sub- 
stitution processes may differ among lineages. For the purpose of 
this study, however, this aspect of the inaccuracy of the models is ig- 
nored. 

Results 

The data sets are analyzed by using the discrete gam- 
ma model, assuming different numbers of categories (k), 

in order to find when the model produces a satisfacto- 
ry fit to the data and when the model produces a good 
approximation to the continuous gamma distribution, as 
reflected by an estimate of the ct parameter that is close 
to that obtained under the continuous gamma model. 
Obviously, k = 1 is the single-rate model, while k = co 
is equivalent to the continuous gamma model. Both the 
mean and the median for each category have been used 
in the analyses, but as one might expect, the differ- 
ences between them are not large. We therefore only 
present results obtained from the use of the mean, with 
comments given for the use of the median. The F84 + 
F, F84 + dG4 models, the fixed-rates model, and the 
pairwise least-squares method are also applied to all the 
tree topologies for the three data sets. Comparison of re- 
sults concerning tree estimation will give us some feel 
about the similarities and differences among these meth- 
ods. The frequency parameters in the F84 model are es- 
timated by using the averages of  the observed frequen- 
cies for all the models (methods). We do not assume the 
existence of  a molecular clock, and as F84 is a re- 
versible-process model, only unrooted trees can be iden- 
tified (Felsenstein 1981). 

The mtDNA Sequences 

Results obtained from the 895-bp mtDNA sequences for 
five species under the discrete gamma model, F84 + 
dG, are presented in Table 1. The relationship among 
these species is probably (((human, chimpazee), goril- 
la), orangutan, gibbon) (e.g., Hasegawa 1991); this tree 
structure is assumed in the analysis (Fig. 2). The discrete 
gamma model with k = 1 is equivalent to the single-rate 
model. Branch lengths are severely underestimated by 
this model as rate variation over sites is ignored. Param- 
eter ~c is also underestimated when compared to the es- 
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4. orangutan 

3. gorilla 7 0 . 3 0 3 3  
1. human ] 0.0893 

0.°"5X, o3491 0.114s 
0~08J8 7 

2. chimpanzee 

5. gibbon 

Fig. 2. The maximum likelihood tree from the 895-bp mtDNA se- 
quences for five species. The F84 + F model was assumed. Branch 
lengths are measured by the average numbers of nucleotide substitu- 
tions per site. 

t imate obta ined from F84 + F (Table 1). Both aspects 
were discussed by Yang et al. (1994). 

As one would expect,  the l ike l ihood increases very 
rapidly  with k when k is very small.  The best  fit occurs 

at k = 3, with ( log-) l ike l ihood ~ = -2 ,620 .90 ,  param-  
eter est imates ~ = 11.239, d = 0.183. When  k further 
increases,  the l ike l ihood decreases  very s lowly,  until 
= - 2 6 2 3 . 0 6  for the continuous gamma model  (k = 
~).  Est imates  of  parameters  K and c~ under F84 + F are 

= 11.127 and d = 0.248. To get a good approxima-  
tion to the continuous gamma model ,  as ref lected by a 
close est imate of  c~, a large k seems to be needed. When  
the median  for each ca tegory  is used ins tead of  the 
mean,  the best  fit occurs at k = 3, with e = -2 ,620190,  

= 11.239, and d = 0.174; the model  fits the data jus t  
as well  as the use of  the mean,  but gives a poorer  ap- 
p rox imat ion  to the continuous gamma distribution.  

Al l  the 15 bifurcat ing trees and the f ive-species  star 
tree are evaluated  using different  models  (methods).  
The max imum l ike l ihood tree under F84 + F is shown 
in Fig. 2. This tree can be des ignated HC-G,  as orang- 
utan and g ibbon are the outgroups.  The second and 
third best  trees are s imi lar ly  des ignated  CG-H and HG- 
C respect ively.  L ike l ihood  values and parameter  esti- 
mates  ob ta ined  f rom these three bes t  trees are e = 
- 2 6 2 3 . 0 6 ,  ~ = 11.127, and d = 0.248 for HC-G (Table 
1), e = - 2 , 6 2 6 . 6 0 ,  ~ = 11.926, and d = 0.224 for CG- 
H, and ~ = 2,626.62, ~ = 12.288 and d = 0.220 for HG- 
C, respect ively .  Est imates  of  parameters  obta ined from 
the star tree under F84 + F are ~ = 20.884, and d = 
0.151 with e = - 2,630.38; these values of  parameters  
are used in the f ixed-rates  model.  The discrete gamma 
model  with k = 4, F84 + dG4 produces  s imilar  results 
to the F84 + F model;  the three best  trees are HC-G,  
H G - C ,  and  C G - H ,  w i t h  l i k e l i h o o d s  - 2 , 6 2 1 . 1 7 ,  

- 2 , 6 2 5 . 3 3 ,  and - 2 , 6 2 5 . 5 4 ,  respect ively .  The f ixed- 
rates model  also supports HC-G separation. When  d = 
0.151, which is obtained from the star tree under F84 + 
F, is used in Eq. 3 to calculate pairwise  distances,  the 
LS method supports the CG-H separation, al though as- 
suming a single rate for all the sites (c~ = ~)  in Eq. 3 
would choose  the HC-G separation. 

The F84 + dG model  is also appl ied  to the m t D N A  
data for nine species.  No at tempt has been made  to 
search for the max imum l ike l ihood tree, and the tree 
topology assumed in the analysis  separates the species 
in the order  human,  chimpanzee ,  gori l la ,  orangutan,  
gibbon,  crab-eat ing macaque,  squirrel monkey,  tarsier, 
and lemur. The best  fit o f  the model  occurs at k = 4, 
with e = -5 ,044 .92 ,  and ~ = 3.855, d = 0.397. The F84 
+ F model  (k = ~)  was not fitted for computational  rea- 
sons. The l ike l ihood decreases  with k when k > 4 in- 
creases, and for k = 20, the results are ~ -- - 5 ,046 .64 ,  
with parameter  est imates ~ = 3.698 and d = 0.426. 
When  the median  is used, the best  fit  occurs with k = 
5, with ~ = 5,044.95, ~ = 3.704, and d = 0.377. Use 
of  the median  thus fits the data jus t  as well  as use of  the 
mean,  but the est imate of  c~ is farther from that ob- 
tained at k = 20. 

Because  of  the large size of  the m t D N A  data for 
nine species,  we also fi t ted the discrete gamma model  
combined  with the general  revers ib le-process  model  of  
nucleot ide substitution (REV, Yang in press),  i.e., REV 
+ dG. The REV model  involves five rate parameters ,  
that is, a, b, c, d, e instead of  only one 1¢ in the F84 mod- 
el. L ike l ihood values and parameter  est imates are list- 
ed in Table 2. Although REV + F is not fitted, estimates 
obtained from REV + dG with k = 20 can be expect-  
ed to be very close. Apparen t ly  k = 5 gives the best  fit, 
with ~ = - 5 , 0 3 1 . 6 2  and ~ = 0.462. Using the median 
instead of  the mean gives k = 6 for the best  fit, with 
= - 5 , 0 3 1 . 5 7  and d = 0.444. 

The (~ and [3 Globin Genes 

The phylogenet ic  re la t ionship among Primates (P), Ar-  
t iodactyla  (A), Lagomorpha  (L), Rodent ia  (R) is not re- 
solved al though the marsupial  (M) can be safely taken 
as the outgroup. The maximum l ikel ihood tree under the 
F84 + F model  is (((L,R),P),A) with M as the outgroup 
(Fig. 3). We  use this tree to examine the effects of  k, the 
number  of  categories,  in the discrete gamma model.  
Because parameter  est imates are quite stable over  tree 
topologies,  and the l ikel ihoods of  the several reasonable 
trees are very similar,  our conclusion will  not be b iased 
seriously i f  this tree is not the true tree. The results are 
shown in Fig. 4. The single-rate  model  (k = 1) gives e 
= - 1 , 7 9 2 . 0 6  with ~ = 0.074, while  the continuous 
gamma model  (k = ~) ,  F84 + F, gives e = -1 ,761 .17 ,  
with ~ = 0.116 and & = 0.360. When  k increases from 
one, the l ikel ihood increases steadily, and the best fit ap- 
pears to occur at k = 0% that is, with the continuous 
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Table 2. Likelihood values and parameter estimates under the REV+dG model for the mtDNA sequences for nine species (888 nucleotides) a 

1 -5,197.74 1.2552 0.2382 0.0341 0.4229 0.t479 NA 
2 -5,039.27 1.1810 0.1601 0.0149 0.2633 0.1189 0.4483 
3 5,032,81 1.2367 0.1375 0.0103 0.2363 0.1025 0.4497 
4 -5,031,70 1.2265 0.1310 0.0092 0.2281 0.0961 0.4539 
5 -5,031.62 1.2273 0.1309 0.0090 0.2279 0.0944 0.4622 
6 -5,031.73 1.2307 0.1316 0.0091 0.2287 0.0937 0.4679 
7 -5,031.85 1.2339 0.1323 0.0092 0.2294 0.0935 0.4714 
8 -5,031.95 1.2366 0.1328 0.0092 0.2301 0.0933 0.4736 
9 -5,032.03 1.2388 0.1333 0.0093 0.2306 0.0932 0.4749 

10 5,032.10 1.2406 0.1336 0.0094 0.2310 0.0932 0.4758 
12 -5,032.20 1.2431 0.1341 0.0094 0.2315 0.0931 0.4767 
15 -5,032.28 1.2454 0.1345 0.0095 0.2325 0.0931 0.4770 
20 -5,032.36 1.2474 0.1349 0.0096 0.2326 0.0931 0.4769 

a The assumed (unrooted) tree separates the species in the order hu- 
man, chimpanzee, gorilla, orangutan, gibbon, crab-eating macaque, 
squirrel monkey, tarsier, and lemur. The general reversible process 
model (REV) is combined with the discrete gamma model of rates over 
sites, where k is the number of categories. The frequency parameters 

gamma model. The likelihood values for k -- 1, 2, 3, 4 

are - 1,792.06, - 1,765.13, - 1,763.45, and - 1,762.01, 

respectively. The estimates of parameters for k = 4 are 

= 0.106 and dt = 0.321. When the median instead of 
the mean is used for each category, the best fit also ap- 

pears to occur with the continuous gamma model (k = 

w). At k = 4, the estimates are ~ = 0.106, d = 0.280, 

with e = -1 ,762 .04 .  The fit is as good as use of the 

mean, but the estimate of c~ is further from the contin- 
uous gamma model. 

The models are applied to all the possible tree topolo- 
gies l inking the five species. Likelihood values and pa- 

rameter estimates obtained from the three best trees un- 

der the F84 + F model are listed in Table 3. Results 

obtained from the star tree are also shown. The discrete 

gamma model with k = 4, F84 + dG4 gives very sim- 

ilar results to those obtained under F84 + F (Table 3). 

The fixed-rates model supports the same best tree, but 

the second and third best trees converge to one topolo- 

gy as one of the two interior branch lengths approach- 

es zero in both trees. With this model, data for sites from 
different rate classes are not identically distributed, and 

therefore the likelihoods should not be compared with 

fmax' the "upper  l imi t"  ob ta ined  f rom the "uncon-  
strained" model of Navidi et al. (1991) and Goldman 

(1993). The LS method, using d = 0.295 in Eq. 3 to cal- 

culate pairwise distances, also produces the same best 
tree. While  most of the 15 bifurcating trees have strict- 

ly positive interior branch lengths under F84 + F or F84 

+ dG4, at least one interior branch length in all the 
nonbest  trees is zero by the LS method. The fixed-rates 

model appears very similar to the LS method in this re- 
spect, as only two bifurcating trees have both interior 
branch lengths strictly positive. The same phenomenon 
is observed in the other two data sets. 

All the models (methods) considered in this paper 

are estimated by using the averages of observed values, ~r T = 0.2660, 
Wc = 0.3044, wA = 0.3220, and -rr c = 0.1076, w i t h  fmax = 

3,960.997. The rate parameters a, b, c, d, e in the REV model and 
the ~ parameter of the gamma distribution are estimated by iteration. 
Estimates of branch lengths are not shown 

support the tree structure shown in Fig. 3. The rela- 

tionship shown in Fig. 3 can therefore be taken as the 

best estimate of the phylogeny from this data set. We 

make no attempt to evaluate the statistical significance 
of this estimate. 

The ssrRNA Sequences 

The best tree under F84 + F is T 1 = ((S. solfatarius, H. 
sapiens), H. salinarium, E. coli), and this tree structure 
is assumed in examining the effect of k, the number  of 

categories in the discrete gamma model. The results 
are shown in Fig. 5. The single-rate model (k = 1) 

gives e = -5 ,834 .11 ,  ~ = 0.447 while the continuous 

gamma model (k = ~),  F84 + F, gives e = -5 ,785 .45 ,  

with ~ = 0.731, dt = 0.836. The best fit occurs with k 

= 2, with e = 5,785.07, ~ = 0.704, d = 0.722. When 

k further increases, the likelihood first decreases and 

then increases again, but the changes can be considered 

to be trivial. If the median instead of the mean for each 

category is used, the best fit occurs at k = 2, with e = 
5,785.07, ~ = 0.704, dt = 0.674. 

The second and third best trees under F84 + F are 

T 2 -- ((S. solfatarius, E. coli), H. salinarium, H. sapi- 
ens), and T 3 = ((S. solfatarius, H. salinarium), E. coli, 
H. sapiens), with likelihood values and parameter esti- 
mates to be e = -5 ,786 .02 ,  ~ = 0.723, d = 0.837 for 

T 2, and ~ = 5,786.83, ~ = 0.738, d t=  0.825 for T3, re- 
spectively. Estimates from the star tree under F84 + F 

are ~ = 0.746, dt -~ 0.807 with e = -5 ,786.88.  Note that 

the l ikelihood values for different tree topologies are 
very similar, probably meaning that there is not much 
information in the data concerning the phylogenetic re- 

lationship of these species. The discrete gamma model 
with k = 4, that is, F84 + dG4, produces very similar 
results to F84 + F; the order of the trees is also the 
same. The fixed-rates model produces the same best tree 
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Artiodaetyl Lagomorph 

0 . 0 5 ~ . 0 4 7 1  

0.23 / Pri~t0e352 ~71 

Rodent 

Marsupial 

Fig. 3. The maximum likelihood tree for the five orders of mammals 
from the ct and [3 globin genes (570 bp). The F84 + F model was as- 
sumed. Branch lengths are measured by the average numbers of nu- 
cleotide substitutions per site. 

as the F84 + F and F84 + dG4 models; the other two 
bifurcating trees, T 2 and T3, are not better than the star 
tree. The LS method, using d = 0.807 in Eq. 3 to cal- 
culate pairwise distances, chooses T 2 as the best tree, 
while if the distances are calculated assuming a single 
rate over sites (c~ = ~ in Eq. 3), the best tree is T 3. In 
both cases, only the best trees are strictly better than the 
star tree; the other two bifurcating trees have zero inte- 
rior branch lengths. 

As mentioned above, the nucleotide frequencies of 
these sequences are quite different over species, a fea- 
ture that is not accommodated in any of the models 
(methods) addressed in this paper. As accounting for this 
feature in the models may well alter the order of the 
likelihood values for different trees, which are already 
very similar, we will not suggest the best estimate of the 
phylogenetic relationship from this data set. 

-1760 l 0.4 

-1770 / / /  c~ 0.3 

-1780 0,2 

-1790 0.1 

-1800 . . . . . . . . . . . . . . . . . . .  0 
4 8 12 16 20 

k 
Fig. 4. Likelihood values and estimates of the c~ parameter as func- 
tions of k, the number of categories in the discrete gamma model. The 
ct and [3 globin genes for the five mammalian orders (570 bp) are an- 
alyzed, assuming the best tree (Fig. 3) and the F84 + dG model. The 
average nucleotide frequencies are rc T = 0.2200, at c = 0.2449, ~a = 
0.2761, and ~o = 0.2590, with ~max : - 1,579.76. When k = % that 
is, with the F84 + F model, ~ = -1,761.17 and d = 0.360. 

ent data sets will be comparable. Using the mean or the 
median for each category appears to give roughly the 
same fit, but when k is small, the mean has been found 
to give a better approximation to the continuous distri- 
bution. This can be expected to be due to the mean/me- 
dian ratios over the categories as determined by the 
density function of the gamma distribution. We thus rec- 
ommend the use of the mean rather than the median. For 
the estimation of the phylogenetic tree, parameters ~ and 
c~ do not need to be estimated for each of the tree 
topologies, as the estimates are quite stable across trees. 

Estimating the c~ Parameter of  the 
Gamma Distribution 

Discussion 

The Discrete Gamma Model 

As substitution rates are definitely variable over sites for 
all the data sets analyzed in this study, the best fit of the 
discrete gamma model must occur with k > 1. Indeed, 
all possibilities appear to have been observed: the best 
fit occurs at k = 2 for the ssrRNA sequences, at k = 
for the c~ and ~ globin genes, and at intermediate val- 
ues (three to six) for the mtDNA sequences. Different 
dynamics of d, as a function of k, are also observed. 
Overall, the goodness of fit of the model, as measured 
by the likelihood, is very similar for different values of 
k as long as k -> 3. For data sets analyzed in this paper, 
the discrete gamma model with k = 3 gives fairly good, 
if not the best, fit to the data. However, for the sake of 
safety, we recommend using k = 4. When a fixed k is 
used in a likelihood analysis, c~ will be well defined, and 
results obtained from different analyses or from differ- 

The discrete gamma model can be used to estimate the 
c~ parameter of the continuous gamma distribution, 
which can then be used in estimating pairwise distances, 
for example, by Eq. 3 or the formula of Tamura and Nei 
(1993). As these equations assume a continuous gam- 
ma model, it may be important to obtain an estimate of 
c~ that is close to that obtained under the continuous 
gamma model. This appears to require a large value of 
k, for example, k = 8. It is noted that the improvement 
in accuracy of the estimation by increasing k is often 
very slow. For data sets with only four or five species, 
the approach of Yang (1993) may well be preferred. 

An important confounding factor is the assumed tree 
structure. In theory, the estimate of c~ obtained from us- 
ing the true tree will be best, as estimates from other tree 
topologies will involve systematic errors. This is seldom 
possible, however, as the purpose of estimating the c~ 
parameter for the distance estimators is to reconstruct 
the tree. Although parameter estimates are found to be 
quite stable over tree topologies, we do notice some pat- 
terns: given the data set, the estimate of c~ obtained 



T a b l e  3. L ike l ihood  values  and parameter  es t imates  under  different  models  and different  trees a 

Trees 

Models  (((L,R,),P),A) ((L,R),(P,A)) (((L,R),A),P) (L,R,P,A) 

F 8 4 + F  
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F84 + dG4 

F84 (f ixed rates) 

= - 1,761.17 f : - 1,762.82 ~ = - 1,763.02 ~ = - 1,768.74 

¢: : 0.116 ~: = 0.118 ~ = 0.121 ~ = 0.126 

= 0 .360  ~ = 0 .337  & = 0 .333  ~. = 0 .295  

= - 1,762.01 e = - 1,763.40 ~ = - 1,763.47 f = - 1,768.81 

I~ = 0.106 ~-= 0.107 ¢: = 0.112 ~ = 0.114 

= 0.321 ~ = 0.299 ~ = 0.297 ~ = 0.264 

= - 1,525.26 f -= - 1,525.27 e = - 1,527.60 

a The et and [3 globin  genes (570 bp) for the f ive groups of mammals ,  that is, Primates (P), Ar t iodacty la  (A), Lagomorpha  (L), Rodent ia  (R), 

and marsupial ,  were analyzed.  Resul ts  for the three best trees under the F84 + F  model  and from the star tree are shown. The unrooted trees are 

shown in their rooted forms with the marsupia l  as the outgroup. The second and third best trees under the fixed rates model have an interior 

branch length approaching zero, and both converge  to one tree structure: ((L,R),P,A) 

- 5 7 8 0 ,  0 .85  l 

- 5 8 0 0  . I / 0 ,8  // el 

- 5 8 2 0  0 . 7 5  

- 5 8 4 0  • .' . . . . . . . . . . . . . . . . .  0 .7  

0 4 8 12 16  2 0  

k 

Fig. 5. Likelihood values  and est imates  of the c~ parameter  as func- 

t ions of k, the number  of categories  in the discrete g a m m a  model.  The 
ssrRNA genes (1,352 bp) are analyzed using the F84 + dG model. The 
average nucleot ide  frequencies  are ~T = 0.1847, ~c  = 0.2534, ~A = 

0.2396, ~a  = 0.3214, with ema x = -5 ,591 .06 .  The tree assumed is ((S. 

soIfatarius, H. sapiens). H. salinarium, E. coli), the maximum l ikel i -  
hood tree under  F84 + 17. When  k = ~ (F84 + F), ~ = 5,785.45 and 

= 0.836. 

from the maximum likelihood tree is almost always 
larger than those obtained from other tree topologies 
(Yang et al. 1994 and unpublished results; see also 
above). The estimate from the star tree is most often 
found to be the smallest. Therefore, using the star tree 
to estimate c~, a practice adopted in this study, can be 
expected to give underestimates. This discrepancy can 
be large when there are many species in the data and 
therefore the star tree is quite different from the true 
tree. On the other hand, if ct is always estimated from 
the maximum likelihood tree, cz will be overestimated 
when the maximum likelihood tree is not the true tree. 
This peculiarity of  the sampling properties of  maxi- 
mum likelihood estimates of  parameters in the frame- 
work of tree estimation is discussed elsewhere. It may 
therefore be better to estimate ct using a more-or-less 
reasonable tree with fewer species, that is, using a sub- 
set of  the data, rather than using the star tree with all the 

species. Nevertheless, if distance matrix methods are on- 
ly used to produce several candidate trees to be sub- 
jected to more rigorous analysis by the l ikel ihood 
method, which I believe should be the case, a rough es- 
timate of  c~ may be acceptable. 

One might expect that ct could also be estimated 
from pairwise comparisons, using, for instance, the 
maximum likelihood criterion. All pairwise estimates 
could be averaged to produce one estimate, which could 
then be used, e.g., in Eq. 3, to estimate pairwise dis- 
tances. However, this is found to be impossible in prac- 
tice. Estimates of  c~ obtained from comparison of  only 
two sequences are always found to be very large; most 
often the gamma distribution model is not any better at 
all than a single rate model. It does not seem possible 
to reveal rate variation over sites by comparing only two 
sequences. 
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